

Welcome to VTK’s documentation!

VTK is an open-source software system for image processing, 3D graphics, volume
rendering, and visualization. Our documentation is a comprehensive resource for
both new and seasoned VTK users and includes tutorials, examples, and best
practices to help you unlock the full power of VTK’s advanced algorithms and
rendering techniques.

We invite you to join the VTK community and explore our documentation to find
out how you can use VTK to bring your visions to life.

[image: Latest Release]
[image: PyPI]
[image: License]
[image: Commit Activity]

Contents

	About

	Getting Started

	Learning

	Supported Data Formats

	Supported Hardware

	Modules

	Building

	API

	Advanced Topics

	Design Documents

	Developer’s Guide

	Resources

	Release Details

About

Overview

The Visualization Toolkit (VTK) is a robust and open-source software system
that provides advanced features in 3D computer graphics, image processing,
modeling, volume rendering, and scientific visualization. It offers threaded
and distributed-memory parallel processing for scalability and better
performance.

VTK is a cross-platform library that can run on many operating systems,
including Windows, macOS, Linux, and even the web and mobile devices.

VTK is widely used in both academic and commercial settings, as well as in
government institutions such as Los Alamos National Lab and CINECA. The
software was originally published in the textbook titled “The Visualization
Toolkit, an Object-Oriented Approach to 3D Graphics” and has grown
significantly since its release in 1994 with an extensive worldwide user base.

VTK maintains a high-quality software process, which includes CMake, CTest,
CDash, and CPack. The software is written in C++ with additional language
bindings to reach a broader audience, with an excellent interoperability with
Python.

As open source software, VTK is free to use for any purpose. Technically, VTK
has a BSD-style license, which imposes minimal restrictions for both open and
closed source applications.

If you’re interested in exploring the growth and usage patterns of VTK, we
provide you with our statistics. The statistics are available on Open Hub, a
platform focused on community-driven software, and PyPI stats, which provides
download statistics for VTK packages. By analyzing these statistics, you can
gain insights into the community’s size, VTK’s adoption rates, and popularity.
Check out the links below for more information:

	Open Hub [https://www.openhub.net/p/vtk]

	PyPI stats [https://pypistats.org/packages/vtk]

Features

VTK provides a comprehensive set of features that support visualization,
modeling, and data analysis. Here are some highlights:

Filters

VTK’s filter-based architecture processes data by transforming and manipulating
it through a pipeline of successive filters. This approach produces derived
data that can be rendered using VTK’s graphics system. Filters can be combined
into a dataflow network, which enables a flexibly configurable workflow.

Graphics System

VTK provides a sophisticated rendering abstraction layer over the underlying
graphics library (OpenGL with experimental support for WebGL), simplifying the
creation of engaging visualizations.

Data Model

VTK’s core data model has the ability to represent almost any
real-world problem related to physical science. The fundamental data structures
are particularly well-suited to medical imaging and engineering work that
involves finite difference and finite element solutions.

Data Interaction

VTK provides several tools for interactive data exploration and analysis,
including 3D widgets, interactors, and 2D widget libraries integration like Qt.
These enable powerful user interaction capabilities, making it easier to
understand the content, shape, and meaning of data.

2D Plots and Charts

VTK supports a full set of 2D plot and chart types for tabular data
visualization. It also includes picking and selection capabilities, allowing
users to query data interactively. VTK’s excellent interoperability with Python
and Matplotlib further increases its flexibility.

Parallel Processing

VTK offers excellent support for scalable distributed-memory parallel
processing under MPI. VTK filters implement finer-grained parallelism using
vtkSMP for coarse-grained threading and vtk-m for fine-grained processing on
many-core and GPU architectures. These parallel processing capabilities make
VTK highly efficient and suited for processing large data sets.

License

VTK is distributed under the OSI-approved BSD 3-clause License. See
here [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Copyright.txt] for
details.

Citing

When citing VTK in your scientific research, please mention the following work to support increased visibility and dissemination of our software:

Schroeder, Will; Martin, Ken; Lorensen, Bill (2006), The Visualization Toolkit (4th ed.), Kitware, ISBN 978-1-930934-19-1

For your convenience here is a bibtex entry:

@Book{vtkBook,
 author = "Will Schroeder and Ken Martin and Bill Lorensen",
 title = "The Visualization Toolkit (4th ed.)",
 publisher = "Kitware",
 year = "2006",
 isbn = "978-1-930934-19-1",
}

To cite a specific filter, check for extra references in the included headers or the doxygen [https://vtk.org/doc/nightly/html] documentation of the filter.

History

2016 - Rendering Backend in ParaView 5.0

See Brand-New Rendering Backend in ParaView 5.0 [https://www.kitware.com/kitware-unleashes-brand-new-rendering-backend-in-paraview-5-0/].

2014 - Transition from OpenGL to OpenGL2

See New OpenGL Rendering in VTK [https://www.kitware.com/new-opengl-rendering-in-vtk].

1993 - Origin

VTK was originally part of the textbook The Visualization Toolkit An
Object-Oriented Approach to 3D
Graphics [https://vtk.org/documentation/#textbook]. Will Schroeder, Ken Martin,
and Bill Lorensen—three graphics and visualization researchers—wrote the book
and companion software on their own time, beginning in December 1993, with
legal permission from their then-employer, GE R&D. The motivation for the book
was to collaborate with other researchers and develop an open framework for
creating leading-edge visualization and graphics applications.

VTK grew out of the authors’ experiences at GE, particularly with the LYMB
object-oriented graphics system. Other influences included the VISAGE
visualization system developed by Schroeder et. al; the Clockworks
object-oriented computer animation system developed at Rensselaer Polytechnic
Institute; and the Object-Oriented Modeling and Design book, which Bill
Lorensen co-authored.

After the core of VTK was written, users and developers around the world began
to improve and apply the system to real-world problems. In particular, GE
Medical Systems and other GE businesses contributed to the system, and
researchers such as Dr. Penny Rheinghans began to teach with the book. Other
early advocates include Jim Ahrens at Los Alamos National Laboratory and
generous oil and gas supporters.

To address what was becoming a large, active, and world-wide community, Ken and
Will—along with Lisa Avila, Charles Law, and Bill Hoffman—left GE in 1998 to
found Kitware, Inc. Since that time, hundreds of additional developers have
turned VTK into what is now the premier visualization system in the world.
Sandia National Laboratories, for example, has been a strong supporter and
co-developer, revamping 2D charting and information visualization in VTK.

Acknowledgments

Many institutions have taken part in the development of VTK. Some of the most fundamental work came from the following:

	Kitware [https://www.kitware.com]

	Los Alamos National Lab (LANL) [http://www.lanl.gov]

	National Library of Medicine (NLM) [http://www.nlm.nih.gov]

	Department of Energy (DOE) ASC Program [http://www.cio.energy.gov/high-performance-computing.htm]

	Sandia National Laboratories [http://www.sandia.gov]

	Army Research Laboratory (ARL) [http://www.arl.army.mil/www/default.htm]

Special thanks to all the contributors [https://github.com/Kitware/VTK/graphs/contributors] !

Commercial Use

We invite commercial entities to use VTK.

VTK is part of Kitware’s collection of commercially supported open-source platforms for software development.

VTK’s License makes Commercial Use Available

	VTK is a free open source software distributed under a BSD style license.

	The license does not impose restrictions on the use of the software.

	VTK is NOT FDA approved. It is the users responsibility to ensure compliance with applicable rules and regulations.

Contact Us

We want to hear from you! If you have any questions, suggestions or bug reports
regarding VTK, there are several communication channels available for you:

VTK Forum

Visit the VTK Discourse [https://discourse.vtk.org] forum for community-driven support,
to share your experiences, exchange ideas and best practices, and to discuss
challenges.

Issue Tracker

Use our public issue tracker [https://gitlab.kitware.com/vtk/vtk/-/issues] to
report any bugs or request enhancements. This tracker is a ticket-based system
that allows you to keep track of your issues and follow up on their progress.

Commercial and Confidential Consulting

For commercial or confidential consulting related to VTK or any of our other
products and services, please contact
Kitware’s advanced support team [https://www.kitware.com/contact/advanced-support/]
for personalized assistance.

Getting Started

Introduction

Welcome to VTK! We recommend that you start by reading The VTK
Book [https://book.vtk.org], a comprehensive guide to VTK that covers all
aspects of its functionality. Additionally, you may find it helpful to explore
the VTK Examples [https://examples.vtk.org], a collection of useful reference
materials that demonstrate how to use VTK’s different modules and features.

Before diving into VTK’s functionality, ensure that your system meets its
system requirements. Depending on your programming
experience and needs, you can choose different programming languages to work
with VTK. We have documentation on how to use VTK with Python,
Jupyter, C++ and CMake,
Javascript, and WebAssembly.

Lastly, to help address your specific needs, you may also consider exploring
existing free and open-source frameworks or applications
that already leverage VTK. These frameworks and applications can be extended and customized to work
for specific use cases and may provide ready-to-use solutions for your project.

System requirements

Runtime

	At least Python 3.x to use scripting capabilities

	Minimum macOS version 10.10.

	Minimum OpenGL version is 3.2 but a higher versions may be required for more advanced features.

Build-time

Check the build prerequisites.

Using Python

VTK is available on PyPI [https://pypi.org/] for Windows, macOS and Linux.

pip install vtk

or in a virtual environment [https://docs.python.org/3/library/venv.html] if you want to install the package only locally instead of system-wide

Linux
python -m venv ./env
source ./env/bin/activate
pip install vtk

macOS
python -m venv ./env
source ./env/bin/activate
pip install vtk

Windows
Using PowerShell

python -m venv env
.\env\Activate.ps1
pip install vtk

or using cmd.exe

python -m venv env
.\env\activate.bat
pip install vtk

To verify the installation try to import vtk from an interactive python environment:

>>> import vtk
>>> print(vtk.__version__)
9.2.6

That’s it ! You may now try some of the
tutorials [https://kitware.github.io/vtk-examples/site/Python/#tutorial],
how to guides [https://kitware.github.io/vtk-examples/site/PythonHowTo] or
examples [https://kitware.github.io/vtk-examples/site/Python].

If you are looking for a higher-level interface to VTK in Python, you may want
to explore using PyVista [https://docs.pyvista.org] as it exposes VTK in a
“Pythonic” manner.

Using Jupyter

When it comes to rendering with VTK in Jupyter, there are several options.

To harness the full power of VTK in Jupyter, you may want to leverage
PyVista [https://docs.pyvista.org/] and Trame [https://kitware.github.io/trame/index.html].
PyVista exposes a high-level interface to VTK for plotting and when combined
with Trame, empowers users to bring the full power of VTK to a Jupyter
notebook. We have
a post on the VTK discourse about this [https://discourse.vtk.org/t/pyvista-trame-jupyter-3d-visualization/10610]. See PyVista’s documentation
for more information on using PyVista’s wrappings of VTK in Jupyter.

itkwidgets [https://itkwidgets.readthedocs.io/en/latest] is one example of
a domain-specific Jupyter viewer built on VTK. To try out itkwidgets, check
this example [https://colab.research.google.com/github/InsightSoftwareConsortium/itkwidgets/blob/main/examples/integrations/vtk/vtkImageData.ipynb].

Using C++ and CMake

CMake is an open-source platform-independent build system that manages the
entire software build process, from source code to executable binary. If you’re
new to CMake, you can find more information on the CMake website [https://cmake.org].

Installing a binary release

Pre-built VTK releases maintained by the community exist for a number of
distributions, as shown in the following table:

	Operating System/ Package manager

	Package Name

	Version

	Fedora Rawhide

	vtk-devel

	[image: Fedora rawhide package]

	Fedora 38

	vtk-devel

	[image: Fedora 38 package]

	Fedora 37

	vtk-devel

	[image: Fedora 37 package]

	Ubuntu 23.04 (lunar)

	libvtk9-dev

	[image: Ubuntu lunar package]

	Ubuntu 22.10 (kinetic)

	libvtk9-dev

	[image: Ubuntu kinetic package]

	Ubuntu 22.04 (jammy)

	libvtk9-dev

	[image: Ubuntu jammy package]

	Ubuntu 20.04 (focal)

	libvtk7-dev

	[image: Ubuntu focal package]

	Debian unstable

	libvtk9-devel

	[image: Debian unstable package]

	Debian testing

	libvtk9-devel

	[image: Debian testing package]

	Debian stable

	libvtk9-devel

	[image: Debian stable package]

	Gentoo

	vtk

	[image: Gentoo package] [https://repology.org/project/vtk/versions]

	homebrew

	vtk

	[image: homebrew version]

	vckpg

	vtk

	[image: Vcpkg]

	spack

	vtk

	[image: Spack]

Note that these packages may be lacking some optional features such as mpi, qt
etc. or, they may not contain the latest VTK features. Check the documentation
of each package to verify that the build contains what you need. If what you
need is missing you will need to build vtk from scratch.

Building an executable

Once VTK is installed using either of the methods above you can use it in your
project utilizing the
find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
infrastructure of cmake:

find_package(VTK
 COMPONENTS
 .. list of vtk modules to link to
)

your executable
add_executable(testExample ...)

link to required VTK libraries
target_link_libraries(testExample
 PRIVATE
 ${VTK_LIBRARIES}
)

vtk_module_autoinit(
 TARGETS testExample
 MODULES ${VTK_LIBRARIES}
)

vtk_module_autoinit() is responsible for triggering static code construction required for some VTK classes.
For more details regarding the autoinit system of VTK see here.

The list of required vtk modules depends on the files #included in your code. The module a header file belongs to is determined
in most cases by its location in the VTK source tree. For, example vtkXMLPolyDataReader is located under IO/XML so it belongs to the IOXML module,
to verify check the accompanying vtk.module [https://gitlab.kitware.com/vtk/vtk/-/blob/master/IO/XML/vtk.module] file in the same directory.

The above method works in most cases but it does not express the dependencies that some module have. A better (and easier) way to
find the required modules is the VTKModulesForCxx [https://examples.vtk.org/site/Python/Utilities/VTKModulesForCxx] script.

For example, running the script on the CylinderExample [https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample]
we get the following suggestion:

find_package(VTK
 COMPONENTS
 CommonColor
 CommonCore
 FiltersSources
 RenderingCore
 #
 # These modules are suggested since they implement an existing module.
 # You may need to uncomment one or more of these.
 # If vtkRenderWindow is used and you want to use OpenGL,
 # you also need the RenderingOpenGL2 module.
 # If vtkRenderWindowInteractor is used,
 # uncomment RenderingUI and possibly InteractionStyle.
 # If text rendering is used, uncomment RenderingFreeType
 #
 # InteractionStyle # implements VTK::RenderingCore
 # RenderingCellGrid # implements VTK::RenderingCore
 # RenderingFreeType # implements VTK::RenderingCore
 # RenderingOpenGL2 # implements VTK::RenderingCore
 # RenderingUI # implements VTK::RenderingCore
)

Based on the suggestions of the script and the template above the relevant sections of the CMakeLists.txt are:

...
find_package(VTK COMPONENTS
 CommonColor
 CommonCore
 FiltersSources
 InteractionStyle
 RenderingContextOpenGL2
 RenderingCore
 RenderingFreeType
 RenderingGL2PSOpenGL2
 RenderingOpenGL2
)

add_executable(CylinderExample CylinderExample.cxx)
target_link_libraries(CylinderExample PRIVATE ${VTK_LIBRARIES})
vtk_module_autoinit is needed
vtk_module_autoinit(
 TARGETS CylinderExample
 MODULES ${VTK_LIBRARIES}
)

The full source of the example can be found here [https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample/].

To build the example:

mkdir build
cd build
ccmake ../ # or cmake-gui if on Windows

Hit C if using ccmake or the configure button if using cmake-gui.
If VTK was built from scratch you will need to set VTK_DIR to the installation path.
If ccmake/cmake-gui reports no errors quit ccmake/cmake-gui and build the project as follows:

cmake --build .

To run the example

./CylinderExample

For more examples check the
tutorials [https://kitware.github.io/vtk-examples/site/Cxx/#tutorial],
how to guides [https://kitware.github.io/vtk-examples/site/CxxHowTo] or
examples [https://kitware.github.io/vtk-examples/site/Cxx] sections of the vtk examples website.

Using Javascript

vtk.js [https://kitware.github.io/vtk-js/docs/] is an implementation of VTK in JavaScript that consists of an ES6 class library which can be integrated into any web application. See here [https://kitware.github.io/vtk-js/docs/#What-is-the-difference-with-VTK-C] to learn more about the differences between VTK C++ and vtk.js.

Using WebAssembly

VTK-Wasm is a prototype infrastructure that enables the compilation of VTK C++ code to WebAssembly via Emscripten. This feature is still under active development.

To learn more about VTK-Wasm and its capabilities, please take a look at the following resources:

	Examples of WebAssembly applications that use VTK for rendering. [https://gitlab.kitware.com/vtk/vtk/-/tree/master/Examples/Emscripten/Cxx]

	A collection of VTK web-based benchmark applications. [https://github.com/Kitware/vtkWasmBenchmarks]

	A guide on using the experimental WebGPU feature in VTK-Wasm. [https://discourse.vtk.org/t/guide-how-do-i-use-vtk-wasm-webgpu-experimental-feature/11164].

	Instructions for building VTK using Emscripten for WebAssembly.

	vtk-wasm-docker [https://gitlab.kitware.com/vtk/vtk-wasm-docker] for building and publishing the kitware/vtk-wasm [https://hub.docker.com/r/kitware/vtk-wasm] docker images.

	Deep dive into WebAssembly & WebGPU in VTK: presentation from April 28th, 2023 [https://docs.google.com/presentation/d/1Nl0TVa55616QKCSHP54BoYBvByMKe6lIUl6IFZqSeJo/edit#slide=id.p]. This presentation covers topics such as Emscripten, VTK-wasm Docker image, WASM Dev tools, VTK and WebGPU: PolyData Mapper, API inspection with RenderDoc, and performance profiles.

We welcome your feedback and contributions to this project. Feel free to share your experiences, questions, and ideas in the web/vtk-wasm [https://discourse.vtk.org/c/web/vtk-wasm/12] category of the VTK Discourse forum. Stay tuned for updates and new developments!

Using existing frameworks and applications

There are many VTK-based, free, open-source applications for scientific,
bio-medical and medical image visualization and processing; several of them are
extensible frameworks that can be customized for particular use cases.
ParaView [https://paraview.org], Trame [https://kitware.github.io/trame/index.html],
PyVista [https://docs.pyvista.org], and 3D Slicer [https://www.slicer.org/]
are examples. Therefore, it is worth
evaluating if any of these would allow you to address your challenges. This
would save time by avoiding redeveloping everything from scratch and by
capitalizing on large communities with thousands of experts.

Generally, the default (complex, but powerful) user interface of these applications
allows one to figure out the complete workflow. Once one knows exactly what and how
to do it, they can create a small Python scripted module that automates most of the
steps and provides a simplified user interface.

Learning

The VTK textbook [https://book.vtk.org] offers thorough descriptions of important visualization algorithms and techniques that can be found in VTK
along with some examples.

More examples and how-to guides can be found at the examples [https://examples.vtk.org/site] website.
Check also
this [https://examples.vtk.org/site/Python/Utilities/SelectExamples] script for
getting examples focused around specific classes.

Community discussion takes place on the VTK Discourse [https://discourse.vtk.org] forum.

Commercial support and training [https://kitware.com/support] are available from Kitware [https://kitware.com].

There is also a collection of technical guides related to VTK that have been
published as blog-posts in the past:

	Improved VTK - numpy integration (part 1) [https://www.kitware.com/improved-vtk-numpy-integration]

	Improved VTK - numpy integration (part 2) [https://www.kitware.com/improved-vtk-numpy-integration-part-2]

	Improved VTK - numpy integration (part 3) [https://www.kitware.com/improved-vtk-numpy-integration-part-3]

	Improved VTK - numpy integration (part 4) [https://www.kitware.com/improved-vtk-numpy-integration-part-4]

	Improved VTK - numpy integration (part 5) [https://www.kitware.com/improved-vtk-numpy-integration-part-5]

	vtkProgrammableFilter [https://www.kitware.com/vtkprogrammablefilter-aint-so-bad]

	vtkPythonAlgorithm [https://www.kitware.com//vtkpythonalgorithm-is-great]

	A VTK pipeline primer (part 1) [https://www.kitware.com/a-vtk-pipeline-primer-part-1/]

	A VTK pipeline primer (part 2) [https://www.kitware.com/a-vtk-pipeline-primer-part-2/]

	A VTK pipeline primer (part 3) [https://www.kitware.com/a-vtk-pipeline-primer-part-3/]

	Streaming in VTK: Time [https://www.kitware.com/streaming-in-vtk-time/]

	Streaming in VTK: Spatial [https://www.kitware.com/streaming-in-vtk-spatial/]

	Spatial Streaming and Compositing [https://www.kitware.com/spatial-streaming-and-compositing/]

For more posts related to VTK see here [https://www.kitware.com/tag/vtk].

Supported Data Formats

Below is a list of all available readers and writers in VTK sorted by
extension. Note that for the same extension it could be more than one matching
reader/writer since the same extensions are often used across different
formats. The list is generated based on a yaml
file that contains all the relevant information.

To enable a reader/writer you need to enable the associated module during configuration:

cmake -DVTK_MODULE_ENABLE_<module name>=WANT ...

or setting the flag value via ccmake/cmake-qt.

For example to enable vtkPNGWriter which belongs to VTK::IOImage

cmake -DVTK_MODULE_ENABLE_VTK_IOImage=WANT ...

For more details on enabling module see the module system api.

Warning

the list is incomplete, this is work in progress

	Stanford Exploration Project files reader:

	Extension: .H

	reader: vtkSEPReader [https://vtk.org/doc/nightly/html/classvtkSEPReader.html]

	module: VTK::IOImage

	Alembic [http://www.alembic.io/] scene format:

	Extension: .abc

	writer: vtkAlembicExporter [https://vtk.org/doc/nightly/html/classvtkAlembicExporter.html]

	module: VTK::IOAlembic

	AVI video files (Windows only):

	Extension: .avi

	writer: vtkAVIWriter [https://vtk.org/doc/nightly/html/classvtkAVIWriter.html]

	module: VTK::IOMovie

	LIDAR data using PDAL [https://pdal.io/en/latest/stages/readers.html]:

	Extensions: .bin, .bpf, .csd, .csv, .greyhound, .gpkg, .icebride, .las, .laz, .mat, .nitf, .nsf, .ntf, .pcd, .ply, .pts, .qi, .rxp, .sbet, .sqlite, .sid, .tindex, .txt, .h5

	reader: vtkPDALReader [https://vtk.org/doc/nightly/html/classvtkPDALReader.html]

	module: VTK::IOPDAL

	Windows BMP file:

	Extension: .bmp

	reader: vtkBMPReader [https://vtk.org/doc/nightly/html/classvtkBMPReader.html]

	writer: vtkBMPWriter [https://vtk.org/doc/nightly/html/classvtkBMPWriter.html]

	module: VTK::IOImage

	FLUENT native format:

	Extensions: .cas, .dat

	reader: vtkFLUENTReader [https://vtk.org/doc/nightly/html/classvtkFLUENTReader.html]

	module: VTK::IOGeometry

	MotionFX motion definitions cfg files:

	Extension: .cfg

	reader: vtkMotionFXCFGReader [https://vtk.org/doc/nightly/html/classvtkMotionFXCFGReader.html]

	module: VTK::IOMotionFX

	Computer Graphics Metafile:

	Extension: .cgm

	writer: vtkCGMWriter [https://vtk.org/doc/nightly/html/classvtkCGMWriter.html]

	module: VTK::IOGeometry

	CONVERGE CFD [https://convergecfd.com] CGNS format:

	Extension: .cgns

	reader: vtkCONVERGECFDCGNSReader [https://vtk.org/doc/nightly/html/classvtkCONVERGECFDCGNSReader.html]

	module: VTK::IOCGNSReader

	CGNS [https://cgns.github.io/cgns-modern.github.io/index.html] format:

	Extension: .cgns

	reader: vtkCGNSReader [https://vtk.org/doc/nightly/html/classvtkCGNSReader.html]

	module: VTK::IOCGNSReader

	LS-Dyna [https://www.oasys-software.com/dyna/] databases:

	Extension: .d3plot

	reader: vtkLSDynaReader [https://vtk.org/doc/nightly/html/classvtkLSDynaReader.html]

	module: VTK::IOLSDyna

	Tabulat data in Tecplot ascii format:

	Extensions: .dat, .DAT

	reader: vtkTecplotTableReader [https://vtk.org/doc/nightly/html/classvtkTecplotTableReader.html]

	module: VTK::IOTecplotTable

	FLUENT CFF format:

	Extensions: .dat.h5, .cas.h5

	reader: vtkFLUENTCFFReader [https://vtk.org/doc/nightly/html/classvtkFLUENTCFFReader.html]

	module: VTK::IOFLUENTCFF

	DICOM medical images:

	Extension: .dcm

	reader: vtkDICOMImageReader [https://vtk.org/doc/nightly/html/classvtkDICOMImageReader.html]

	module: VTK::IOImage

	Digital Elevation Map File:

	Extension: .dem

	reader: vtkDEMReader [https://vtk.org/doc/nightly/html/classvtkDEMReader.html]

	module: VTK::IOImage

	Movie.BYU files:

	Extension: .g

	reader: vtkBYUReader [https://vtk.org/doc/nightly/html/classvtkBYUReader.html]

	writer: vtkBYUWriter [https://vtk.org/doc/nightly/html/classvtkBYUWriter.html]

	module: VTK::IOGeometry

	IOSS (Sierra IO System), writer supports only Exodus files:

	Extension: .g .e .h .gc .ex2 .ex2v2 .exo .gen .par .exoII .exii .ex-timeseries .cgns

	reader: vtkIOSSReader [https://vtk.org/doc/nightly/html/classvtkIOSSReader.html]

	writer: vtkIOSSWriter [https://vtk.org/doc/nightly/html/classvtkIOSSWriter.html]

	module: VTK::IOIOSS

	Chaco graph partitioning output files:

	Extensions: .graph, .coords

	reader: vtkChacoReader [https://vtk.org/doc/nightly/html/classvtkChacoReader.html]

	module: VTK::IOGeometry

	VERAout-tools [https://github.com/palmtag/VERAout-tools]:

	Extension: .h5

	reader: vtkVeraOutReader [https://vtk.org/doc/nightly/html/classvtkVeraOutReader.html]

	module: VTK::IOVeraOut

	CONVERGE CFD [https://convergecfd.com] format:

	Extension: .h5

	reader: vtkCONVERGECFDReader [https://vtk.org/doc/nightly/html/classvtkCONVERGECFDReader.html]

	module: VTK::IOCONVERGECFD

	H5Part particle files:

	Extension: .h5part

	reader: vtkH5PartReader [https://vtk.org/doc/nightly/html/classvtkH5PartReader.html]

	module: VTK::IOH5Part

	hdf files generated from xRage, a LANL physics code:

	Extension: .h5rage

	reader: vtkH5RageReader [https://vtk.org/doc/nightly/html/classvtkH5RageReader.html]

	module: VTK::IOH5Rage

	GE TRUCHAS format:

	Extensions: .hdf5, .h5

	reader: vtkTRUCHASReader [https://vtk.org/doc/nightly/html/classvtkTRUCHASReader.html]

	module: VTK::IOTRUCHAS

	Radiance HDR file:

	Extension: .hdr

	reader: vtkHDRReader [https://vtk.org/doc/nightly/html/classvtkHDRReader.html]

	module: VTK::IOImage

	AVS UCD Binary/ASCII Files:

	Extension: .inp

	reader: vtkAVSucdReader [https://vtk.org/doc/nightly/html/classvtkAVSucdReader.html]

	module: VTK::IOGeometry

	JPEG Files:

	Extensions: .jpg, .jpeg

	reader: vtkJPEGReader [https://vtk.org/doc/nightly/html/classvtkJPEGReader.html]

	writer: vtkJPEGWriter [https://vtk.org/doc/nightly/html/classvtkJPEGWriter.html]

	module: VTK::IOImage

	LIDAR data in LAS format:

	Extension: .las

	reader: vtkLASReader [https://vtk.org/doc/nightly/html/classvtkLASReader.html]

	module: VTK::IOLAS

	binary UNC meta image data:

	Extensions: .mhd, .mha

	reader: vtkMetaImageReader [https://vtk.org/doc/nightly/html/classvtkMetaImageReader.html]

	writer: vtkMetaImageWriter [https://vtk.org/doc/nightly/html/classvtkMetaImageWriter.html]

	module: VTK::IOImage

	NetCDF-based medical image developed at [BIC:

	Extension: .mnc

	reader: vtkMINCImageReader [https://vtk.org/doc/nightly/html/classvtkMINCImageReader.html]

	writer: vtkMINCImageWriter [https://vtk.org/doc/nightly/html/classvtkMINCImageWriter.html]

	module: VTK::IOMINC

	H.264-encoded MP4 files (Windows only):

	Extension: .mp4

	writer: vtkMP4Writer [https://vtk.org/doc/nightly/html/classvtkMP4Writer.html]

	module: VTK::IOMovie

	MRC [http://bio3d.colorado.edu/imod/doc/mrc_format.txt] Image Files:

	Extensions: .mrc, .ali, .st, .rec

	reader: vtkMRCReader [https://vtk.org/doc/nightly/html/classvtkMRCReader.html]

	module: VTK::IOImage

	NetCDF UGRID file [https://ugrid-conventions.github.io/ugrid-conventions]:

	Extensions: .nc, .ncdf

	reader: vtkNetCDFUGRIDReader [https://vtk.org/doc/nightly/html/classvtkNetCDFUGRIDReader.html]

	module: VTK::IONetCDF

	CAM NetCDF (Unstructured):

	Extensions: .nc, .ncdf

	reader: vtkNetCDFCAMReader [https://vtk.org/doc/nightly/html/classvtkNetCDFCAMReader.html]

	module: VTK::IONetCDF

	netCDF files generic and CF conventions:

	Extensions: .nc, .ncdf

	reader: vtkNetCDFReader [https://vtk.org/doc/nightly/html/classvtkNetCDFReader.html]

	writer: vtkNetCDFCFWriter [https://vtk.org/doc/nightly/html/classvtkNetCDFCFWriter.html]

	module: VTK::IONetCDF

	UGRID NetCDF (Unstructured):

	Extensions: .nc, .ncdf

	reader: vtkNetCDFUGRIDReader [https://vtk.org/doc/nightly/html/classvtkNetCDFUGRIDReader.html]

	module: VTK::IONetCDF

	MPAS NetCDF (Unstructured):

	Extensions: .nc, .ncdf

	reader: vtkMPASReader [https://vtk.org/doc/nightly/html/classvtkMPASReader.html]

	module: VTK::IONetCDF

	SLAC [https://www6.slac.stanford.edu] Data Reader:

	Extensions: .nc, .ncdf

	reader: vtkSLACReader [https://vtk.org/doc/nightly/html/classvtkSLACReader.html]

	module: VTK::IONetCDF

	Particle data file used at SLAC [https://ugrid-conventions.github.io/ugrid-conventions]:

	Extensions: .ncdf, .netcdf

	reader: vtkSLACParticleReader [https://vtk.org/doc/nightly/html/classvtkSLACParticleReader.html]

	module: VTK::IONetCDF

	GAMBIT GAMBIT ASCII format:

	Extension: .neu

	reader: vtkGAMBITReader [https://vtk.org/doc/nightly/html/classvtkGAMBITReader.html]

	module: VTK::IOGeometry

	NIfTI-1 and NIfTI-2 medical image [https://nifti.nimh.nih.gov/] files:

	Extensions: .nii, .img, .hdr

	reader: vtkNIFTIImageReader [https://vtk.org/doc/nightly/html/classvtkNIFTIImageReader.html]

	writer: vtkNIFTIImageWriter [https://vtk.org/doc/nightly/html/classvtkNIFTIImageWriter.html]

	module: VTK::IOImage

	Nrrd Raw Image Files:

	Extensions: .nrrd, .nhdr

	reader: vtkNrrdReader [https://vtk.org/doc/nightly/html/classvtkNrrdReader.html]

	module: VTK::IOImage

	MNI [https://github.com/BIC-MNI] surface mesh files:

	Extension: .obj

	reader: vtkMNIObjectReader [https://vtk.org/doc/nightly/html/classvtkMNIObjectReader.html]

	writer: vtkMNIObjectWriter [https://vtk.org/doc/nightly/html/classvtkMNIObjectWriter.html]

	module: VTK::IOMINC

	OggTheora [https://www.theora.org/]:

	Extension: .ogv

	writer: vtkOggTheoraWriter [https://vtk.org/doc/nightly/html/classvtkOggTheoraWriter.html]

	module: VTK::IOOggTheora

	OME [https://docs.openmicroscopy.org/ome-model/5.6.3/ome-tiff/specification.html#ome-tiff-specification] TIFF files:

	Extensions: .ome.tif, .ome.tiff

	reader: vtkOMETIFFReader [https://vtk.org/doc/nightly/html/classvtkOMETIFFReader.html]

	module: VTK::IOImage

	OMF [https://omf.readthedocs.io/en/stable/index.html]:

	Extension: .omf

	reader: vtkOMRReader [https://vtk.org/doc/nightly/html/classvtkOMRReader.html]

	module: VTK::IOOMF

	PIO (Parallel Input Output) data files:

	Extension: .pio

	reader: vtkPIOReader [https://vtk.org/doc/nightly/html/classvtkPIOReader.html]

	module: VTK::IOPIO

	Stanford University PLY format:

	Extension: .ply

	reader: vtkPLYReader [https://vtk.org/doc/nightly/html/classvtkPLYReader.html]

	writer: vtkPLYWriter [https://vtk.org/doc/nightly/html/classvtkPLYWriter.html]

	module: VTK::IOPLY

	PNG file:

	Extension: .png

	reader: vtkPNGReader [https://vtk.org/doc/nightly/html/classvtkPNGReader.html]

	writer: vtkPNGWriter [https://vtk.org/doc/nightly/html/classvtkPNGWriter.html]

	module: VTK::IOImage

	pnm (i.e., portable anymap) file:

	Extensions: .pnm, .pgm, .ppm

	reader: vtkPNMReader [https://vtk.org/doc/nightly/html/classvtkPNMReader.html]

	writer: vtkPNMWriter [https://vtk.org/doc/nightly/html/classvtkPNMWriter.html]

	module: VTK::IOImage

	POP Ocean NetCDF (Rectilinear):

	Extension: .pop.ncdf .pop.nc

	reader: vtkNetCDFPOPReader [https://vtk.org/doc/nightly/html/classvtkNetCDFPOPReader.html]

	module: VTK::IONetCDF

	PostScript file:

	Extension: .ps

	writer: vtkPostScriptWriter [https://vtk.org/doc/nightly/html/classvtkPostScriptWriter.html]

	module: VTK::IOImage

	SEG-Y [https://en.wikipedia.org/wiki/SEG-Y]:

	Extensions: .sgy, .segy

	reader: vtkSegYReader [https://vtk.org/doc/nightly/html/classvtkSegYReader.html]

	module: VTK::IOSegY

	SLC volume file:

	Extension: .slc

	reader: vtkSLCReader [https://vtk.org/doc/nightly/html/classvtkSLCReader.html]

	module: VTK::IOImage

	VTK Reader for STEP and IGES files using OpenCASCADE:

	Extensions: .step, .iges

	reader: vtkOCCTReader [https://vtk.org/doc/nightly/html/classvtkOCCTReader.html]

	module: VTK::IOOCCT

	MNI [https://github.com/BIC-MNI] tag files:

	Extension: .tag

	reader: vtkMNITagPointReader [https://vtk.org/doc/nightly/html/classvtkMNITagPointReader.html]

	writer: vtkMNITagPointWriter [https://vtk.org/doc/nightly/html/classvtkMNITagPointWriter.html]

	module: VTK::IOMINC

	Targa [https://en.wikipedia.org/wiki/Truevision_TGA] files:

	Extension: .tga

	reader: vtkTGAReader [https://vtk.org/doc/nightly/html/classvtkTGAReader.html]

	module: VTK::IOImage

	Tiff image format:

	Extensions: .tif, .tiff

	reader: vtkTIFFReader [https://vtk.org/doc/nightly/html/classvtkTIFFReader.html]

	writer: vtkTIFFWriter [https://vtk.org/doc/nightly/html/classvtkTIFFWriter.html]

	module: VTK::IOImage

	OpenVDB [https://www.openvdb.org/]:

	Extension: .vdb

	reader: vtkOpenVDBReader [https://vtk.org/doc/nightly/html/classvtkOpenVDBReader.html]

	writer: vtkOpenVDBWriter [https://vtk.org/doc/nightly/html/classvtkOpenVDBWriter.html]

	module: VTK::IOOpenVDB

	VPIC [https://github.com/lanl/vpic]:

	Extension: .vpc

	reader: vtkVPCIReader [https://vtk.org/doc/nightly/html/classvtkVPCIReader.html]

	module: VTK::IOVPIC

	MNI [https://github.com/BIC-MNI] transformation files:

	Extension: .xfm

	reader: vtkMNITransformReader [https://vtk.org/doc/nightly/html/classvtkMNITransformReader.html]

	writer: vtkMNITransformWriter [https://vtk.org/doc/nightly/html/classvtkMNITransformWriter.html]

	module: VTK::IOMINC

	GE Signa ximg files:

	Extension: .ximg

	reader: vtkGESignaReader [https://vtk.org/doc/nightly/html/classvtkGESignaReader.html]

	module: VTK::IOImage

	XDMF [https://www.xdmf.org] (eXtensible Data Model and Format):

	Extensions: .xmf, .xdmf, .xmf2, .xdmf2

	reader: vtkXdmfReader [https://vtk.org/doc/nightly/html/classvtkXdmfReader.html]

	writer: vtkXdmfWriter [https://vtk.org/doc/nightly/html/classvtkXdmfWriter.html]

	module: VTK::IOXdmf2

	XDMF [https://www.xdmf.org] (eXtensible Data Model and Format):

	Extensions: .xmf, .xdmf, .xmf3, .xdmf3

	reader: vtkXdmf3Reader [https://vtk.org/doc/nightly/html/classvtkXdmf3Reader.html]

	writer: vtkXdmf3Writer [https://vtk.org/doc/nightly/html/classvtkXdmf3Writer.html]

	module: VTK::IOXdmf3

Supported Hardware

VTK can integrate with a number of specialized visualization hardware including:

	Looking Glass [https://lookingglassfactory.com/], see the latest blog post
here [https://www.kitware.com/looking-glass-factory-expands-reach-into-rd-labs-with-new-holographic-kitware-integrations].
The integration is achieved using an
external [https://github.com/Kitware/LookingGlassVTKModule] vtk module that leverages
the display’s SDK.

	Virtual Reality headsets like Oculus [https://www.oculus.com] and
VIVE [https://www.vive.com] as described in
this [https://www.kitware.com/using-virtual-reality-devices-with-vtk] post
via the VTK::RenderingOpenVR module.

	Augmented Reality headsets like
Hololens [https://www.microsoft.com/en-us/hololens] as demonstrated
here [https://www.kitware.com/stream-vtk-to-the-hololens-2] via the
VTK::RenderingOpenXRRemoting module.

	Augmented Reality displays like ZSpace [https://zspace.com/] via its
ParaView integration as demonstrated
here [https://www.kitware.com/zspace-device-support-coming-to-paraview].

Modules

VTK library is a dynamic C++ toolkit built around the concept of “modules”. Each module may have dependencies to other VTK module or external libraries.

Foundational dependencies have been wrapped into convenient “module”.

Enabling or Disabling Modules

To enable a module set

cmake -DVTK_MODULE_ENABLE_<module name>=WANT ...

during the
configuration stage.

Disabling a module can be done as follows:

cmake -DVTK_MODULE_ENABLE_<module name>=DONT_WANT ...

Enabling a module may cause more to be enabled due to dependencies. For more
details about the module infrastructure in VTK see the
Module System section.

Available Modules

Here is a complete list of the available vtk modules:

	Module Name

	Description

	VTK::AcceleratorsVTKmCore

	VTKm data structures

	VTK::AcceleratorsVTKmDataModel

	VTKm data structures

	VTK::AcceleratorsVTKmFilters

	VTKm filters and algorithms

	VTK::ChartsCore

	Charts and plots

	VTK::CommonArchive

	

	VTK::CommonColor

	Color palette and named color support classes

	VTK::CommonComputationalGeometry

	Parametric splines and curves

	VTK::CommonCore

	The base VTK library

	VTK::CommonDataModel

	Core data types

	VTK::CommonExecutionModel

	Core algorithms and execution

	VTK::CommonMath

	Linear algebra types

	VTK::CommonMisc

	Assorted utility classes

	VTK::CommonPython

	

	VTK::CommonSystem

	Filesystem and networking support

	VTK::CommonTransforms

	Linear algebra transformations

	VTK::DICOMParser

	

	VTK::DomainsChemistry

	Algorithms used in chemistry

	VTK::DomainsChemistryOpenGL2

	OpenGL support for chemistry data

	VTK::DomainsMicroscopy

	File readers for microscopy file formats

 VTK::DomainsMicroscopy

VTK::DomainsMicroscopy

vtkOpenSlideReader

	A new image reader for vtk

	Wraps open source openslide library [https://github.com/openslide/openslide] which implements read support for many whole slide image formats

	Mainly from microscopy domain

	Requires openslide libraries for building

Known issues

	Ubuntu 14.04 contains incorrectly patched version of openjpeg (dependency of openslide), and thus openslide is unable to decode certain .svs files. This issue is not present in later versions of ubuntu or fedora 23.

 VTK::FiltersOpenTURNS

VTK::FiltersOpenTURNS

This module is based on the OpenTURNS library, which is LGPL licensed.
There are some dependencies of OpenTURNS under the GPL license, namely:

	the optional hmat library, under GPL but with an explicit exception for its use within OpenTURNS. This dependency can be deactivated as no part of OpenTURNS used by the VTK module depends on hmat. By the way, the authors of hmat are in the exact same department as the authors of OpenTURNS coming from Airbus

	the poissoninv set of functions for the efficient computation of the Poisson quantile function. This dependency is mandatory and is used within OpenTURNS with a written exception to the GPL license from the author

	the KolmogorovSmirnovDist set of functions for the efficient computation of the exact Kolmogorov-Smirnov distribution. This dependency is mandatory and is used within OpenTURNS with a written exception to the GPL license from the author.

This module (and VTK) cannot be considered to be under the GPL license when using OpenTURNS through the API, since it is an LGPL library which has solved the issue of merging GPL and LGPL code. Thanks to the authors of these dependencies, they are NOT under GPL when used by OpenTURNS!

 VTK::GUISupportQt

VTK::GUISupportQt

There are no restrictions for using this Qt code in any project.
To make changes to this code requires Qt 4.5.0 as this was the first
version of Qt to be covered under the more liberal LGPL license.

 VTK::IOADIOS2

VTK::IOADIOS2

Goal

Provide readers to data produced by the Adaptable Input Output System version 2, ADIOS2 [https://adios2.readthedocs.io/en/latest/].

Currently used on Paraview Application Server Manager development

Extensions:

	.h = header declaration

	.inl = generic inline template implementations

	.txx = specialized template implementations

	.cxx = implementation

##Public VTK classes:

	vtkADIOS2ImageCoreReader.h/.cxx : a generic multiblock reader for image data developed at Kitware Inc. It will use existing arrays to populate dimension of the image, adding timesteps info, point and cell data accordingly. No predefined schema is needed. It can work in serial or MPI mode.

	vtkADIOS2VTXReader .h/.cxx : multiblock reader for ImageData and UnstructuredData types using VTK ADIOS2 Readers (VTX) implementation developed at Oak Ridge National Laboratory (ORNL). Reads bp files/streams with a vtk.xml attribute schema the reuses the VTK XML file formats schemas [https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf]. For more comprehensive documentation refer to this section in the ADIOS2 User Guide. [https://adios2.readthedocs.io/en/latest/ecosystem/visualization.html]

Core: VTK ADIOS2 CORE READERS

Developed at Kitware Inc

	vtkADIOS2CoreTypeTraits.h TypeTraits from adios2 type to vtk type

VTX: VTK ADIOS2 READERS

Developed at Oak Ridge National Laboratory. Reads node (image and unstructured) and cell (unstructured) centered data.

	common/VTXDataArray .h/.cxx : wrapper around vtkDataArray with adios2-related relevant information

	common/VTXHelper .h/.inl/.txx/.cxx : collection of helper functions used privately in *.cxx

	common/VTXTypes.h : header only types definitions including MACROS

	VTXSchemaManager : reusable class that manages a reader that is a derived type of VTXSchema

	schema/VTXSchema .h/.txx/.cxx : abstract base class for supported schema

	schema/vtk/VTXvtkBase : Base class for VTK formats

	schema/vtk/VTXvtkVTI : ImageData VTK format

	schema/vtk/VTXvtkVTU : Unstructured VTK format

 VTK::IOCesium3DTiles

VTK::IOCesium3DTiles

vtk3DTilesWriter - Convert a multiblock dataset to the 3D Tiles format.

Currently, to create a valid 3D Tiles dataset we may need additional
conversions: from GLTF to GLB and from GLB to B3DM. We can use
JavaScript tools to do these conversions.

Install conversion and validation scripts

	Using node and npm installed on Ubuntu 20.04:

	cd ~/external/3d-tiles-tools/;npm install 3d-tiles-tools. Help at: https://github.com/AnalyticalGraphicsInc/3d-tiles-tools/tree/master/tools

	cd ~/external/gltf-pipeline;npm install gltf-pipeline. Help at: https://github.com/CesiumGS/gltf-pipeline

	Clone https://github.com/CesiumGS/3d-tiles-samples. and then npm install.

	Clone https://github.com/KhronosGroup/glTF-Validator and then follow Building section.

Convert data to GLB or B3DM - Optional

See Testing/Cxx/Test3DTilesWriter for conversions of Jacksonville data
stored in OBJs and or Berlin data stored in CityGML.
Note that the test saves the 3D Tiles data using GLTF files.
If needed, you can use GLB or B3DM, but you’ll need to do the following conversions
manually:
cd ~/projects/VTK/build/Testing/Temporary/jacksonville-3dtiles/
cd ~/projects/VTK/build/Testing/Temporary/berlin-3dtiles/

	Convert gltf to glb

find . -name '*.gltf' -exec bash -c 'nodejs ~/external/gltf-pipeline/bin/gltf-pipeline.js -i ${0} -o ${0%.*}.glb' {} \;
find . -name '*.gltf' -exec rm {} \;
find . -name '*.bin' -exec rm {} \;

	Check glb validity

~/external/glTF-Validator/build/bin/gltf_validator Testing/Temporary/TestGLTFWriter.glb

	Convert glb to b3dm

find . -name '*.glb' -exec bash -c 'nodejs ~/external/3d-tiles-tools/tools/bin/3d-tiles-tools.js glbToB3dm ${0} ${0%.*}.b3dm' {} \;
find . -name '*.glb' -exec rm {} \;

View in Cesium

	Use 3d-tiles-samples

	Link the tileset created for previous set:
cd ~/external/3d-tiles-samples/tilesets; ln -s ~/projects/VTK/build/Testing/Temporary/jacksonville-3dtiles
cd ~/external/3d-tiles-samples/tilesets; ln -s ~/projects/VTK/build/Testing/Temporary/berlin-3dtiles

	Start web server:
cd ..;npm start

	google-chrome jacksonville-3dtiles.html;google-chrome berlin-3dtiles.html

Test the tilesets using 3d-tiles-validator

cd ~/external/3d-tiles-validator/validator/
node ./bin/3d-tiles-validator.js -i ~/projects/VTK/build/Testing/Temporary/jacksonville-3dtiles-points/tileset.json
node ./bin/3d-tiles-validator.js -i ~/projects/VTK/build/Testing/Temporary/jacksonville-3dtiles-colorpoints/tileset.json

 VTK::IOFLUENTCFF

VTK::IOFLUENTCFF

This page describes the Fluent CFF IO functionality.

vtkFLUENTCFFReader

Provide a reader for the FluentCFF file format.
Provide the Fluent CFF Reader (Common Fluid Format).

The reader supports cartesian grid, unstructured grid (poly, tetra, …),
3D/2D, double and single precision files.

Similarly to the legacy reader (vtkFLUENTReader), the Fluent CFF reader
requires two files: the case file (.cas.h5) and the data file (.dat.h5).

The Fluent CFF readers uses the HDF library.

It is worth noting that the Fluent CFF file format is the default format in
the latest Fluent version and that ANSYS no longer uses the legacy binary or
ASCII formats.

Developed by Arthur Piquet and based on the vtkFLUENTReader class from Brian W. Dotson &

Acknowledgments

Developed by Arthur Piquet and based on the vtkFLUENTReader class originally
developed from Brian W. Dotson & Terry E. Jordan (Department of Energy, National
Energy Technology Laboratory) and Douglas McCorkle (Iowa State University).

 VTK::IOOCCT

VTK::IOOCCT

The vtkOCCT module was initially developed by Michael Miggliore and Mathieu Westphal in the F3D project, under BSD 3-Clause License.
Copyright: Michael Migliore and Mathieu Westphal

 VTK::IOXDMF2

VTK::IOXDMF2

The IO/Xdmf2 directory contains a reduced distribution of the
xdmf2/vtk (pv branch) source tree with only the library
source code needed by VTK. It is not a submodule; the actual
content is part of our source tree and changes can be made and
committed directly.

We update from upstream using Git’s “subtree” merge strategy. A
special branch contains commits of upstream xdmf2/vtk snapshots and
nothing else. No Git ref points explicitly to the head of this
branch, but it is merged into our history.

Update xdmf2/vtk from upstream as follows. Create a local branch to
explicitly reference the upstream snapshot branch head:

git branch xdmf2vtk-upstream f40916ae

Use a temporary directory to checkout the branch:

mkdir xdmf2vtk-tmp
cd xdmf2vtk-tmp
git init
git pull .. xdmf2vtk-upstream
rm -rf *

Now place the (reduced) xdmf2/vtk content in this directory. See
instructions shown by

git log f40916ae

for help extracting the content from the upstream tarball. Then run
the following commands to commit the new version. Substitute the
appropriate date and version number:

git add –all

GIT_AUTHOR_NAME=’XDMF Developers’

GIT_AUTHOR_EMAIL=’xdmf@lists.kitware.com’

GIT_AUTHOR_DATE=’2012-08-01 16:14:03 -0500’

git commit -m ‘xdmf2/vtk 2012-08-01 (reduced)’ &&
git commit –amend

Edit the commit message to describe the procedure used to obtain the
content. Then push the changes back up to the main local repository:

git push .. HEAD:xdmf2vtk-upstream
cd ..
rm -rf xdmf2vtk-tmp

Create a topic in the main repository on which to perform the update:

git checkout -b update-xdmf2 master

Merge the xdmf2vtk-upstream branch as a subtree:

git merge -s recursive -X subtree=IO/Xdmf2

xdmf2vtk-upstream

If there are conflicts, resolve them and commit. Build and test the
tree. Commit any additional changes needed to succeed.

Finally, run

git rev-parse –short=8 xdmf2vtk-upstream

to get the commit from which the xdmf2vtk-upstream branch must be started
on the next update. Edit the “git branch xdmf2vtk-upstream” line above to
record it, and commit this file.

 VTK::RenderingOpenVR

VTK::RenderingOpenVR

The OpenVR module aims to support PC-based rendering to virtual reality
headsets via Valve’s OpenVR API [https://github.com/ValveSoftware/openvr].

The OpenVR standard has been succeeded by the industry-wide OpenXR [https://www.khronos.org/openxr/] standard.
See the VTK OpenXR module for modernized support.
The VTK OpenVR module is preserved for legacy support.

Supported Devices

Any device that renders with OpenGL and runs from the OpenVR runtime
is theoretically supported. Devices include:

	HTC Vive (, Pro)

	Valve Index

	Oculus Rift (, S)

	Meta Quest (1,2,3,Pro)

	Quest Link [https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-link-with-quest-2/] or Air Link [https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-with-air-link/] only)

	HP Reverb G2

Supported Controllers

The VTK OpenVR module provides bindings for the following controllers:

	HP Motion Controller json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_hpmotioncontroller.json]

	Valve Knuckles json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_knuckles.json]

	Oculus Touch json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_oculus_touch.json]

	HTC Vive Controller json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_vive_controller.json]

The VTK OpenVR module is considered legacy and not under active development.
Please see the VTK OpenXR module for support for additional controllers and
alternate input mechanisms.

Testing

A minimum OpenVRCone [https://examples.vtk.org/site/Cxx/GeometricObjects/OpenVRCone/] example is
available for download on the VTK Examples website [https://examples.vtk.org/site/].

Tests in the Testing/Cxx [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/Testing/Cxx] directory may also be run to demonstrate VTK RenderingOpenVR
capabilities.

 VTK::RenderingOpenXR

VTK::RenderingOpenXR

The OpenXR module aims to support rendering to a variety of mixed reality
devices under the OpenXR industry-wide standard. Detailed information
on the OpenXR specification and compliant OpenXR runtimes may be found
on the Khronos Group website [https://www.khronos.org/openxr/].

Supported Devices

The OpenXR standard is implemented by most PC-based OpenXR runtimes and
devices. The VTK OpenXR module aims to support most devices that implement
the OpenXR specification and support OpenGL rendering.

The list of possible XR device targets is extensive and constantly expanding.
At the time of writing, theoretically supported devices include but are not
limited to the following:

	Valve Index

	HTC Vive (, Pro)

	Meta Quest (1,2,3,Pro)

	Quest Link [https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-link-with-quest-2/] or Air Link [https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-with-air-link/] only

	HP Reverb G2

Supported input devices and mechanisms include the following:

	HP Mixed Reality Controller json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_hp_mixed_reality.json]

	HTC Vive Controller json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_htc_vive_controller.json]

	KHR Simple Controller json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_khr_simple_controller.json]

	Valve Knuckles json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_knuckles.json]

	Microsoft Hand Interaction json [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_microsoft_hand_interaction.json]

The OpenXR module is commonly tested with the Valve Index and HTC Vive
virtual reality headsets.

Adding New Devices

It may be necessary to tell VTK how to handle inputs from a new OpenXR-compatible device.
Consider contributing a new JSON input binding specification to add support for a new
XR device to the VTK OpenXR module.

The OpenXR interaction profile specification is documented here:

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

Input binding JSON files should be added to OpenXR and set as default in
vtk_openxr_actions.jsonjson [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_actions.json].

Building

The OpenXR module depends on the OpenXR-SDK [https://github.com/KhronosGroup/OpenXR-SDK] library.
OpenXR-SDK can be built with CMake via the steps below:

> git clone git@github.com:KhronosGroup/OpenXR-SDK.git
> mkdir OpenXR-SDK-build
> cd OpenXR-SDK-build
OpenXR-SDK-build > cmake ../OpenXR-SDK
OpenXR-SDK-build > cmake --build . --config "Release"

The OpenXR is turned off in VTK by default. Run the following steps to build VTK with OpenXR:

VTK-build > cmake -DVTK_MODULE_ENABLE_VTK_RenderingOpenXR:STRING=YES -DOpenXR_INCLUDE_DIR:PATH="path/to/OpenXR-SDK/include/openxr" -DOpenXR_LIBRARY:FILEPATH="path/to/OpenXR-SDK-build/src/loader/Release/openxr_loader.lib" path/to/VTK
VTK-build > cmake --build . --config "Release"

Testing

Minimum OpenXR examples are available in the Testing/Cxx [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/Testing/Cxx] directory for testing.

To run OpenXR tests, first build VTK with testing enabled.

VTK-build > cmake -DVTK_BUILD_TESTING:BOOL=ON path/to/VTK
VTK-build > cmake --build . --config "Release"

Then run the test with CTest.

VTK-build > ctest -C Release -R <name_of_test>

Additional Notes

See VTK OpenXRRemoting documentation for information on virtual reality
rendering to DirectX devices such as the Microsoft HoloLens 2.

Some non-OpenGL devices may be compatible with the WebGL and WebXR specifications.
If your XR device does not support OpenGL or OpenXR, we suggest visiting
VTK.js WebXR documentation [https://kitware.github.io/vtk-js/docs/develop_webxr.html]
for a web-driven solution.

 VTK::RenderingOpenXRRemoting

VTK::RenderingOpenXRRemoting

VTK - OpenXR Holographic Remoting

Holographic remoting consists in a player application running on the XR device, and a VTK-based remote application running on a standard Windows machine.

The remote application receives camera information and rendering resources from the player. It renders the VTK scene before streaming back the resulting texture to the player application.

This way we avoid the need to build VTK for Universal Windows Platform (UWP), and we can also keep using VTK’s OpenGL-based rendering pipeline.

Still, DirectX must be used to fill the texture to be streamed back to the Hololens. This is possible by creating a texture shared by both a DirectX and an OpenGL context, thanks to the NV_DX_interop extension available on almost every recent GPU.

At this time holographic remoting is supported only for the Microsoft HoloLens 2 virtual reality headset.

Player application

	Download the Microsoft MixedReality HolographicRemoting samples [https://github.com/microsoft/MixedReality-HolographicRemoting-Samples] and follow the instruction to build the player application.

⚠️ The version number in the branch name must match the version of the Microsoft.Holographic.Remoting.OpenXr package used below by the remote application.

	Follow the instructions [https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?tabs=hl2#enabling-developer-mode] to deploy the player application to the Hololens 2.
Alternatively, if you don’t have access to a device, you can use the Hololens emulator [https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-hololens-emulator#hololens-2-emulator-overview].

	When the player is deployed, you should see the following message: Waiting for connection on XX.XX.XX.XX where XX.XX.XX.XX describes the IP address the remote application should connect to.

Remote application

	Enable the CMake option VTK_MODULE_ENABLE_VTK_RenderingOpenXRRemoting when building VTK.

	Set the OpenXRRemoting_BIN_DIR and OpenXRRemoting_INCLUDE_DIR to provide the path to the OpenXR Remoting headers and binary directory.

The Microsoft.Holographic.Remoting.OpenXr Nuget package that provides this dependency is available here [https://www.nuget.org/packages/Microsoft.Holographic.Remoting.OpenXr] on nuget.org [http://nuget.org].

⚠️ The version of the Microsoft.Holographic.Remoting.OpenXr package must match the branch name of the player application above.

	When successfully built, run the TestOpenXRRemotingInitialization test by sending the IP displayed in the player application as argument:

vtkRenderingOpenXRRemotingCxxTests.exe "TestOpenXRRemotingInitialization" -playerIP XX.XX.XX.XX

Alternatively, the VTK_PLAYER_IP environment variable can be used to specify the IP address to connect to.

⚠️ Make sure to provide the content of the OpenXR Remoting binary directory in the system PATH or next to the executable before running the program.

	To use this feature in your own application, use the OpenXR and OpenXRRemoting dedicated rendering stack: vtkOpenXRRenderer, vtkOpenXRRemotingRenderWindow, vtkOpenXRRenderWindowInteractor and vtkOpenXRCamera.

The address of the player application to connect to must be set using vtkOpenXRRemotingRenderWindow::SetRemotingIPAddress("XX.XX.XX.XX") before starting the interactor.

See the TestOpenXRRemotingInitialization test for a complete example.

Troubleshooting:

The OpenXR runtime fails to create and initialize the XrInstance.

To make sure that the player and remote application are compatible, the version of the Microsoft.Holographic.Remoting.OpenXr package must match the version number of the player application branch name.

The remote application exits with the following output:
WARN| Failed to initialize connection strategy.
ERR| vtkOpenXRRemotingRenderWindow: Failed to initialize OpenXRManager

The remote application could not find the RemotingXR.json or the Microsoft.Holographic.AppRemoting.OpenXr.dll. Make sure to provide the content of the OpenXR Remoting binary directory in the system PATH or next to the executable.

When running in the Hololens emulator, the connection fails with the following error displayed in the player: “Transport connection was closed due to the requested video format not being supported”

If you have both an Intel and NVidia GPU in your laptop, try disabling the NVidia GPU temporarily under “Display Adaptors” in the “Device Manager”.

When building the player application from VisualStudio, the Hololens emulator does not appear in the list of machine to deploy to.

Add a new x64 solution platform within VisualStudio and switch the current platform from ARM64 to x64. When building, if you now get the error module machine type 'x64' conflicts with target machine type 'ARM64', then edit the project file to remove all occurrence of /machine:ARM64.

Additional Notes

See VTK OpenXR documentation for information on virtual reality rendering with OpenGL.

 VTK::RenderingVR

VTK::RenderingVR

vtkRenderingVR - Virtual reality support for VTK

Introduction

The VR module defines an API and support classes for adding virtual reality
support to VTK. The OpenVR and OpenXR modules are both subclassed off of
this module. For a list of todos and development issues please see

https://gitlab.kitware.com/vtk/vtk/-/issues/18302

Supported Devices

The VR module aims to support runtimes that implement the OpenXR or OpenVR
standards.

See VTK::RenderingOpenXR documentation for information on
rendering with the modern OpenXR specification.

See VTK::RenderingOpenVR documentation for information on
rendering with the legacy OpenVR specification.

Coordinate Systems

With VR the transformations between coordinate systems can quickly become
confusing. To help with this note that most matrices in the VR code are
stored in vtk convention. That is a = Mx where x is a column vector in
homogeneous coordinates. Matrices are named according to what spaces they
transform between. For example PhysicalToLeftEyeMatrix. Some common
coordinate systems are listed below in order of coordinate flow.

Note that in vtkMatrix4x4 multiplcations are done from right to left
so to compute a matrix from spaces A to C you would do

vtkMatrix4x4::Multiply4x4(BtoCMatrixInput, AtoBMatrixInput, AtoCMatrixOutput)

Model -> World -> Physical -> Left/RightEye -> Projection

	Model - what an actor’s data is in

	World - common coordinate system for all actors

	Physical - the physical VR space in meters with 0,0,0 being the center of
the floor of the room

	Device - the viewpoint (position and orientation) of a device such as a
controller

	LeftEye (and RightEye) - the viewpoint of the left and right eye

	Projection - in clip space, the expected output space for vertex shaders

The matrices that go between these spaces are as follows and they can be
inverted as desired. You will also find some additional matrices that
combine some of these transformations into a single matrix for convenience
such as VRHMDCamera->WorldToLeftEyeMatrix.

	Model -> World = the actor’s matrix

	World -> Physical = inverse of VRRenderWindow->GetPhysicalToWorldMatrix()

	Physical -> LeftEye = VRHMDCamera->PhysicalToLeftEyeMatrix

	LeftEye -> Projection = VRHMDCamera->LeftEyeToProjectionMatrix

	Physical -> Device = inverse of
VRRenderWindow->GetDeviceToPhysicalMatrixForDevice()

There are some other matrices used in the camera that are stored in OpenGL
format (transpose of VTK format) using an older naming convention. These are
names such as WCDCMatrix, the names correspond to

	MC = model coordinates (same as above)

	WC = world coordinates (same as above)

	VC = view coordinates, world coordinates translated and rotated to the
camera, similar to the LeftEye space

	DC = device coordinates (device in this context is a GPU, so same as
projection coordinates above)

 VTK::RenderingWebGPU

VTK::RenderingWebGPU

vtkRenderingWebGPU - WebGPU backend for rendering

Description

This module contains the WebGPU native backend for RenderingCore. At the moment, only polygonal geometry can be rendered in different representations with point/cell scalar mapped colors.

Available features

Here is a list of currently implemented features:

	Polygonal geometry rendering with point, line and triangle primitives.

	Point scalar mapped coloring of surfaces.

	Cell scalar mapped coloring.

	Draw actors with the actor representation = VTK_POINTS, VTK_WIREFRAME, VTK_SURFACE and VTK_SURFACE with edge visibility.

	Lighting based on VTK headlights and point/cell normals.

	Point size adjustments.

	Line width adjustments for wireframe and surface with edges.

	vtkSDL2WebGPURenderWindow is a reference implementation of vtkWebGPURenderWindow that works on WebAssembly and desktop.

	vtkXWebGPURenderWindow is an implementation of vtkWebGPURenderWindow that uses X11 for Linux desktop rendering.

	Depth testing.

Future work

Since WebGPU is already an abstraction over graphics APIs, this module doesn’t create another level of abstraction. It uses WebGPU’s C++ flavor
for it’s object-oriented API and RAII. There are helper classes in the vtkWebGPUInternals... files for convenience and to make the bind group
initialization code look clean.

A lot of work remains to be done. Selections, volume mappers, textures, dual-depth peeling, fancy lights, platform native render windows are few that come to mind.

References

Here are some very interesting references to learn WebGPU from examples if you prefer code over spec.

	https://toji.github.io/webgpu-gltf-case-study/
A case-study that slowly builds up an efficient gltf renderer in WebGPU using javascript. The author describes downfalls in
certain methods and proposes alternative ways when applicable.

	https://github.com/samdauwe/webgpu-native-examples
A curated list of single file examples if you want to see how to do X with Y like constraints using WebGPU C API.

	https://eliemichel.github.io/LearnWebGPU/index.html
Similar to LearnOpenGL or the vulka-tutorial.com [http://vulka-tutorial.com]. Walks you through getting a window, triangle, buffers, textures and 3D rendering.
This tutorial has good coverage and the author provides a simple to use WebGPU C++ distribution.

	https://sotrh.github.io/learn-wgpu/
A very nice coverage of the beginner concepts of webgpu. This tutorial uses wgpu.rs [http://wgpu.rs]

	https://alain.xyz/blog/raw-webgpu
Another small tutorial that lets you break the ice with WebGPU and get comfy with the concepts. This tutorial targets javascript API.

	https://carmencincotti.com/2022-12-19/how-to-render-a-webgpu-triangle-series-part-three-video/
A detailed, yet fun to read explanation of the swapchain and image presentation process. The author has several other
targeted posts on WebGPU concepts.

	https://webgpu.rocks/
You want to look at the WebGPU API, but are afraid of reading the spec and do not want to read C headers. This website
presents the WebGPU API and WGSL summary in a fancy way with syntax highlights.

Finally, for wgsl, the spec does a good job https://www.w3.org/TR/WGSL/

How to build VTK with Dawn (Highly experimental)

Things you’ll need:

	git

	depot_tools [http://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up]

This module uses Dawn-C++ WebGPU implementation when VTK is built outside emscripten. First grab Dawn [https://dawn.googlesource.com/dawn/] and follow their
build instructions using gn, not CMake.

To build VTK with Dawn, you need to build Dawn at commit 3a00a9e5c4179d789cfe89ba09c329b57d39f947 [https://dawn.googlesource.com/dawn.git/+show/3a00a9e5c4179d789cfe89ba09c329b57d39f947].
Subsequent commits have changed the public API of Dawn to a great extent, making it incompatible with VTK.
Dawn uses the Chromium build system and dependency management so you need to install depot_tools [http://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up] and add it to the PATH.

Clone the repo as "dawn"
git clone https://dawn.googlesource.com/dawn dawn && cd dawn
git checkout 3a00a9e5c4

Bootstrap the gclient configuration
cp scripts/standalone.gclient .gclient

Fetch external dependencies and toolchains with gclient
gclient sync

Build Dawn with gn and Ninja

It is important to set is_component_build=true. Otherwise the dawn native shared libraries will not be built.

mkdir -p out/Debug
gn gen out/Debug --target_cpu="x64" --args="is_component_build=true is_debug=true is_clang=true"
autoninja -C out/Debug

Configure and build VTK

$ cmake \
-S /path/to/vtk/src \
-B /path/to/vtk/build \
-GNinja \
-DVTK_ENABLE_WEBGPU=ON \
-DDAWN_SOURCE_DIR=/path/to/dawn/src \
-DDAWN_INCLUDE_DIR=/path/to/dawn/include \
-DDAWN_BINARY_DIR=/path/to/dawn/out/Debug \
-DVTK_BUILD_TESTING=ON

$ cmake --build

Run the WebGPU tests

These are not regression tested with image comparisons.

$./bin/vtkRenderingWebGPUCxxTests
Available tests:
 0. TestCellScalarMappedColors
 1. TestConesBenchmark
 2. TestLineRendering
 3. TestPointScalarMappedColors
 4. TestSurfacePlusEdges
 5. TestTheQuad
 6. TestTheQuadPointRepresentation
 7. TestTheQuadWireframeRepresentation
 8. TestTheTriangle
 9. TestTheTrianglePointRepresentation
 10. TestTheTriangleWireframeRepresentation
 11. TestVertexRendering
 12. TestWireframe

Run the Rendering Core tests

The RenderingCore vtk.module can be edited to link the unit tests with VTK::RenderingWebGPU module. After uncommenting the module name under TEST_DEPENDS, rebuild and run the tests. Very few of these pass.

$ export VTK_GRAPHICS_BACKEND=WEBGPU
$./bin/vtkRenderingCoreCxxTests

 VTK::WrappingPythonCore

VTK::WrappingPythonCore

Python Wrapper Core Classes

This directory provides the core support classes that are used by VTK’s
Python wrappers. The classes can be split into two broad categories:
the PyVTK classes provide C APIs for Python types, while the vtkPython
classes are C++ utility classes.

The Python Classes

PyVTKObject

This defines APIs for creating and managing PyVTKClass objects, which
are Python extension types that wrap vtkObjectBase-derived classes, and
PyVTKObject objects, which are instances of the these extension types.

PyVTKSpecialObject

Similarly, PyVTKSpecialType objects are Python extension types that
wrap C++ classes that are not derived from vtkObjectBase, and
PyVTKSpecialObject wraps the instances. These object are reference
counted on the Python side, but not on the C++ side. In general they
are lightweight objects that are cheap to copy.

PyVTKTemplate

These objects represent C++ class templates. The wrappers instantiate the
templates over a limited set of template parameters, and PyVTKTemplate
is a container for the template instantiations. It is implemented as a
dictionary that maps template parameters to template instantiations.

PyVTKEnum

This provides an API for managing subtypes of the Python int type that
represent named C++ enum types.

PyVTKNamespace

This provides an API for managing subtypes of the Python module type that
represent C++ namespaces.

PyVTKReference

Python does not support C++-style pass-by-reference, but pass-by-reference
can be simulated by passing a typed container whose contents can be modified.
The PyVTKReference type defines such containers. Within Python, this
type can be accessed as vtkmodules.vtkCommonCore.reference.

PyVTKMethodDescriptor

In Python, a method descriptor is an object that customizes method lookup,
specifically it customizes object.method and class.method method access.
The PyVTKMethodDescriptor customizes the access of PyVTKClass methods.
It handles bound method calls, unbound method calls, static method calls,
and calls to overloaded methods.

PyVTKExtras

This one is not actually a class, it is a helper function that adds utility
methods and types like the previously-mentioned reference type to the
vtkCommonCore module. Everything in this file becomes part of vtkCommonCore.

The C++ Classes

vtkPythonUtil

This is a singleton that keeps track of all the vtk-python extension modules
that have been loaded, and all of the vtk-python objects that have been
instantiated. It contains all of the machinery that is needed for moving
VTK objects from C++ to Python and back again.

vtkPythonCommand

This is a subclass of vtkCommand that allows Python methods to be used as
VTK observer callbacks.

vtkPythonArgs

When a method call is performed in the wrappers, vtkPythonArgs does the
conversion of the arguments from Python to C++, and it also converts the
return value from C++ to Python.

vtkPythonOverload

When an overloaded method is called from Python, this class uses the method
arguments to decide which overload to use.

vtkPythonCompatibility

This is actually just a header, not a class. It contains macros that make
it easier to write code that is compatible with different versions of the
Python C API.

vtkSmartPyObject

Whereas the other classes in this directory are for using VTK C++ objects
through Python, this class is for using Python objects through C++. This
class is a C++ smart pointer that handles Python reference counting.

 Building

Building

This page describes how to build and install VTK. It covers building for
development, on both Unix-type systems (Linux, HP-UX, Solaris, macOS), and
Windows. Note that Unix-like environments such as Cygwin and MinGW are not
officially supported. However, patches to fix problems with these platforms
will be considered for inclusion. It is recommended that users which require
VTK to work on these platforms to submit nightly testing results for them.

A full-featured build of VTK depends on several open source tools and libraries
such as Python, Qt, CGNS, HDF5, etc. Some of these are included in the VTK
source itself (e.g., HDF5), while others are expected to be present on the
machine on which VTK is being built (e.g., Python, Qt).

VTK supports all of the common generators supported by CMake. The Ninja,
Makefiles, and Visual Studio generators are the most well-tested however.

Note that VTK does not support in-source builds, so you must have a build tree
that is not the source tree.

Obtaining the sources

There are two approaches:

Release Download

	Download the source release VTK-X.Y.Z.tar.gz from https://vtk.org/download/.

	Create a folder for VTK.

	Extract the contents of the VTK folder in the downloaded archive to the subfolder called source

Git Clone
To obtain VTK’s sources locally, clone the VTK repository using Git [https://git-scm.org].

Open Git Bash on Windows or a terminal on Linux and macOS and
execute the following:

mkdir -p ~/vtk
git clone --recursive https://gitlab.kitware.com/vtk/vtk.git ~/vtk/source

To use the latest features being developed or to make changes and
contribute to VTK, download the source using Git Clone.

Prerequisites

VTK only requires a few packages in order to build in general, however
specific features may require additional packages to be provided to VTK’s
build configuration.

Required:

	CMake [https://cmake.org]

	Version 3.12 or newer, however, the latest version is always recommended.
If the system package management utilities do not offer cmake or if the offered version is too old
Precompiled binaries available on CMake’s download page [https://cmake.org/download].

	Supported compiler

	GCC 4.8 or newer

	Clang 3.3 or newer

	Apple Clang 7.0 (from Xcode 7.2.1) or newer

	Microsoft Visual Studio 2015 or newer

	Intel 14.0 or newer

Optional Additions

	ffmpeg
When the ability to write .avi files is desired, and writing these files is
not supported by the OS, VTK can use the ffmpeg library. This is generally
true for Unix-like operating systems. Source code for ffmpeg can be obtained
from the website [https://ffmpeg.org].

	MPI
To run VTK in parallel, an MPI [https://www.mcs.anl.gov/research/projects/mpi] implementation is required. If an MPI
implementation that exploits special interconnect hardware is provided on your
system, we suggest using it for optimal performance. Otherwise, on Linux/Mac,
we suggest either OpenMPI [https://www.open-mpi.org] or MPICH [https://www.mpich.org]. On Windows, Microsoft
MPI [https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi] is required.

	Python
In order to use scripting, Python [https://python.org] is required. The minimum supported version is 3.4.
The instructions are using the system Python. On Ubuntu/Debian the required package is
python3-dev. If you use a different Python
implementation or a virtual environment make sure the environment you use is
activated. On Ubuntu/Debian the required package for creating virtual environments is
python3-venv.

	Qt5
VTK uses Qt as its GUI library (if the relevant modules are enabled).
Precompiled binaries are available on Qt’s website [https://download.qt.io/official_releases/qt].
Note that on Windows, the compiler used for building VTK must match the
compiler version used to build Qt. Version 5.9 or newer is required.

	OSMesa
Off-screen Mesa can be used as a software-renderer for running VTK on a server
without hardware OpenGL acceleration. This is usually available in system
packages on Linux. For example, the libosmesa6-dev package on Debian and
Ubuntu. However, for older machines, building a newer version of Mesa is
likely necessary for bug fixes and support. Its source and build instructions
can be found on its website [https://www.mesa3d.org].

Creating the Build Environment

Windows

	Install CMake

	Install Visual Studio Community Edition [https://visualstudio.microsoft.com/vs]

	During installation select the “desktop development with C++” workload.

	Use “x64 Native Tools Command Prompt” for the installed Visual Studio
version to configure with CMake and to build with ninja.

	Get ninja [https://ninja-build.org]. Unzip the binary and put it in PATH. Note that newer
Visual Studio releases come with a version of ninja already and should
already exist in PATH within the command prompt.

Linux (Ubuntu/Debian)
Install the following packages:

$ sudo apt install \
build-essential \
cmake \
cmake-curses-gui \
mesa-common-dev \
mesa-utils \
freeglut3-dev \
ninja-build

macOS

	Install CMake

	Install XCode

	Ensure XCode command line tools are installed:

xcode-select --install

Note

ninja is a more efficient alternative to Makefiles or Visual Studio solution files. The
speed increase is the most noticeable when doing incremental build.

Configure

In order to build, CMake requires two steps, configure and build. VTK itself
does not support what are known as in-source builds, so the first step is to
create a build directory.

Windows (Ninja)
Open “x64 Native Tools Command Prompt” for the installed Visual Studio:

ccmake -GNinja -S %HOMEPATH%\vtk\source -B %HOMEPATH%\vtk\build

Note that CMake GUI must also be launched from the “Native Tools Command Prompt”.

Windows (Visual Studio)
Use CMake to generate a Visual Studio solution file (.sln).

	Open CMake GUI, either by typing cmake-gui on the command prompt or from the start-menu.

	Enter the source and build directories

	Click [Configure]

	You will now get a selection screen in which you can specify your “generator”. Select the one you need.

	We are now presented with a few options that can be turned on or off as desired.

	Click [Configure] to apply the changes.

	Click [Generate]. This will populate the “build” sub-folder.

	Finally, click [Open Project] to open the generated solution in Visual Studio.

Linux/macOS
mkdir -p ~/vtk/build
cd ~/vtk/build
ccmake -GNinja ../path/to/vtk/source

The parameter -GNinja may be skipped to use the default generator (e.g Unix Makefiles).

Missing dependencies

CMake may not find all dependencies automatically in all cases. The steps
needed to find any given package depends on the package itself.

For general assistance, please see the documentation for
find_package’s search procedure [https://cmake.org/cmake/help/latest/command/find_package.html#search-procedure] and
the relevant Find module [https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find-modules] (as available).

Hint

Different features can be enabled/disabled by setting the Build Settings during the configure stage.

Building

To build VTK:

Windows (Ninja)
cmake --build %HOMEPATH%\vtk\build --config Release

Windows (Visual Studio)
Open the generated solution file.

	Set the configuration to “Release”

	On the menu bar, choose Build, and then choose Build Solution.

Linux/macOS
cmake --build ~/vtk/build

 Build Settings

Build Settings

VTK has a number of settings available for its build. The common variables
to modify include:

	BUILD_SHARED_LIBS (default ON): If set, shared libraries will be
built. This is usually what is wanted.

	VTK_USE_CUDA (default OFF): Whether CUDA [https://developer.nvidia.com/cuda-zone] support will be available or
not.

	VTK_USE_MPI (default OFF): Whether MPI [https://www.mcs.anl.gov/research/projects/mpi] support will be available or
not.

	VTK_WRAP_PYTHON (default OFF; requires VTK_ENABLE_WRAPPING): Whether
Python support will be available or not.

Less common, but variables which may be of interest to some:

	VTK_BUILD_EXAMPLES (default OFF): If set, VTK’s example code will be
added as tests to the VTK test suite.

	VTK_ENABLE_LOGGING (default ON): If set, enhanced logging will be
enabled.

	VTK_LOGGING_TIME_PRECISION (default 3; requires VTK_ENABLE_LOGGING):
Change the precision of times output when VTK_ENABLE_LOGGING is on.

	VTK_BUILD_TESTING (default OFF): Whether to build tests or not. Valid
values are OFF (no testing), WANT (enable tests as possible), and ON
(enable all tests; may error out if features otherwise disabled are
required by test code).

	VTK_ENABLE_KITS (default OFF; requires BUILD_SHARED_LIBS): Compile
VTK into a smaller set of libraries. Can be useful on platforms where VTK
takes a long time to launch due to expensive disk access.

	VTK_ENABLE_WRAPPING (default ON): Whether any wrapping support will be
available or not.

	VTK_WRAP_JAVA (default OFF; requires VTK_ENABLE_WRAPPING):
Whether Java support will be available or not.

	VTK_WRAP_SERIALIZATION (default OFF; requires VTK_ENABLE_WRAPPING):
Whether serialization code will be auto generated or not.

	VTK_SMP_IMPLEMENTATION_TYPE (default Sequential): Set which SMPTools
will be implemented by default. Must be either Sequential, STDThread,
OpenMP or TBB. The backend can be changed at runtime if the desired
backend has his option VTK_SMP_ENABLE_<backend_name> set to ON.

	VTK_ENABLE_CATALYST (default OFF): Enable catalyst-dependent modules
including the VTK catalyst implementation. Depends on an external Catalyst.

OpenGL-related options:

Note that if OpenGL is used, there must be a “sensible” setup. Sanity checks
exist to make sure a broken build is not being made. Essentially:

	at least one rendering environment (X, Cocoa, SDL2, OSMesa, EGL, etc.) must
be available;

	OSMesa and EGL conflict with each other; and

	OSMesa only supports off-screen rendering and is therefore incompatible with
Cocoa, X, and SDL2.

	VTK_USE_COCOA (default ON; requires macOS): Use Cocoa for
render windows.

	VTK_USE_X (default ON for Unix-like platforms except macOS,
iOS, and Emscripten, OFF otherwise): Use X for render windows.

	VTK_USE_SDL2 (default ON for Emscripten, OFF otherwise): Use
SDL2 for render windows.

	VTK_OPENGL_HAS_OSMESA (default OFF): Use to indicate that the
OpenGL library being used supports offscreen Mesa rendering
(OSMesa).

	VTK_OPENGL_USE_GLES (default OFF; forced ON for Android):
Whether to use OpenGL ES API for OpenGL or not.

	VTK_OPENGL_HAS_EGL (default ON for Android, OFF otherwise):
Use to indicate that the OpenGL library being used supports EGL
context management.

	VTK_DEFAULT_EGL_DEVICE_INDEX (default 0; requires
VTK_OPENGL_HAS_EGL): The default EGL device to use for EGL render
windows.

	VTK_ENABLE_WEBGPU (default OFF; required if using Emscripten): Enable
WebGPU rendering support.

	VTK_DEFAULT_RENDER_WINDOW_OFFSCREEN (default OFF): Whether to default
to offscreen render windows by default or not.

	VTK_USE_OPENGL_DELAYED_LOAD (default OFF; requires Windows and CMake >=
3.13): If set, use delayed loading to load the OpenGL DLL at runtime.

	VTK_DEFAULT_RENDER_WINDOW_HEADLESS (default OFF; only available if
applicable): Default to a headless render window.

	VTK_USE_WIN32_OPENGL (default ON for Windows, forced OFF otherwise):
Use Win32 APIs for render windows (typically only relevant for OSMesa on
Windows builds).

More advanced options:

	VTK_ABI_NAMESPACE_NAME (default <DEFAULT> aka ""): If set, VTK will
wrap all VTK public symbols in an
inline namespace <VTK_ABI_NAMESPACE_NAME> to allow runtime co-habitation
with different VTK versions.
Some C ABIs are also wrapped in this namespace using macro expansion
#define c_abi VTK_ABI_NAMESPACE_MANGLE(c_abi)

	VTK_ABI_NAMESPACE_ATTRIBUTES (default <DEFAULT> aka ""): If set, VTK will
inject these attributes into the inline namespace. i.e.
inline namespace <VTK_ABI_NAMESPACE_ATTRIBUTES> <VTK_ABI_NAMESPACE_NAME>
The VTK_ABI_NAMESPACE_ATTRIBUTES is only applied the the APIs inside of the
namespace, not to C APIs.

	VTK_BUILD_DOCUMENTATION (default OFF): If set, VTK will build its API
documentation using Doxygen.

	VTK_BUILD_SPHINX_DOCUMENTATION (default OFF): If set, VTK will build its sphinx
documentation website.

	VTK_BUILD_ALL_MODULES (default OFF): If set, VTK will enable all
modules not disabled by other features.

	VTK_ENABLE_REMOTE_MODULES (default ON): If set, VTK will try to build
remote modules (the Remote directory). If unset, no remote modules will
build.

	VTK_ENABLE_EXTRA_BUILD_WARNINGS (default OFF; requires CMake >= 3.19):
If set, VTK will enable additional build warnings.

	VTK_ENABLE_EXTRA_BUILD_WARNINGS_EVERYTHING (default OFF; requires
VTK_ENABLE_EXTRA_BUILD_WARNINGS and -Weverything support): If set, VTK
will enable all build warnings (with some explicitly turned off).

	VTK_USE_EXTERNAL (default OFF): Whether to prefer external third
party libraries or the versions VTK’s source contains.

	VTK_TARGET_SPECIFIC_COMPONENTS (default OFF): Whether to install
files into target-specific components (<TARGET>-runtime,
<TARGET>-development, etc.) or general components (runtime,
development, etc.)

	VTK_VERSIONED_INSTALL (default ON): Whether to add version numbers to
VTK’s include directories and library names in the install tree.

	VTK_CUSTOM_LIBRARY_SUFFIX (default depends on VTK_VERSIONED_INSTALL):
The custom suffix for libraries built by VTK. Defaults to either an empty
string or X.Y where X and Y are VTK’s major and minor version
components, respectively.

	VTK_INSTALL_SDK (default ON): If set, VTK will install its headers,
CMake API, etc. into its install tree for use.

	VTK_FORBID_DOWNLOADS (default OFF): If set, VTK will error on any
network activity required during the build (namely remote modules and
testing data).

	VTK_DATA_STORE (default is complicated): If set or detected, points to
where VTK external data will be stored or looked up.

	VTK_DATA_EXCLUDE_FROM_ALL (default is complicated, but
generally OFF): If set or detected, data downloads will only
happen upon explicit request rather than through the build’s
default target.

	VTK_RELOCATABLE_INSTALL (default ON): If set, the install tree will be
relocatable to another path. If unset, the install tree may be tied to the
build machine with absolute paths, but finding dependencies in
non-standard locations may require work without passing extra information
when consuming VTK.

	VTK_UNIFIED_INSTALL_TREE (default OFF): If set, the install tree is
stipulated to be a unified install tree of VTK and all of its dependencies;
a unified tree usually simplifies things including, but not limited to,
the Python module paths, library search paths, and plugin searching. This
option is irrelevant if a relocatable install is requested as such setups
assume that dependencies are set up either via a unified tree or some other
mechanism such as modules).

	VTK_ENABLE_SANITIZER (default OFF): Whether to enable sanitization of
the VTK codebase or not.

	VTK_SANITIZER (default address; requires VTK_ENABLE_SANITIZER): The
sanitizer to use.

	VTK_USE_LARGE_DATA (default OFF; requires VTK_BUILD_TESTING):
Whether to enable tests which use “large” data or not (usually used to
reduce the amount of data downloading required for the test suite).

	VTK_USE_HIP (default OFF; requires CMAKE >= 3.21 and NOT VTK_USE_CUDA)
Whether HIP [https://en.wikipedia.org/wiki/ROCm] support will be available or not.

	VTK_LEGACY_REMOVE (default OFF): If set, VTK will disable legacy,
deprecated APIs.

	VTK_LEGACY_SILENT (default OFF; requires VTK_LEGACY_REMOVE to be
OFF): If set, usage of legacy, deprecated APIs will not cause warnings.

	VTK_USE_FUTURE_CONST (default OFF): If set, the VTK_FUTURE_CONST
macro expands to const; otherwise it expands to nothing. This is used to
incrementally add more const correctness to the codebase while making it
opt-in for backwards compatibility.

	VTK_USE_FUTURE_BOOL (default OFF): If set, the vtkTypeBool
typedef is defined to bool; otherwise it’s int. VTK was created before
C++ even had bool, and so its oldest code used int. Set to ON to opt in
to using more real bools, set to OFF only if required for backwards
compatibility.

	VTK_USE_TK (default OFF; requires VTK_WRAP_PYTHON): If set, VTK will
enable Tkinter support for VTK widgets.

	VTK_BUILD_COMPILE_TOOLS_ONLY (default OFF): If set, VTK will compile
just its compile tools for use in a cross-compile build.

	VTK_SERIAL_TESTS_USE_MPIEXEC (default OFF): Used on HPC to run
serial tests on compute nodes. If set, it prefixes serial tests with
“${MPIEXEC_EXECUTABLE}” “${MPIEXEC_NUMPROC_FLAG}” “1” ${MPIEXEC_PREFLAGS}

	VTK_WINDOWS_PYTHON_DEBUGGABLE (default OFF): Set to ON if using a
debug build of Python.

	VTK_WINDOWS_PYTHON_DEBUGGABLE_REPLACE_SUFFIX (default OFF): Set to ON
to use just a _d suffix for Python modules.

	VTK_BUILD_PYI_FILES (default OFF): Set to ON to build .pyi type
hint files for VTK’s Python interfaces.

	VTK_DLL_PATHS (default "" or VTK_DLL_PATHS from the environment): If
set, these paths will be added via Python 3.8’s os.add_dll_directory
mechanism in order to find dependent DLLs when loading VTK’s Python
modules. Note that when using the variable, paths are in CMake form (using
/) and in the environment are a path list in the platform’s preferred
format.

	VTK_ENABLE_VR_COLLABORATION (default OFF): If ON, includes support
for multi client VR collaboration. Requires libzmq and cppzmq external libraries.

	VTK_SMP_ENABLE_<backend_name> (default OFF if needs an external library otherwise ON):
If set, builds with the specified SMPTools backend implementation that can be
changed on runtime with VTK_SMP_BACKEND_IN_USE environment variable.

	VTK_USE_VIDEO_FOR_WINDOWS (default OFF; requires Windows): Enable the
vtkAVIWriter class in the VTK::IOMovie module.

	VTK_USE_VIDEO_FOR_WINDOWS_CAPTURE (default OFF; requires Windows):
Enable the vtkWin32VideoSource class in the VTK::IOVideo module.

	VTK_USE_MICROSOFT_MEDIA_FOUNDATION (default OFF; requires Windows):
Enable the vtkMP4Writer class in the VTK::IOMovie module.

	VTK_USE_64BIT_TIMESTAMPS (default OFF; forced on for 64-bit builds):
Build with 64-bit vtkMTimeType.

	VTK_USE_64BIT_IDS (default OFF for 32-bit builds; ON for 64-bit
builds): Whether vtkIdType should be 32-bit or 64-bit.

	VTK_DEBUG_LEAKS (default OFF): Whether VTK will report leaked
vtkObject instances at process destruction or not.

	VTK_DEBUG_RANGE_ITERATORS (default OFF; requires a Debug build):
Detect errors with for-range iterators in VTK (note that this is very
slow).

	VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS (default OFF; requires NOT VTK_DEBUG_RANGE_ITERATORS): Optimize for-range array iterators even in
Debug builds.

	VTK_ALL_NEW_OBJECT_FACTORY (default OFF): If ON, classes using
vtkStandardNewMacro will use vtkObjectFactoryNewMacro allowing
overrides to be available even when not explicitly requested through
vtkObjectFactoryNewMacro or vtkAbstractObjectFactoryNewMacro.

	VTK_ENABLE_VTKM_OVERRIDES (default OFF): If ON, enables factory override
of certain VTK filters by their VTK-m counterparts. There is also a runtime
switch that can be used to enable/disable the overrides at run-time (on by default).
It can be accessed using the static function vtkmFilterOverrides::SetEnabled(bool).

	VTK_GENERATE_SPDX (default OFF): If ON, SPDX file will be generated at build time
and installed for each module and third party, in order to be able to create a SBOM.
See SPDX files generation and
SPDX & SBOM for more info.

	VTK_ANARI_ENABLE_NVTX (default OFF; requires CUDA Toolkit): If ON, enables the NVIDIA
Tools Extension Library (NVTX) for profiling the ANARI rendering code and visualizing
these events in tools like NSight Systems [https://developer.nvidia.com/nsight-systems].

vtkArrayDispatch related options:

The VTK_DISPATCH_<array_type>_ARRAYS options (default OFF for all but AOS) enable the
specified type of array to be included in a dispatch type list. Explicit arrays (such as
AOS, SOA, Typed, and implicit arrays) are included in the vtkArrayDispatchTypeList.h
The implicit array framework is included in the CommonCore module. The following array types
currently exist for use with the VTK dispatch mechanism:

	VTK_DISPATCH_AOS_ARRAYS (default ON): includes dispatching for the commonly used
“array-of-structure” ordered arrays derived from vtkAOSDataArrayTemplate

	VTK_DISPATCH_SOA_ARRAYS (default OFF): includes dispatching for “structure-of-array”
ordered arrays derived from vtkSOADataArrayTemplate

	VTK_DISPATCH_TYPED_ARRAYS (default OFF): includes dispatching for arrays derived
from vtkTypedDataArray

	VTK_DISPATCH_AFFINE_ARRAYS (default OFF): includes dispatching for linearly varying
vtkAffineArrays as part of the implicit array framework

	VTK_DISPATCH_CONSTANT_ARRAYS (default OFF): includes dispatching for constant arrays
vtkConstantArray as part of the implicit array framework

	VTK_DISPATCH_STD_FUNCTION_ARRAYS (default OFF): includes dispatching for arrays with
an std::function backend vtkStdFunctionArray as part of the implicit array framework

The outlier in terms of dispatch support is the family of arrays derived from
vtkScaledSOADataArrayTemplate which are automatically included in dispatch when built setting
the VTK_BUILD_SCALED_SOA_ARRAYS.

Warning

Adding increasing numbers of arrays in the dispatch mechanism can greatly slow down compile times.

The VTK module system provides a number of variables to control modules which
are not otherwise controlled by the other options provided.

	VTK_MODULE_USE_EXTERNAL_<name> (default depends on VTK_USE_EXTERNAL):
Use an external source for the named third-party module rather than the
copy contained within the VTK source tree.

Warning

Activating this option within an interactive cmake configuration (i.e. ccmake, cmake-gui)
could end up finding libraries in the standard locations rather than copies
in non-standard locations.

It is recommended to pass the variables necessary to find the intended external package to
the first configure to avoid finding unintended copies of the external package.
The variables which matter depend on the package being found, but those ending with
_LIBRARY and _INCLUDE_DIR as well as the general CMake find_package variables ending
with _DIR and _ROOT are likely candidates.

Example:

ccmake -D HDF5_ROOT:PATH=/home/user/myhdf5 ../vtk/sources

	VTK_MODULE_ENABLE_<name> (default DEFAULT): Change the build settings
for the named module. Valid values are those for the module system’s build
settings (see below).

	VTK_GROUP_ENABLE_<name> (default DEFAULT): Change the default build
settings for modules belonging to the named group. Valid values are those
for the module system’s build settings (see below).

For variables which use the module system’s build settings, the valid values are as follows:

	YES: Require the module to be built.

	WANT: Build the module if possible.

	DEFAULT: Use the settings by the module’s groups and
VTK_BUILD_ALL_MODULES.

	DONT_WANT: Don’t build the module unless required as a dependency.

	NO: Do not build the module.

If any YES module requires a NO module, an error is raised.

 API

API

Contents

	C++

	Python

	CMake

 C++

C++

Reference documentation for VTK can be found in the Doxygen Manual [https://vtk.org/doc/nightly/html/].

 Python

Python

Native Python documentation

Python-style documentation is available for the following packages:

	vtkmodules
	vtkmodules.util

	vtkmodules.qt

	vtkmodules.wx

	vtkmodules.numpy_interface

	vtkmodules.gtk

	vtkmodules.test

	vtkmodules.tk

	vtkmodules.generate_pyi

Doxygen-style documentation

VTK is implemented in C++ and it is made available in Python via its Python Wrappers.
Although, the VTK doxygen documentation [http://vtk.org/doc/nightly/html] is derived from the C++ API, the corresponding Python API uses the same classes and methods.
There are however some conventions in place for how wrapping is constructed. To quickly inspect the available methods of a class you can use the help method:

>> import vtk
help(vtk.vtkSphereSource)

Help on vtkSphereSource object:

class vtkSphereSource(vtkmodules.vtkCommonExecutionModel.vtkPolyDataAlgorithm)
 | vtkSphereSource - create a polygonal sphere centered at the origin
 |
 | Superclass: vtkPolyDataAlgorithm
 |
 | vtkSphereSource creates a sphere (represented by polygons) of
 | specified radius centered at the origin. The resolution (polygonal
 | discretization) in both the latitude (phi) and longitude (theta)
 | directions can be specified. It also is possible to create partial
 | spheres by specifying maximum phi and theta angles. By default, the
 | surface tessellation of the sphere uses triangles; however you can
 | set LatLongTessellation to produce a tessellation using
 | quadrilaterals.
 |
 | @warning
 | Resolution means the number of latitude or longitude lines for a
 | complete sphere. If you create partial spheres the number of
 | latitude/longitude lines may be off by one.
 |
 | Method resolution order:
 | vtkSphereSource
 | vtkmodules.vtkCommonExecutionModel.vtkPolyDataAlgorithm
 | vtkmodules.vtkCommonExecutionModel.vtkAlgorithm
 | vtkmodules.vtkCommonCore.vtkObject
 | vtkmodules.vtkCommonCore.vtkObjectBase
 | builtins.object
 |
 | Methods defined here:
 |
 | GenerateNormalsOff(...)
 | GenerateNormalsOff(self) -> None
 | C++: virtual void GenerateNormalsOff()
 |
 | GenerateNormalsOn(...)
 | GenerateNormalsOn(self) -> None
 | C++: virtual void GenerateNormalsOn()
 |
 | GetCenter(...)
 | GetCenter(self) -> (float, float, float)
 | C++: virtual double *GetCenter()
...

For a more in-depth description of the Python Wrappers see the dedicated section.

 vtkmodules

vtkmodules

Currently, this package is experimental and may change in the future.

Subpackages

	vtkmodules.util
	vtkmodules.util.vtkImageExportToArray

	vtkmodules.util.colors

	vtkmodules.util.pickle_support

	vtkmodules.util.vtkVariant

	vtkmodules.util.vtkMethodParser

	vtkmodules.util.vtkImageImportFromArray

	vtkmodules.util.keys

	vtkmodules.util.vtkAlgorithm

	vtkmodules.util.execution_model

	vtkmodules.util.data_model

	vtkmodules.util.numpy_support

	vtkmodules.util.misc

	vtkmodules.util.vtkConstants

	vtkmodules.qt
	vtkmodules.qt.QVTKRenderWindowInteractor

	vtkmodules.wx
	vtkmodules.wx.wxVTKRenderWindow

	vtkmodules.wx.wxVTKRenderWindowInteractor

	vtkmodules.numpy_interface
	vtkmodules.numpy_interface.internal_algorithms

	vtkmodules.numpy_interface.dataset_adapter

	vtkmodules.numpy_interface.algorithms

	vtkmodules.gtk
	vtkmodules.gtk.GtkVTKRenderWindow

	vtkmodules.gtk.GtkGLExtVTKRenderWindow

	vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

	vtkmodules.gtk.GtkVTKRenderWindowInteractor

	vtkmodules.test
	vtkmodules.test.BlackBox

	vtkmodules.test.Testing

	vtkmodules.test.ErrorObserver

	vtkmodules.test.rtImageTest

	vtkmodules.tk
	vtkmodules.tk.vtkTkRenderWidget

	vtkmodules.tk.vtkTkRenderWindowInteractor

	vtkmodules.tk.vtkTkPhotoImage

	vtkmodules.tk.vtkLoadPythonTkWidgets

	vtkmodules.tk.vtkTkImageViewerWidget

Submodules

	vtkmodules.generate_pyi

Package Contents

Functions

	_windows_dll_path

	

	_load_vtkmodules_static

	

Data

	__all__

	

	__version__

	

API

	
vtkmodules._windows_dll_path()

	

	
vtkmodules._load_vtkmodules_static()

	

	
vtkmodules.__all__

	[‘vtkCommonCore’, ‘vtkWebCore’, ‘vtkCommonMath’, ‘vtkCommonTransforms’, ‘vtkCommonDataModel’, ‘vtkCo…

	
vtkmodules.__version__

	‘9.2.6’

 vtkmodules.util

vtkmodules.util

Utility modules for the VTK-Python wrappers.

Submodules

	vtkmodules.util.vtkImageExportToArray

	vtkmodules.util.colors

	vtkmodules.util.pickle_support

	vtkmodules.util.vtkVariant

	vtkmodules.util.vtkMethodParser

	vtkmodules.util.vtkImageImportFromArray

	vtkmodules.util.keys

	vtkmodules.util.vtkAlgorithm

	vtkmodules.util.execution_model

	vtkmodules.util.data_model

	vtkmodules.util.numpy_support

	vtkmodules.util.misc

	vtkmodules.util.vtkConstants

Package Contents

Data

	__all__

	

API

	
vtkmodules.util.__all__

	[‘colors’, ‘misc’, ‘vtkConstants’, ‘vtkImageExportToArray’, ‘vtkImageImportFromArray’, ‘vtkMethodPar…

 vtkmodules.util.vtkImageExportToArray

vtkmodules.util.vtkImageExportToArray

vtkImageExportToArray - a NumPy front-end to vtkImageExport

This class converts a VTK image to a numpy array. The output
array will always have 3 dimensions (or 4, if the image had
multiple scalar components).

To use this class, you must have numpy installed (http://numpy.scipy.org)

Methods

SetInputConnection(vtkAlgorithmOutput) – connect to VTK image pipeline
SetInputData(vtkImageData) – set an vtkImageData to export
GetArray() – execute pipeline and return a numpy array

Methods from vtkImageExport

GetDataExtent()
GetDataSpacing()
GetDataOrigin()

Module Contents

Classes

	vtkImageExportToArray

	

API

	
class vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray

	Initialization

	
__typeDict

	None

	
__sizeDict

	None

	
SetConvertUnsignedShortToInt(yesno)

	

	
GetConvertUnsignedShortToInt()

	

	
ConvertUnsignedShortToIntOn()

	

	
ConvertUnsignedShortToIntOff()

	

	
SetInputConnection(input)

	

	
SetInputData(input)

	

	
GetInput()

	

	
GetArray()

	

	
GetDataExtent()

	

	
GetDataSpacing()

	

	
GetDataOrigin()

	

 vtkmodules.util.colors

vtkmodules.util.colors

Module Contents

Data

	antique_white

	

	azure

	

	bisque

	

	blanched_almond

	

	cornsilk

	

	eggshell

	

	floral_white

	

	gainsboro

	

	ghost_white

	

	honeydew

	

	ivory

	

	lavender

	

	lavender_blush

	

	lemon_chiffon

	

	linen

	

	mint_cream

	

	misty_rose

	

	moccasin

	

	navajo_white

	

	old_lace

	

	papaya_whip

	

	peach_puff

	

	seashell

	

	snow

	

	thistle

	

	titanium_white

	

	wheat

	

	white

	

	white_smoke

	

	zinc_white

	

	cold_grey

	

	dim_grey

	

	grey

	

	light_grey

	

	slate_grey

	

	slate_grey_dark

	

	slate_grey_light

	

	warm_grey

	

	black

	

	ivory_black

	

	lamp_black

	

	alizarin_crimson

	

	brick

	

	cadmium_red_deep

	

	coral

	

	coral_light

	

	deep_pink

	

	english_red

	

	firebrick

	

	geranium_lake

	

	hot_pink

	

	indian_red

	

	light_salmon

	

	madder_lake_deep

	

	maroon

	

	pink

	

	pink_light

	

	raspberry

	

	red

	

	rose_madder

	

	salmon

	

	tomato

	

	venetian_red

	

	beige

	

	brown

	

	brown_madder

	

	brown_ochre

	

	burlywood

	

	burnt_sienna

	

	burnt_umber

	

	chocolate

	

	deep_ochre

	

	flesh

	

	flesh_ochre

	

	gold_ochre

	

	greenish_umber

	

	khaki

	

	khaki_dark

	

	light_beige

	

	peru

	

	rosy_brown

	

	raw_sienna

	

	raw_umber

	

	sepia

	

	sienna

	

	saddle_brown

	

	sandy_brown

	

	tan

	

	van_dyke_brown

	

	cadmium_orange

	

	cadmium_red_light

	

	carrot

	

	dark_orange

	

	mars_orange

	

	mars_yellow

	

	orange

	

	orange_red

	

	yellow_ochre

	

	aureoline_yellow

	

	banana

	

	cadmium_lemon

	

	cadmium_yellow

	

	cadmium_yellow_light

	

	gold

	

	goldenrod

	

	goldenrod_dark

	

	goldenrod_light

	

	goldenrod_pale

	

	light_goldenrod

	

	melon

	

	naples_yellow_deep

	

	yellow

	

	yellow_light

	

	chartreuse

	

	chrome_oxide_green

	

	cinnabar_green

	

	cobalt_green

	

	emerald_green

	

	forest_green

	

	green

	

	green_dark

	

	green_pale

	

	green_yellow

	

	lawn_green

	

	lime_green

	

	mint

	

	olive

	

	olive_drab

	

	olive_green_dark

	

	permanent_green

	

	sap_green

	

	sea_green

	

	sea_green_dark

	

	sea_green_medium

	

	sea_green_light

	

	spring_green

	

	spring_green_medium

	

	terre_verte

	

	viridian_light

	

	yellow_green

	

	aquamarine

	

	aquamarine_medium

	

	cyan

	

	cyan_white

	

	turquoise

	

	turquoise_dark

	

	turquoise_medium

	

	turquoise_pale

	

	alice_blue

	

	blue

	

	blue_light

	

	blue_medium

	

	cadet

	

	cobalt

	

	cornflower

	

	cerulean

	

	dodger_blue

	

	indigo

	

	manganese_blue

	

	midnight_blue

	

	navy

	

	peacock

	

	powder_blue

	

	royal_blue

	

	slate_blue

	

	slate_blue_dark

	

	slate_blue_light

	

	slate_blue_medium

	

	sky_blue

	

	sky_blue_deep

	

	sky_blue_light

	

	steel_blue

	

	steel_blue_light

	

	turquoise_blue

	

	ultramarine

	

	blue_violet

	

	cobalt_violet_deep

	

	magenta

	

	orchid

	

	orchid_dark

	

	orchid_medium

	

	permanent_red_violet

	

	plum

	

	purple

	

	purple_medium

	

	ultramarine_violet

	

	violet

	

	violet_dark

	

	violet_red

	

	violet_red_medium

	

	violet_red_pale

	

API

	
vtkmodules.util.colors.antique_white

	(0.9804, 0.9216, 0.8431)

	
vtkmodules.util.colors.azure

	(0.9412, 1.0, 1.0)

	
vtkmodules.util.colors.bisque

	(1.0, 0.8941, 0.7686)

	
vtkmodules.util.colors.blanched_almond

	(1.0, 0.9216, 0.8039)

	
vtkmodules.util.colors.cornsilk

	(1.0, 0.9725, 0.8627)

	
vtkmodules.util.colors.eggshell

	(0.99, 0.9, 0.79)

	
vtkmodules.util.colors.floral_white

	(1.0, 0.9804, 0.9412)

	
vtkmodules.util.colors.gainsboro

	(0.8627, 0.8627, 0.8627)

	
vtkmodules.util.colors.ghost_white

	(0.9725, 0.9725, 1.0)

	
vtkmodules.util.colors.honeydew

	(0.9412, 1.0, 0.9412)

	
vtkmodules.util.colors.ivory

	(1.0, 1.0, 0.9412)

	
vtkmodules.util.colors.lavender

	(0.902, 0.902, 0.9804)

	
vtkmodules.util.colors.lavender_blush

	(1.0, 0.9412, 0.9608)

	
vtkmodules.util.colors.lemon_chiffon

	(1.0, 0.9804, 0.8039)

	
vtkmodules.util.colors.linen

	(0.9804, 0.9412, 0.902)

	
vtkmodules.util.colors.mint_cream

	(0.9608, 1.0, 0.9804)

	
vtkmodules.util.colors.misty_rose

	(1.0, 0.8941, 0.8824)

	
vtkmodules.util.colors.moccasin

	(1.0, 0.8941, 0.7098)

	
vtkmodules.util.colors.navajo_white

	(1.0, 0.8706, 0.6784)

	
vtkmodules.util.colors.old_lace

	(0.9922, 0.9608, 0.902)

	
vtkmodules.util.colors.papaya_whip

	(1.0, 0.9373, 0.8353)

	
vtkmodules.util.colors.peach_puff

	(1.0, 0.8549, 0.7255)

	
vtkmodules.util.colors.seashell

	(1.0, 0.9608, 0.9333)

	
vtkmodules.util.colors.snow

	(1.0, 0.9804, 0.9804)

	
vtkmodules.util.colors.thistle

	(0.8471, 0.749, 0.8471)

	
vtkmodules.util.colors.titanium_white

	(0.99, 1.0, 0.94)

	
vtkmodules.util.colors.wheat

	(0.9608, 0.8706, 0.702)

	
vtkmodules.util.colors.white

	(1.0, 1.0, 1.0)

	
vtkmodules.util.colors.white_smoke

	(0.9608, 0.9608, 0.9608)

	
vtkmodules.util.colors.zinc_white

	(0.99, 0.97, 1.0)

	
vtkmodules.util.colors.cold_grey

	(0.5, 0.54, 0.53)

	
vtkmodules.util.colors.dim_grey

	(0.4118, 0.4118, 0.4118)

	
vtkmodules.util.colors.grey

	(0.7529, 0.7529, 0.7529)

	
vtkmodules.util.colors.light_grey

	(0.8275, 0.8275, 0.8275)

	
vtkmodules.util.colors.slate_grey

	(0.4392, 0.502, 0.5647)

	
vtkmodules.util.colors.slate_grey_dark

	(0.1843, 0.3098, 0.3098)

	
vtkmodules.util.colors.slate_grey_light

	(0.4667, 0.5333, 0.6)

	
vtkmodules.util.colors.warm_grey

	(0.5, 0.5, 0.41)

	
vtkmodules.util.colors.black

	(0.0, 0.0, 0.0)

	
vtkmodules.util.colors.ivory_black

	(0.16, 0.14, 0.13)

	
vtkmodules.util.colors.lamp_black

	(0.18, 0.28, 0.23)

	
vtkmodules.util.colors.alizarin_crimson

	(0.89, 0.15, 0.21)

	
vtkmodules.util.colors.brick

	(0.61, 0.4, 0.12)

	
vtkmodules.util.colors.cadmium_red_deep

	(0.89, 0.09, 0.05)

	
vtkmodules.util.colors.coral

	(1.0, 0.498, 0.3137)

	
vtkmodules.util.colors.coral_light

	(0.9412, 0.502, 0.502)

	
vtkmodules.util.colors.deep_pink

	(1.0, 0.0784, 0.5765)

	
vtkmodules.util.colors.english_red

	(0.83, 0.24, 0.1)

	
vtkmodules.util.colors.firebrick

	(0.698, 0.1333, 0.1333)

	
vtkmodules.util.colors.geranium_lake

	(0.89, 0.07, 0.19)

	
vtkmodules.util.colors.hot_pink

	(1.0, 0.4118, 0.7059)

	
vtkmodules.util.colors.indian_red

	(0.69, 0.09, 0.12)

	
vtkmodules.util.colors.light_salmon

	(1.0, 0.6275, 0.4784)

	
vtkmodules.util.colors.madder_lake_deep

	(0.89, 0.18, 0.19)

	
vtkmodules.util.colors.maroon

	(0.6902, 0.1882, 0.3765)

	
vtkmodules.util.colors.pink

	(1.0, 0.7529, 0.7961)

	
vtkmodules.util.colors.pink_light

	(1.0, 0.7137, 0.7569)

	
vtkmodules.util.colors.raspberry

	(0.53, 0.15, 0.34)

	
vtkmodules.util.colors.red

	(1.0, 0.0, 0.0)

	
vtkmodules.util.colors.rose_madder

	(0.89, 0.21, 0.22)

	
vtkmodules.util.colors.salmon

	(0.9804, 0.502, 0.4471)

	
vtkmodules.util.colors.tomato

	(1.0, 0.3882, 0.2784)

	
vtkmodules.util.colors.venetian_red

	(0.83, 0.1, 0.12)

	
vtkmodules.util.colors.beige

	(0.64, 0.58, 0.5)

	
vtkmodules.util.colors.brown

	(0.5, 0.1647, 0.1647)

	
vtkmodules.util.colors.brown_madder

	(0.86, 0.16, 0.16)

	
vtkmodules.util.colors.brown_ochre

	(0.53, 0.26, 0.12)

	
vtkmodules.util.colors.burlywood

	(0.8706, 0.7216, 0.5294)

	
vtkmodules.util.colors.burnt_sienna

	(0.54, 0.21, 0.06)

	
vtkmodules.util.colors.burnt_umber

	(0.54, 0.2, 0.14)

	
vtkmodules.util.colors.chocolate

	(0.8235, 0.4118, 0.1176)

	
vtkmodules.util.colors.deep_ochre

	(0.45, 0.24, 0.1)

	
vtkmodules.util.colors.flesh

	(1.0, 0.49, 0.25)

	
vtkmodules.util.colors.flesh_ochre

	(1.0, 0.34, 0.13)

	
vtkmodules.util.colors.gold_ochre

	(0.78, 0.47, 0.15)

	
vtkmodules.util.colors.greenish_umber

	(1.0, 0.24, 0.05)

	
vtkmodules.util.colors.khaki

	(0.9412, 0.902, 0.549)

	
vtkmodules.util.colors.khaki_dark

	(0.7412, 0.7176, 0.4196)

	
vtkmodules.util.colors.light_beige

	(0.9608, 0.9608, 0.8627)

	
vtkmodules.util.colors.peru

	(0.8039, 0.5216, 0.2471)

	
vtkmodules.util.colors.rosy_brown

	(0.7373, 0.5608, 0.5608)

	
vtkmodules.util.colors.raw_sienna

	(0.78, 0.38, 0.08)

	
vtkmodules.util.colors.raw_umber

	(0.45, 0.29, 0.07)

	
vtkmodules.util.colors.sepia

	(0.37, 0.15, 0.07)

	
vtkmodules.util.colors.sienna

	(0.6275, 0.3216, 0.1765)

	
vtkmodules.util.colors.saddle_brown

	(0.5451, 0.2706, 0.0745)

	
vtkmodules.util.colors.sandy_brown

	(0.9569, 0.6431, 0.3765)

	
vtkmodules.util.colors.tan

	(0.8235, 0.7059, 0.549)

	
vtkmodules.util.colors.van_dyke_brown

	(0.37, 0.15, 0.02)

	
vtkmodules.util.colors.cadmium_orange

	(1.0, 0.38, 0.01)

	
vtkmodules.util.colors.cadmium_red_light

	(1.0, 0.01, 0.05)

	
vtkmodules.util.colors.carrot

	(0.93, 0.57, 0.13)

	
vtkmodules.util.colors.dark_orange

	(1.0, 0.549, 0.0)

	
vtkmodules.util.colors.mars_orange

	(0.59, 0.27, 0.08)

	
vtkmodules.util.colors.mars_yellow

	(0.89, 0.44, 0.1)

	
vtkmodules.util.colors.orange

	(1.0, 0.5, 0.0)

	
vtkmodules.util.colors.orange_red

	(1.0, 0.2706, 0.0)

	
vtkmodules.util.colors.yellow_ochre

	(0.89, 0.51, 0.09)

	
vtkmodules.util.colors.aureoline_yellow

	(1.0, 0.66, 0.14)

	
vtkmodules.util.colors.banana

	(0.89, 0.81, 0.34)

	
vtkmodules.util.colors.cadmium_lemon

	(1.0, 0.89, 0.01)

	
vtkmodules.util.colors.cadmium_yellow

	(1.0, 0.6, 0.07)

	
vtkmodules.util.colors.cadmium_yellow_light

	(1.0, 0.69, 0.06)

	
vtkmodules.util.colors.gold

	(1.0, 0.8431, 0.0)

	
vtkmodules.util.colors.goldenrod

	(0.8549, 0.6471, 0.1255)

	
vtkmodules.util.colors.goldenrod_dark

	(0.7216, 0.5255, 0.0431)

	
vtkmodules.util.colors.goldenrod_light

	(0.9804, 0.9804, 0.8235)

	
vtkmodules.util.colors.goldenrod_pale

	(0.9333, 0.9098, 0.6667)

	
vtkmodules.util.colors.light_goldenrod

	(0.9333, 0.8667, 0.5098)

	
vtkmodules.util.colors.melon

	(0.89, 0.66, 0.41)

	
vtkmodules.util.colors.naples_yellow_deep

	(1.0, 0.66, 0.07)

	
vtkmodules.util.colors.yellow

	(1.0, 1.0, 0.0)

	
vtkmodules.util.colors.yellow_light

	(1.0, 1.0, 0.8784)

	
vtkmodules.util.colors.chartreuse

	(0.498, 1.0, 0.0)

	
vtkmodules.util.colors.chrome_oxide_green

	(0.4, 0.5, 0.08)

	
vtkmodules.util.colors.cinnabar_green

	(0.38, 0.7, 0.16)

	
vtkmodules.util.colors.cobalt_green

	(0.24, 0.57, 0.25)

	
vtkmodules.util.colors.emerald_green

	(0.0, 0.79, 0.34)

	
vtkmodules.util.colors.forest_green

	(0.1333, 0.5451, 0.1333)

	
vtkmodules.util.colors.green

	(0.0, 1.0, 0.0)

	
vtkmodules.util.colors.green_dark

	(0.0, 0.3922, 0.0)

	
vtkmodules.util.colors.green_pale

	(0.5961, 0.9843, 0.5961)

	
vtkmodules.util.colors.green_yellow

	(0.6784, 1.0, 0.1843)

	
vtkmodules.util.colors.lawn_green

	(0.4863, 0.9882, 0.0)

	
vtkmodules.util.colors.lime_green

	(0.1961, 0.8039, 0.1961)

	
vtkmodules.util.colors.mint

	(0.74, 0.99, 0.79)

	
vtkmodules.util.colors.olive

	(0.23, 0.37, 0.17)

	
vtkmodules.util.colors.olive_drab

	(0.4196, 0.5569, 0.1373)

	
vtkmodules.util.colors.olive_green_dark

	(0.3333, 0.4196, 0.1843)

	
vtkmodules.util.colors.permanent_green

	(0.04, 0.79, 0.17)

	
vtkmodules.util.colors.sap_green

	(0.19, 0.5, 0.08)

	
vtkmodules.util.colors.sea_green

	(0.1804, 0.5451, 0.3412)

	
vtkmodules.util.colors.sea_green_dark

	(0.5608, 0.7373, 0.5608)

	
vtkmodules.util.colors.sea_green_medium

	(0.2353, 0.702, 0.4431)

	
vtkmodules.util.colors.sea_green_light

	(0.1255, 0.698, 0.6667)

	
vtkmodules.util.colors.spring_green

	(0.0, 1.0, 0.498)

	
vtkmodules.util.colors.spring_green_medium

	(0.0, 0.9804, 0.6039)

	
vtkmodules.util.colors.terre_verte

	(0.22, 0.37, 0.06)

	
vtkmodules.util.colors.viridian_light

	(0.43, 1.0, 0.44)

	
vtkmodules.util.colors.yellow_green

	(0.6039, 0.8039, 0.1961)

	
vtkmodules.util.colors.aquamarine

	(0.498, 1.0, 0.8314)

	
vtkmodules.util.colors.aquamarine_medium

	(0.4, 0.8039, 0.6667)

	
vtkmodules.util.colors.cyan

	(0.0, 1.0, 1.0)

	
vtkmodules.util.colors.cyan_white

	(0.8784, 1.0, 1.0)

	
vtkmodules.util.colors.turquoise

	(0.251, 0.8784, 0.8157)

	
vtkmodules.util.colors.turquoise_dark

	(0.0, 0.8078, 0.8196)

	
vtkmodules.util.colors.turquoise_medium

	(0.2824, 0.8196, 0.8)

	
vtkmodules.util.colors.turquoise_pale

	(0.6863, 0.9333, 0.9333)

	
vtkmodules.util.colors.alice_blue

	(0.9412, 0.9725, 1.0)

	
vtkmodules.util.colors.blue

	(0.0, 0.0, 1.0)

	
vtkmodules.util.colors.blue_light

	(0.6784, 0.8471, 0.902)

	
vtkmodules.util.colors.blue_medium

	(0.0, 0.0, 0.8039)

	
vtkmodules.util.colors.cadet

	(0.3725, 0.6196, 0.6275)

	
vtkmodules.util.colors.cobalt

	(0.24, 0.35, 0.67)

	
vtkmodules.util.colors.cornflower

	(0.3922, 0.5843, 0.9294)

	
vtkmodules.util.colors.cerulean

	(0.02, 0.72, 0.8)

	
vtkmodules.util.colors.dodger_blue

	(0.1176, 0.5647, 1.0)

	
vtkmodules.util.colors.indigo

	(0.03, 0.18, 0.33)

	
vtkmodules.util.colors.manganese_blue

	(0.01, 0.66, 0.62)

	
vtkmodules.util.colors.midnight_blue

	(0.098, 0.098, 0.4392)

	
vtkmodules.util.colors.navy

	(0.0, 0.0, 0.502)

	
vtkmodules.util.colors.peacock

	(0.2, 0.63, 0.79)

	
vtkmodules.util.colors.powder_blue

	(0.6902, 0.8784, 0.902)

	
vtkmodules.util.colors.royal_blue

	(0.2549, 0.4118, 0.8824)

	
vtkmodules.util.colors.slate_blue

	(0.4157, 0.3529, 0.8039)

	
vtkmodules.util.colors.slate_blue_dark

	(0.2824, 0.2392, 0.5451)

	
vtkmodules.util.colors.slate_blue_light

	(0.5176, 0.4392, 1.0)

	
vtkmodules.util.colors.slate_blue_medium

	(0.4824, 0.4078, 0.9333)

	
vtkmodules.util.colors.sky_blue

	(0.5294, 0.8078, 0.9216)

	
vtkmodules.util.colors.sky_blue_deep

	(0.0, 0.749, 1.0)

	
vtkmodules.util.colors.sky_blue_light

	(0.5294, 0.8078, 0.9804)

	
vtkmodules.util.colors.steel_blue

	(0.2745, 0.5098, 0.7059)

	
vtkmodules.util.colors.steel_blue_light

	(0.6902, 0.7686, 0.8706)

	
vtkmodules.util.colors.turquoise_blue

	(0.0, 0.78, 0.55)

	
vtkmodules.util.colors.ultramarine

	(0.07, 0.04, 0.56)

	
vtkmodules.util.colors.blue_violet

	(0.5412, 0.1686, 0.8863)

	
vtkmodules.util.colors.cobalt_violet_deep

	(0.57, 0.13, 0.62)

	
vtkmodules.util.colors.magenta

	(1.0, 0.0, 1.0)

	
vtkmodules.util.colors.orchid

	(0.8549, 0.4392, 0.8392)

	
vtkmodules.util.colors.orchid_dark

	(0.6, 0.1961, 0.8)

	
vtkmodules.util.colors.orchid_medium

	(0.7294, 0.3333, 0.8275)

	
vtkmodules.util.colors.permanent_red_violet

	(0.86, 0.15, 0.27)

	
vtkmodules.util.colors.plum

	(0.8667, 0.6275, 0.8667)

	
vtkmodules.util.colors.purple

	(0.6275, 0.1255, 0.9412)

	
vtkmodules.util.colors.purple_medium

	(0.5765, 0.4392, 0.8588)

	
vtkmodules.util.colors.ultramarine_violet

	(0.36, 0.14, 0.43)

	
vtkmodules.util.colors.violet

	(0.56, 0.37, 0.6)

	
vtkmodules.util.colors.violet_dark

	(0.5804, 0.0, 0.8275)

	
vtkmodules.util.colors.violet_red

	(0.8157, 0.1255, 0.5647)

	
vtkmodules.util.colors.violet_red_medium

	(0.7804, 0.0824, 0.5216)

	
vtkmodules.util.colors.violet_red_pale

	(0.8588, 0.4392, 0.5765)

 vtkmodules.util.pickle_support

vtkmodules.util.pickle_support

This module generates support for pickling vtkDataObjects from python.
It needs to be imported specifically in order to work:

import vtkmodules.util.pickle_support

Once imported however, the pickling of data objects is very straightforward. Here is an
example using poly data:

sphereSrc = vtkSphereSource()
sphereSrc.Update()
pickled = pickle.dumps(sphereSrc.GetOutput())
unpickled = pickle.loads(pickled)
print(unpickled)
description of sphere data set

The underlying serialization of the vtkDatObjects is based on the marshaling capabilities
found in vtkCommunicator. Importing this module adds entries for the most common data
objects in the global dispatch table used by pickle. NumPy is required as well since the
-serialized data object gets pickled as a numpy array.

Module Contents

Functions

	unserialize_VTK_data_object

	Takes a state dictionary with entries:

	serialize_VTK_data_object

	Returns a tuple with a reference to the unpickling function and a state dictionary
with entries:

API

	
vtkmodules.util.pickle_support.unserialize_VTK_data_object(state)

	Takes a state dictionary with entries:

	Type : a string with the class name for the data object

	Serialized : a numpy array with the serialized data object

and transforms it into a data object.

	
vtkmodules.util.pickle_support.serialize_VTK_data_object(data_object)

	Returns a tuple with a reference to the unpickling function and a state dictionary
with entries:

	Type : a string with the class name for the data object

	Serialized : a numpy array with the serialized data object

This is exactly the state dictionary that unserialize_VTK_data_object expects.

 vtkmodules.util.vtkVariant

vtkmodules.util.vtkVariant

Utility functions to mimic the template support functions for vtkVariant

Module Contents

Classes

	vtkVariantStrictWeakOrderKey

	A key method (class, actually) for use with sort()

Functions

	vtkVariantCreate

	Create a vtkVariant of the specified type, where the type is in the
following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type.

	vtkVariantExtract

	Extract the specified value type from the vtkVariant, where the type is
in the following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type. Set the type to ‘None” to
extract the value in its native type.

	vtkVariantCast

	Cast the vtkVariant to the specified value type, where the type is
in the following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type.

	vtkVariantStrictWeakOrder

	Compare variants by type first, and then by value.

	vtkVariantStrictEquality

	Check two variants for strict equality of type and value.

	vtkVariantLessThan

	Return true if s1 < s2.

	vtkVariantEqual

	Return true if s1 == s2.

Data

	_variant_type_map

	

	_variant_method_map

	

	_variant_check_map

	

API

	
vtkmodules.util.vtkVariant._variant_type_map

	None

	
vtkmodules.util.vtkVariant._variant_method_map

	None

	
vtkmodules.util.vtkVariant._variant_check_map

	None

	
vtkmodules.util.vtkVariant.vtkVariantCreate(v, t)

	Create a vtkVariant of the specified type, where the type is in the
following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type.

	
vtkmodules.util.vtkVariant.vtkVariantExtract(v, t=None)

	Extract the specified value type from the vtkVariant, where the type is
in the following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type. Set the type to ‘None” to
extract the value in its native type.

	
vtkmodules.util.vtkVariant.vtkVariantCast(v, t)

	Cast the vtkVariant to the specified value type, where the type is
in the following format: ‘int’, ‘unsigned int’, etc. for numeric types,
and ‘string’ for strings. You can also use an
integer VTK type constant for the type.

	
vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrder(s1, s2)

	Compare variants by type first, and then by value.

	
class vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrderKey(obj, *args)

	A key method (class, actually) for use with sort()

Initialization

	
__lt__(other)

	

	
vtkmodules.util.vtkVariant.vtkVariantStrictEquality(s1, s2)

	Check two variants for strict equality of type and value.

	
vtkmodules.util.vtkVariant.vtkVariantLessThan(s1, s2)

	Return true if s1 < s2.

	
vtkmodules.util.vtkVariant.vtkVariantEqual(s1, s2)

	Return true if s1 == s2.

 vtkmodules.util.vtkMethodParser

vtkmodules.util.vtkMethodParser

This python module provides functionality to parse the methods of a
VTK object.

Created by Prabhu Ramachandran. Committed in Apr, 2002.

Module Contents

Classes

	VtkDirMethodParser

	Parses the methods from dir(vtk_obj).

	VtkPrintMethodParser

	This class finds the methods for a given vtkObject. It uses
the output from vtkObject->Print() (or in Python str(vtkObject))
and output from the VtkDirMethodParser to obtain the methods.

Functions

	debug

	

Data

	DEBUG

	

API

	
vtkmodules.util.vtkMethodParser.DEBUG

	0

	
vtkmodules.util.vtkMethodParser.debug(msg)

	

	
class vtkmodules.util.vtkMethodParser.VtkDirMethodParser

	Parses the methods from dir(vtk_obj).

	
initialize_methods(vtk_obj)

	

	
parse_methods(vtk_obj)

	

	
clean_up_methods(vtk_obj)

	

	
clean_get_set(vtk_obj)

	

	
clean_state_methods(vtk_obj)

	

	
clean_get_methods(vtk_obj)

	

	
toggle_methods()

	

	
state_methods()

	

	
get_set_methods()

	

	
get_methods()

	

	
class vtkmodules.util.vtkMethodParser.VtkPrintMethodParser

	This class finds the methods for a given vtkObject. It uses
the output from vtkObject->Print() (or in Python str(vtkObject))
and output from the VtkDirMethodParser to obtain the methods.

	
parse_methods(vtk_obj)

	Parse for the methods.

	
_get_str_obj(vtk_obj)

	

	
_initialize_methods(vtk_obj)

	Do the basic parsing and setting up

	
_clean_up_methods(vtk_obj)

	Merge dir and str methods. Finish up.

	
toggle_methods()

	

	
state_methods()

	

	
get_set_methods()

	

	
get_methods()

	

 vtkmodules.util.vtkImageImportFromArray

vtkmodules.util.vtkImageImportFromArray

vtkImageImportFromArray: a NumPy front-end to vtkImageImport

Load a python array into a vtk image.
To use this class, you must have NumPy installed (http://numpy.scipy.org/)

Methods:

SetArray() – set the numpy array to load
Update() – generate the output
GetOutput() – get the image as vtkImageData
GetOutputPort() – connect to VTK pipeline

Methods from vtkImageImport:
(if you don’t set these, sensible defaults will be used)

SetDataExtent()
SetDataSpacing()
SetDataOrigin()

Module Contents

Classes

	vtkImageImportFromArray

	

API

	
class vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray

	Initialization

	
__typeDict

	None

	
__sizeDict

	None

	
SetConvertIntToUnsignedShort(yesno)

	

	
GetConvertIntToUnsignedShort()

	

	
ConvertIntToUnsignedShortOn()

	

	
ConvertIntToUnsignedShortOff()

	

	
Update()

	

	
GetOutputPort()

	

	
GetOutput()

	

	
SetArray(imArray)

	

	
GetArray()

	

	
SetDataExtent(extent)

	

	
GetDataExtent()

	

	
SetDataSpacing(spacing)

	

	
GetDataSpacing()

	

	
SetDataOrigin(origin)

	

	
GetDataOrigin()

	

 vtkmodules.util.keys

vtkmodules.util.keys

Utility module to make it easier to create new keys.

Module Contents

Functions

	MakeKey

	Given a key type, make a new key of given name
and location.

API

	
vtkmodules.util.keys.MakeKey(key_type, name, location, *args)

	Given a key type, make a new key of given name
and location.

 vtkmodules.util.vtkAlgorithm

vtkmodules.util.vtkAlgorithm

Module Contents

Classes

	VTKAlgorithm

	This is a superclass which can be derived to implement
Python classes that work with vtkPythonAlgorithm. It implements
Initialize(), ProcessRequest(), FillInputPortInformation() and
FillOutputPortInformation().

	VTKPythonAlgorithmBase

	This is a superclass which can be derived to implement
Python classes that act as VTK algorithms in a VTK pipeline.
It implements ProcessRequest(), FillInputPortInformation() and
FillOutputPortInformation().

API

	
class vtkmodules.util.vtkAlgorithm.VTKAlgorithm(nInputPorts=1, inputType='vtkDataSet', nOutputPorts=1, outputType='vtkPolyData')

	Bases: object

This is a superclass which can be derived to implement
Python classes that work with vtkPythonAlgorithm. It implements
Initialize(), ProcessRequest(), FillInputPortInformation() and
FillOutputPortInformation().

Initialize() sets the input and output ports based on data
members.

ProcessRequest() calls RequestXXX() methods to implement
various pipeline passes.

FillInputPortInformation() and FillOutputPortInformation() set
the input and output types based on data members.

Initialization

Sets up default NumberOfInputPorts, NumberOfOutputPorts,
InputType and OutputType that are used by various initialization
methods.

	
Initialize(vtkself)

	Sets up number of input and output ports based on
NumberOfInputPorts and NumberOfOutputPorts.

	
GetInputData(inInfo, i, j)

	Convenience method that returns an input data object
given a vector of information objects and two indices.

	
GetOutputData(outInfo, i)

	Convenience method that returns an output data object
given an information object and an index.

	
RequestDataObject(vtkself, request, inInfo, outInfo)

	Overwritten by subclass to manage data object creation.
There is not need to overwrite this class if the output can
be created based on the OutputType data member.

	
RequestInformation(vtkself, request, inInfo, outInfo)

	Overwritten by subclass to provide meta-data to downstream
pipeline.

	
RequestUpdateExtent(vtkself, request, inInfo, outInfo)

	Overwritten by subclass to modify data request going
to upstream pipeline.

	
abstract RequestData(vtkself, request, inInfo, outInfo)

	Overwritten by subclass to execute the algorithm.

	
ProcessRequest(vtkself, request, inInfo, outInfo)

	Splits a request to RequestXXX() methods.

	
FillInputPortInformation(vtkself, port, info)

	Sets the required input type to InputType.

	
FillOutputPortInformation(vtkself, port, info)

	Sets the default output type to OutputType.

	
class vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase(nInputPorts=1, inputType='vtkDataSet', nOutputPorts=1, outputType='vtkPolyData')

	Bases: vtkmodules.vtkFiltersPython.vtkPythonAlgorithm

This is a superclass which can be derived to implement
Python classes that act as VTK algorithms in a VTK pipeline.
It implements ProcessRequest(), FillInputPortInformation() and
FillOutputPortInformation().

ProcessRequest() calls RequestXXX() methods to implement
various pipeline passes.

FillInputPortInformation() and FillOutputPortInformation() set
the input and output types based on data members.

Common use is something like this:

class HDF5Source(VTKPythonAlgorithmBase):
def init(self):
VTKPythonAlgorithmBase.init(self,
nInputPorts=0,
nOutputPorts=1, outputType=’vtkImageData’)

def RequestInformation(self, request, inInfo, outInfo):
 f = h5py.File("foo.h5", 'r')
 dims = f['RTData'].shape[::-1]
 info = outInfo.GetInformationObject(0)
 info.Set(vtkmodules.vtkCommonExecutionModel.vtkStreamingDemandDrivenPipeline.WHOLE_EXTENT(),
 (0, dims[0]-1, 0, dims[1]-1, 0, dims[2]-1), 6)
 return 1

def RequestData(self, request, inInfo, outInfo):
 f = h5py.File("foo.h5", 'r')
 data = f['RTData'][:]
 output = dsa.WrapDataObject(vtkmodules.vtkCommonDataModel.vtkImageData.GetData(outInfo))
 output.SetDimensions(data.shape)
 output.PointData.append(data.flatten(), 'RTData')
 output.PointData.SetActiveScalars('RTData')
 return 1

alg = HDF5Source()

cf = vtkmodules.vtkFiltersCore.vtkContourFilter()
cf.SetInputConnection(alg.GetOutputPort())
cf.Update()

Initialization

Sets up default NumberOfInputPorts, NumberOfOutputPorts,
InputType and OutputType that are used by various methods.
Make sure to call this method from any subclass’ init

	
class InternalAlgorithm

	Bases: object

Internal class. Do not use.

	
Initialize(vtkself)

	

	
FillInputPortInformation(vtkself, port, info)

	

	
FillOutputPortInformation(vtkself, port, info)

	

	
ProcessRequest(vtkself, request, inInfo, outInfo)

	

	
GetInputData(inInfo, i, j)

	Convenience method that returns an input data object
given a vector of information objects and two indices.

	
GetOutputData(outInfo, i)

	Convenience method that returns an output data object
given an information object and an index.

	
FillInputPortInformation(port, info)

	Sets the required input type to InputType.

	
FillOutputPortInformation(port, info)

	Sets the default output type to OutputType.

	
ProcessRequest(request, inInfo, outInfo)

	Splits a request to RequestXXX() methods.

	
RequestDataObject(request, inInfo, outInfo)

	Overwritten by subclass to manage data object creation.
There is not need to overwrite this class if the output can
be created based on the OutputType data member.

	
RequestInformation(request, inInfo, outInfo)

	Overwritten by subclass to provide meta-data to downstream
pipeline.

	
RequestUpdateExtent(request, inInfo, outInfo)

	Overwritten by subclass to modify data request going
to upstream pipeline.

	
abstract RequestData(request, inInfo, outInfo)

	Overwritten by subclass to execute the algorithm.

 vtkmodules.util.execution_model

vtkmodules.util.execution_model

Utility classes to help with the simpler Python interface
for connecting and executing pipelines.

Module Contents

Classes

	select_ports

	Helper class for selecting input and output ports when
connecting pipeline objects with the >> operator.
Example uses:

	Pipeline

	Pipeline objects are created when 2 or more algorithms are
connected with the >> operator. They store the first and last
algorithms in the pipeline and enable connecting more algorithms
and executing the pipeline. One should not have to create Pipeline
objects directly. They are created by the use of the >> operator.

	Output

	Helper object to represent the output of an algorithms as
returned by the update() method. Implements the output property
enabling calling update().output.

Functions

	_call

	Set the input of the first filter, update the pipeline
and return the output.

Data

	__all__

	

API

	
vtkmodules.util.execution_model.__all__

	[‘select_ports’, ‘Pipeline’, ‘Output’]

	
vtkmodules.util.execution_model._call(first, last, inp=None, port=0)

	Set the input of the first filter, update the pipeline
and return the output.

	
class vtkmodules.util.execution_model.select_ports(*args)

	Bases: object

Helper class for selecting input and output ports when
connecting pipeline objects with the >> operator.
Example uses:

Connect a source to the second input of a filter.

source >> select_ports(1, filter)

Connect the second output of a source to a filter.

select_ports(source, 1) >> filter

Combination of both: Connect source to second

input of the filter, then connect the second

output of that filter to another one.

source >>> select_ports(1, filter, 1) >> filter2

Initialization

This constructor takes 2 or 3 arguments.
The possibilities are:
select_ports(input_port, algorithm)
select_ports(algorithm, output_port)
select_ports(input_port, algorithm, output_port)

	
SetInputConnection(inp)

	Forwards to underlying algorithm and port.

	
AddInputConnection(inp)

	Forwards to underlying algorithm and port.

	
GetOutputPort()

	Returns the output port of the underlying algorithm.

	
GetInputPortInformation(port)

	

	
update()

	Execute the algorithm and return the output from the selected
output port.

	
__rshift__(rhs)

	Creates a pipeline between the underlying port and an algorithm.

	
__rrshift__(lhs)

	Creates a pipeline between the underlying port and an algorithm.
This is to handle sequence >> select_ports where the port can
accept multiple connections.

	
__call__(inp=None)

	Executes the underlying algorithm by passing input data to
the selected input port. Returns a single output or a tuple
if there are multiple outputs.

	
class vtkmodules.util.execution_model.Pipeline(lhs, rhs)

	Bases: object

Pipeline objects are created when 2 or more algorithms are
connected with the >> operator. They store the first and last
algorithms in the pipeline and enable connecting more algorithms
and executing the pipeline. One should not have to create Pipeline
objects directly. They are created by the use of the >> operator.

Initialization

Create a pipeline object that connects two objects of the
following type: data object, pipeline object, algorithm object.

	
PIPELINE

	0

	
ALGORITHM

	1

	
DATA

	2

	
UNKNOWN

	3

	
_connect(lhs, rhs, rhs_alg, connect_method)

	

	
_determine_type(arg)

	

	
update(**kwargs)

	Update the pipeline and return the last algorithm’s
output.

	
__call__(inp=None)

	Sets the input of the first filter, update the pipeline
and returns the output. A single data object or a tuple
of data objects (when there are multiple outputs) are
returned.

	
__rshift__(rhs)

	Used to connect two pipeline items. The left side can
be a data object, an algorithm or a pipeline. The right
side can be an algorithm or a pipeline.

	
__rrshift__(lhs)

	Creates a pipeline between a sequence input and a pipeline.

	
class vtkmodules.util.execution_model.Output(algorithm, **kwargs)

	Bases: object

Helper object to represent the output of an algorithms as
returned by the update() method. Implements the output property
enabling calling update().output.

Initialization

	
property output

	Returns a single data object or a tuple of data objects
if there are multiple outputs.

 vtkmodules.util.data_model

vtkmodules.util.data_model

This module provides classes that allow numpy style access
to VTK datasets. See examples at bottom.

Module Contents

Classes

	FieldDataBase

	

	vtkFieldData

	

	DataSetAttributesBase

	

	DataSetAttributes

	

	PointData

	

	CellData

	

	CompositeDataSetAttributesIterator

	

	CompositeDataSetAttributes

	This is a python friendly wrapper for vtkDataSetAttributes for composite
datasets. Since composite datasets themselves don’t have attribute data, but
the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a
union of DataSetAttributes associated with all leaf nodes.

	DataSet

	

	PointSet

	

	vtkUnstructuredGrid

	

	vtkImageData

	

	vtkPolyData

	

	CompositeDataIterator

	Wrapper for a vtkCompositeDataIterator class to satisfy
the python iterator protocol. This iterator iterates
over non-empty leaf nodes. To iterate over empty or
non-leaf nodes, use the vtkCompositeDataIterator directly.

	CompositeDataSetBase

	A wrapper for vtkCompositeData and subclasses that makes it easier
to access Point/Cell/Field data as VTKCompositeDataArrays. It also
provides a Python type iterator.

	vtkPartitionedDataSet

	

API

	
class vtkmodules.util.data_model.FieldDataBase

	Bases: object

Initialization

	
__getitem__(idx)

	Implements the [] operator. Accepts an array name or index.

	
__setitem__(name, value)

	Implements the [] operator. Accepts an array name or index.

	
get_array(idx)

	Given an index or name, returns a VTKArray.

	
keys()

	Returns the names of the arrays as a list.

	
values()

	Returns the arrays as a list.

	
set_array(name, narray)

	Appends a new array to the dataset attributes.

	
class vtkmodules.util.data_model.vtkFieldData

	Bases: vtkmodules.util.data_model.FieldDataBase, vtkmodules.util.data_model.vtkFieldData

Initialization

	
class vtkmodules.util.data_model.DataSetAttributesBase

	Bases: vtkmodules.util.data_model.FieldDataBase

Initialization

	
class vtkmodules.util.data_model.DataSetAttributes

	Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.vtkDataSetAttributes

Initialization

	
class vtkmodules.util.data_model.PointData

	Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.vtkPointData

Initialization

	
class vtkmodules.util.data_model.CellData

	Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.vtkCellData

Initialization

	
class vtkmodules.util.data_model.CompositeDataSetAttributesIterator(cdsa)

	Bases: object

Initialization

	
__iter__()

	

	
__next__()

	

	
next()

	

	
class vtkmodules.util.data_model.CompositeDataSetAttributes(dataset, association)

	Bases: object

This is a python friendly wrapper for vtkDataSetAttributes for composite
datasets. Since composite datasets themselves don’t have attribute data, but
the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a
union of DataSetAttributes associated with all leaf nodes.

Initialization

	
__determine_arraynames()

	

	
modified()

	Rescans the contained dataset to update the
internal list of arrays.

	
keys()

	Returns the names of the arrays as a list.

	
__getitem__(idx)

	Implements the [] operator. Accepts an array name.

	
__setitem__(name, narray)

	Implements the [] operator. Accepts an array name.

	
set_array(name, narray)

	Appends a new array to the composite dataset attributes.

	
get_array(idx)

	Given a name, returns a VTKCompositeArray.

	
__iter__()

	Creates an iterator for the contained arrays.

	
class vtkmodules.util.data_model.DataSet

	Bases: object

	
property point_data

	

	
property cell_data

	

	
convert_to_unstructured_grid()

	

	
class vtkmodules.util.data_model.PointSet

	Bases: vtkmodules.util.data_model.DataSet

	
property points

	

	
class vtkmodules.util.data_model.vtkUnstructuredGrid

	Bases: vtkmodules.util.data_model.PointSet, vtkmodules.util.data_model.vtkUnstructuredGrid

	
property cells

	

	
class vtkmodules.util.data_model.vtkImageData

	Bases: vtkmodules.util.data_model.DataSet, vtkmodules.util.data_model.vtkImageData

	
class vtkmodules.util.data_model.vtkPolyData

	Bases: vtkmodules.util.data_model.PointSet, vtkmodules.util.data_model.vtkPolyData

	
property polygons

	

	
class vtkmodules.util.data_model.CompositeDataIterator(cds)

	Bases: object

Wrapper for a vtkCompositeDataIterator class to satisfy
the python iterator protocol. This iterator iterates
over non-empty leaf nodes. To iterate over empty or
non-leaf nodes, use the vtkCompositeDataIterator directly.

Initialization

	
__iter__()

	

	
__next__()

	

	
next()

	

	
__getattr__(name)

	Returns attributes from the vtkCompositeDataIterator.

	
class vtkmodules.util.data_model.CompositeDataSetBase(**kwargs)

	Bases: object

A wrapper for vtkCompositeData and subclasses that makes it easier
to access Point/Cell/Field data as VTKCompositeDataArrays. It also
provides a Python type iterator.

Initialization

	
__iter__()

	Creates an iterator for the contained datasets.

	
get_attributes(type)

	Returns the attributes specified by the type as a
CompositeDataSetAttributes instance.

	
property point_data

	Returns the point data as a DataSetAttributes instance.

	
property cell_data

	Returns the cell data as a DataSetAttributes instance.

	
property field_data

	Returns the field data as a DataSetAttributes instance.

	
property points

	Returns the points as a VTKCompositeDataArray instance.

	
class vtkmodules.util.data_model.vtkPartitionedDataSet(**kwargs)

	Bases: vtkmodules.util.data_model.CompositeDataSetBase, vtkmodules.util.data_model.vtkPartitionedDataSet

	
append(dataset)

	

 vtkmodules.util.numpy_support

vtkmodules.util.numpy_support

Caveats:

	Bit arrays in general do not have a numpy equivalent and are not
supported. Char arrays are also not easy to handle and might not
work as you expect. Patches welcome.

	You need to make sure you hold a reference to a Numpy array you want
to import into VTK. If not you’ll get a segfault (in the best case).
The same holds in reverse when you convert a VTK array to a numpy
array – don’t delete the VTK array.

Created by Prabhu Ramachandran in Feb. 2008.

This module adds support to easily import and export NumPy
(http://numpy.scipy.org) arrays into/out of VTK arrays. The code is
loosely based on TVTK (https://svn.enthought.com/enthought/wiki/TVTK).

This code depends on an addition to the VTK data arrays made by Berk
Geveci to make it support Python’s buffer protocol (on Feb. 15, 2008).

The main functionality of this module is provided by the two functions:
numpy_to_vtk,
vtk_to_numpy.

Module Contents

Functions

	get_vtk_array_type

	Returns a VTK typecode given a numpy array.

	get_vtk_to_numpy_typemap

	Returns the VTK array type to numpy array type mapping.

	get_numpy_array_type

	Returns a numpy array typecode given a VTK array type.

	create_vtk_array

	Internal function used to create a VTK data array from another
VTK array given the VTK array type.

	numpy_to_vtk

	Converts a real numpy Array to a VTK array object.

	numpy_to_vtkIdTypeArray

	

	vtk_to_numpy

	Converts a VTK data array to a numpy array.

Data

	VTK_ID_TYPE_SIZE

	

	VTK_LONG_TYPE_SIZE

	

API

	
vtkmodules.util.numpy_support.VTK_ID_TYPE_SIZE

	‘GetDataTypeSize(…)’

	
vtkmodules.util.numpy_support.VTK_LONG_TYPE_SIZE

	‘GetDataTypeSize(…)’

	
vtkmodules.util.numpy_support.get_vtk_array_type(numpy_array_type)

	Returns a VTK typecode given a numpy array.

	
vtkmodules.util.numpy_support.get_vtk_to_numpy_typemap()

	Returns the VTK array type to numpy array type mapping.

	
vtkmodules.util.numpy_support.get_numpy_array_type(vtk_array_type)

	Returns a numpy array typecode given a VTK array type.

	
vtkmodules.util.numpy_support.create_vtk_array(vtk_arr_type)

	Internal function used to create a VTK data array from another
VTK array given the VTK array type.

	
vtkmodules.util.numpy_support.numpy_to_vtk(num_array, deep=0, array_type=None)

	Converts a real numpy Array to a VTK array object.

This function only works for real arrays.
Complex arrays are NOT handled. It also works for multi-component
arrays. However, only 1, and 2 dimensional arrays are supported.
This function is very efficient, so large arrays should not be a
problem.

If the second argument is set to 1, the array is deep-copied from
from numpy. This is not as efficient as the default behavior
(shallow copy) and uses more memory but detaches the two arrays
such that the numpy array can be released.

WARNING: You must maintain a reference to the passed numpy array, if
the numpy data is gc’d and VTK will point to garbage which will in
the best case give you a segfault.

Parameters:

num_array
a 1D or 2D, real numpy array.

	
vtkmodules.util.numpy_support.numpy_to_vtkIdTypeArray(num_array, deep=0)

	

	
vtkmodules.util.numpy_support.vtk_to_numpy(vtk_array)

	Converts a VTK data array to a numpy array.

Given a subclass of vtkDataArray, this function returns an
appropriate numpy array containing the same data – it actually
points to the same data.

WARNING: This does not work for bit arrays.

Parameters

vtk_array
The VTK data array to be converted.

 vtkmodules.util.misc

vtkmodules.util.misc

Miscellaneous functions and classes that don’t fit into specific
categories.

Module Contents

Functions

	calldata_type

	set_call_data_type(type) – convenience decorator to easily set the CallDataType attribute
for python function used as observer callback.
For example:

	vtkGetDataRoot

	vtkGetDataRoot() – return vtk example data directory

	vtkGetTempDir

	vtkGetTempDir() – return vtk testing temp dir

	vtkRegressionTestImage

	vtkRegressionTestImage(renWin) – produce regression image for window

API

	
vtkmodules.util.misc.calldata_type(type)

	set_call_data_type(type) – convenience decorator to easily set the CallDataType attribute
for python function used as observer callback.
For example:

import vtkmodules.util.calldata_type
import vtkmodules.util.vtkConstants
import vtkmodules.vtkCommonCore import vtkCommand, vtkLookupTable

@calldata_type(vtkConstants.VTK_STRING)
def onError(caller, event, calldata):
print(“caller: %s - event: %s - msg: %s” % (caller.GetClassName(), event, calldata))

lt = vtkLookupTable()
lt.AddObserver(vtkCommand.ErrorEvent, onError)
lt.SetTableRange(2,1)

	
vtkmodules.util.misc.vtkGetDataRoot()

	vtkGetDataRoot() – return vtk example data directory

	
vtkmodules.util.misc.vtkGetTempDir()

	vtkGetTempDir() – return vtk testing temp dir

	
vtkmodules.util.misc.vtkRegressionTestImage(renWin)

	vtkRegressionTestImage(renWin) – produce regression image for window

This function writes out a regression .png file for a vtkWindow.
Does anyone involved in testing care to elaborate?

 vtkmodules.util.vtkConstants

vtkmodules.util.vtkConstants

This file is obsolete.
All the constants are part of the base vtk module.

Module Contents

Functions

	vtkImageScalarTypeNameMacro

	

Data

	_VTK_FLOAT_MAX

	

	_VTK_INT_MAX

	

	VTK_VOID

	

	VTK_BIT

	

	VTK_CHAR

	

	VTK_SIGNED_CHAR

	

	VTK_UNSIGNED_CHAR

	

	VTK_SHORT

	

	VTK_UNSIGNED_SHORT

	

	VTK_INT

	

	VTK_UNSIGNED_INT

	

	VTK_LONG

	

	VTK_UNSIGNED_LONG

	

	VTK_FLOAT

	

	VTK_DOUBLE

	

	VTK_ID_TYPE

	

	VTK_STRING

	

	VTK_OPAQUE

	

	VTK_LONG_LONG

	

	VTK_UNSIGNED_LONG_LONG

	

	VTK_VARIANT

	

	VTK_OBJECT

	

	VTK_BIT_MIN

	

	VTK_BIT_MAX

	

	VTK_CHAR_MIN

	

	VTK_CHAR_MAX

	

	VTK_UNSIGNED_CHAR_MIN

	

	VTK_UNSIGNED_CHAR_MAX

	

	VTK_SHORT_MIN

	

	VTK_SHORT_MAX

	

	VTK_UNSIGNED_SHORT_MIN

	

	VTK_UNSIGNED_SHORT_MAX

	

	VTK_INT_MIN

	

	VTK_INT_MAX

	

	VTK_LONG_MIN

	

	VTK_LONG_MAX

	

	VTK_FLOAT_MIN

	

	VTK_FLOAT_MAX

	

	VTK_DOUBLE_MIN

	

	VTK_DOUBLE_MAX

	

	VTK_POLY_DATA

	

	VTK_STRUCTURED_POINTS

	

	VTK_STRUCTURED_GRID

	

	VTK_RECTILINEAR_GRID

	

	VTK_UNSTRUCTURED_GRID

	

	VTK_PIECEWISE_FUNCTION

	

	VTK_IMAGE_DATA

	

	VTK_DATA_OBJECT

	

	VTK_DATA_SET

	

	VTK_POINT_SET

	

	VTK_UNIFORM_GRID

	

	VTK_COMPOSITE_DATA_SET

	

	VTK_MULTIGROUP_DATA_SET

	

	VTK_MULTIBLOCK_DATA_SET

	

	VTK_HIERARCHICAL_DATA_SET

	

	VTK_HIERARCHICAL_BOX_DATA_SET

	

	VTK_GENERIC_DATA_SET

	

	VTK_HYPER_OCTREE

	

	VTK_TEMPORAL_DATA_SET

	

	VTK_TABLE

	

	VTK_GRAPH

	

	VTK_TREE

	

	VTK_SELECTION

	

	VTK_OK

	

	VTK_ERROR

	

	VTK_ARIAL

	

	VTK_COURIER

	

	VTK_TIMES

	

	VTK_UNKNOWN_FONT

	

	VTK_TEXT_LEFT

	

	VTK_TEXT_CENTERED

	

	VTK_TEXT_RIGHT

	

	VTK_TEXT_BOTTOM

	

	VTK_TEXT_TOP

	

	VTK_TEXT_GLOBAL_ANTIALIASING_SOME

	

	VTK_TEXT_GLOBAL_ANTIALIASING_NONE

	

	VTK_TEXT_GLOBAL_ANTIALIASING_ALL

	

	VTK_LUMINANCE

	

	VTK_LUMINANCE_ALPHA

	

	VTK_RGB

	

	VTK_RGBA

	

	VTK_COLOR_MODE_DEFAULT

	

	VTK_COLOR_MODE_MAP_SCALARS

	

	VTK_NEAREST_INTERPOLATION

	

	VTK_LINEAR_INTERPOLATION

	

	VTK_MAX_VRCOMP

	

	VTK_EMPTY_CELL

	

	VTK_VERTEX

	

	VTK_POLY_VERTEX

	

	VTK_LINE

	

	VTK_POLY_LINE

	

	VTK_TRIANGLE

	

	VTK_TRIANGLE_STRIP

	

	VTK_POLYGON

	

	VTK_PIXEL

	

	VTK_QUAD

	

	VTK_TETRA

	

	VTK_VOXEL

	

	VTK_HEXAHEDRON

	

	VTK_WEDGE

	

	VTK_PYRAMID

	

	VTK_PENTAGONAL_PRISM

	

	VTK_HEXAGONAL_PRISM

	

	VTK_QUADRATIC_EDGE

	

	VTK_QUADRATIC_TRIANGLE

	

	VTK_QUADRATIC_QUAD

	

	VTK_QUADRATIC_TETRA

	

	VTK_QUADRATIC_HEXAHEDRON

	

	VTK_QUADRATIC_WEDGE

	

	VTK_QUADRATIC_PYRAMID

	

	VTK_BIQUADRATIC_QUAD

	

	VTK_TRIQUADRATIC_HEXAHEDRON

	

	VTK_QUADRATIC_LINEAR_QUAD

	

	VTK_QUADRATIC_LINEAR_WEDGE

	

	VTK_BIQUADRATIC_QUADRATIC_WEDGE

	

	VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON

	

	VTK_CONVEX_POINT_SET

	

	VTK_PARAMETRIC_CURVE

	

	VTK_PARAMETRIC_SURFACE

	

	VTK_PARAMETRIC_TRI_SURFACE

	

	VTK_PARAMETRIC_QUAD_SURFACE

	

	VTK_PARAMETRIC_TETRA_REGION

	

	VTK_PARAMETRIC_HEX_REGION

	

	VTK_HIGHER_ORDER_EDGE

	

	VTK_HIGHER_ORDER_TRIANGLE

	

	VTK_HIGHER_ORDER_QUAD

	

	VTK_HIGHER_ORDER_POLYGON

	

	VTK_HIGHER_ORDER_TETRAHEDRON

	

	VTK_HIGHER_ORDER_WEDGE

	

	VTK_HIGHER_ORDER_PYRAMID

	

	VTK_HIGHER_ORDER_HEXAHEDRON

	

	__vtkTypeNameDict

	

API

	
vtkmodules.util.vtkConstants._VTK_FLOAT_MAX

	1e+38

	
vtkmodules.util.vtkConstants._VTK_INT_MAX

	2147483647

	
vtkmodules.util.vtkConstants.VTK_VOID

	0

	
vtkmodules.util.vtkConstants.VTK_BIT

	1

	
vtkmodules.util.vtkConstants.VTK_CHAR

	2

	
vtkmodules.util.vtkConstants.VTK_SIGNED_CHAR

	15

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR

	3

	
vtkmodules.util.vtkConstants.VTK_SHORT

	4

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT

	5

	
vtkmodules.util.vtkConstants.VTK_INT

	6

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_INT

	7

	
vtkmodules.util.vtkConstants.VTK_LONG

	8

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_LONG

	9

	
vtkmodules.util.vtkConstants.VTK_FLOAT

	10

	
vtkmodules.util.vtkConstants.VTK_DOUBLE

	11

	
vtkmodules.util.vtkConstants.VTK_ID_TYPE

	12

	
vtkmodules.util.vtkConstants.VTK_STRING

	13

	
vtkmodules.util.vtkConstants.VTK_OPAQUE

	14

	
vtkmodules.util.vtkConstants.VTK_LONG_LONG

	16

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_LONG_LONG

	17

	
vtkmodules.util.vtkConstants.VTK_VARIANT

	20

	
vtkmodules.util.vtkConstants.VTK_OBJECT

	21

	
vtkmodules.util.vtkConstants.VTK_BIT_MIN

	0

	
vtkmodules.util.vtkConstants.VTK_BIT_MAX

	1

	
vtkmodules.util.vtkConstants.VTK_CHAR_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_CHAR_MAX

	127

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR_MIN

	0

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR_MAX

	255

	
vtkmodules.util.vtkConstants.VTK_SHORT_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_SHORT_MAX

	32767

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT_MIN

	0

	
vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT_MAX

	65535

	
vtkmodules.util.vtkConstants.VTK_INT_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_INT_MAX

	None

	
vtkmodules.util.vtkConstants.VTK_LONG_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_LONG_MAX

	None

	
vtkmodules.util.vtkConstants.VTK_FLOAT_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_FLOAT_MAX

	None

	
vtkmodules.util.vtkConstants.VTK_DOUBLE_MIN

	None

	
vtkmodules.util.vtkConstants.VTK_DOUBLE_MAX

	1e+99

	
vtkmodules.util.vtkConstants.VTK_POLY_DATA

	0

	
vtkmodules.util.vtkConstants.VTK_STRUCTURED_POINTS

	1

	
vtkmodules.util.vtkConstants.VTK_STRUCTURED_GRID

	2

	
vtkmodules.util.vtkConstants.VTK_RECTILINEAR_GRID

	3

	
vtkmodules.util.vtkConstants.VTK_UNSTRUCTURED_GRID

	4

	
vtkmodules.util.vtkConstants.VTK_PIECEWISE_FUNCTION

	5

	
vtkmodules.util.vtkConstants.VTK_IMAGE_DATA

	6

	
vtkmodules.util.vtkConstants.VTK_DATA_OBJECT

	7

	
vtkmodules.util.vtkConstants.VTK_DATA_SET

	8

	
vtkmodules.util.vtkConstants.VTK_POINT_SET

	9

	
vtkmodules.util.vtkConstants.VTK_UNIFORM_GRID

	10

	
vtkmodules.util.vtkConstants.VTK_COMPOSITE_DATA_SET

	11

	
vtkmodules.util.vtkConstants.VTK_MULTIGROUP_DATA_SET

	12

	
vtkmodules.util.vtkConstants.VTK_MULTIBLOCK_DATA_SET

	13

	
vtkmodules.util.vtkConstants.VTK_HIERARCHICAL_DATA_SET

	14

	
vtkmodules.util.vtkConstants.VTK_HIERARCHICAL_BOX_DATA_SET

	15

	
vtkmodules.util.vtkConstants.VTK_GENERIC_DATA_SET

	16

	
vtkmodules.util.vtkConstants.VTK_HYPER_OCTREE

	17

	
vtkmodules.util.vtkConstants.VTK_TEMPORAL_DATA_SET

	18

	
vtkmodules.util.vtkConstants.VTK_TABLE

	19

	
vtkmodules.util.vtkConstants.VTK_GRAPH

	20

	
vtkmodules.util.vtkConstants.VTK_TREE

	21

	
vtkmodules.util.vtkConstants.VTK_SELECTION

	22

	
vtkmodules.util.vtkConstants.VTK_OK

	1

	
vtkmodules.util.vtkConstants.VTK_ERROR

	2

	
vtkmodules.util.vtkConstants.VTK_ARIAL

	0

	
vtkmodules.util.vtkConstants.VTK_COURIER

	1

	
vtkmodules.util.vtkConstants.VTK_TIMES

	2

	
vtkmodules.util.vtkConstants.VTK_UNKNOWN_FONT

	3

	
vtkmodules.util.vtkConstants.VTK_TEXT_LEFT

	0

	
vtkmodules.util.vtkConstants.VTK_TEXT_CENTERED

	1

	
vtkmodules.util.vtkConstants.VTK_TEXT_RIGHT

	2

	
vtkmodules.util.vtkConstants.VTK_TEXT_BOTTOM

	0

	
vtkmodules.util.vtkConstants.VTK_TEXT_TOP

	2

	
vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_SOME

	0

	
vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_NONE

	1

	
vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_ALL

	2

	
vtkmodules.util.vtkConstants.VTK_LUMINANCE

	1

	
vtkmodules.util.vtkConstants.VTK_LUMINANCE_ALPHA

	2

	
vtkmodules.util.vtkConstants.VTK_RGB

	3

	
vtkmodules.util.vtkConstants.VTK_RGBA

	4

	
vtkmodules.util.vtkConstants.VTK_COLOR_MODE_DEFAULT

	0

	
vtkmodules.util.vtkConstants.VTK_COLOR_MODE_MAP_SCALARS

	1

	
vtkmodules.util.vtkConstants.VTK_NEAREST_INTERPOLATION

	0

	
vtkmodules.util.vtkConstants.VTK_LINEAR_INTERPOLATION

	1

	
vtkmodules.util.vtkConstants.VTK_MAX_VRCOMP

	4

	
vtkmodules.util.vtkConstants.VTK_EMPTY_CELL

	0

	
vtkmodules.util.vtkConstants.VTK_VERTEX

	1

	
vtkmodules.util.vtkConstants.VTK_POLY_VERTEX

	2

	
vtkmodules.util.vtkConstants.VTK_LINE

	3

	
vtkmodules.util.vtkConstants.VTK_POLY_LINE

	4

	
vtkmodules.util.vtkConstants.VTK_TRIANGLE

	5

	
vtkmodules.util.vtkConstants.VTK_TRIANGLE_STRIP

	6

	
vtkmodules.util.vtkConstants.VTK_POLYGON

	7

	
vtkmodules.util.vtkConstants.VTK_PIXEL

	8

	
vtkmodules.util.vtkConstants.VTK_QUAD

	9

	
vtkmodules.util.vtkConstants.VTK_TETRA

	10

	
vtkmodules.util.vtkConstants.VTK_VOXEL

	11

	
vtkmodules.util.vtkConstants.VTK_HEXAHEDRON

	12

	
vtkmodules.util.vtkConstants.VTK_WEDGE

	13

	
vtkmodules.util.vtkConstants.VTK_PYRAMID

	14

	
vtkmodules.util.vtkConstants.VTK_PENTAGONAL_PRISM

	15

	
vtkmodules.util.vtkConstants.VTK_HEXAGONAL_PRISM

	16

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_EDGE

	21

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_TRIANGLE

	22

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_QUAD

	23

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_TETRA

	24

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_HEXAHEDRON

	25

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_WEDGE

	26

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_PYRAMID

	27

	
vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUAD

	28

	
vtkmodules.util.vtkConstants.VTK_TRIQUADRATIC_HEXAHEDRON

	29

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_LINEAR_QUAD

	30

	
vtkmodules.util.vtkConstants.VTK_QUADRATIC_LINEAR_WEDGE

	31

	
vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUADRATIC_WEDGE

	32

	
vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON

	33

	
vtkmodules.util.vtkConstants.VTK_CONVEX_POINT_SET

	41

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_CURVE

	51

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_SURFACE

	52

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_TRI_SURFACE

	53

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_QUAD_SURFACE

	54

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_TETRA_REGION

	55

	
vtkmodules.util.vtkConstants.VTK_PARAMETRIC_HEX_REGION

	56

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_EDGE

	60

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_TRIANGLE

	61

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_QUAD

	62

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_POLYGON

	63

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_TETRAHEDRON

	64

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_WEDGE

	65

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_PYRAMID

	66

	
vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_HEXAHEDRON

	67

	
vtkmodules.util.vtkConstants.__vtkTypeNameDict

	None

	
vtkmodules.util.vtkConstants.vtkImageScalarTypeNameMacro(type)

	

 vtkmodules.qt

vtkmodules.qt

Qt module for VTK/Python.

Example usage:

import sys
import PyQt5
from PyQt5.QtWidgets import QApplication
from vtkmodules.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor

app = QApplication(sys.argv)

widget = QVTKRenderWindowInteractor()
widget.Initialize()
widget.Start()

renwin = widget.GetRenderWindow()

For more information, see QVTKRenderWidgetConeExample() in the file
QVTKRenderWindowInteractor.py [http://QVTKRenderWindowInteractor.py].

Submodules

	vtkmodules.qt.QVTKRenderWindowInteractor

Package Contents

Data

	PyQtImpl

	

	QVTKRWIBase

	

	__all__

	

API

	
vtkmodules.qt.PyQtImpl

	None

	
vtkmodules.qt.QVTKRWIBase

	‘QWidget’

	
vtkmodules.qt.__all__

	[‘QVTKRenderWindowInteractor’]

 vtkmodules.qt.QVTKRenderWindowInteractor

vtkmodules.qt.QVTKRenderWindowInteractor

A simple VTK widget for PyQt or PySide.
See http://www.trolltech.com for Qt documentation,
http://www.riverbankcomputing.co.uk for PyQt, and
http://pyside.github.io for PySide.

This class is based on the vtkGenericRenderWindowInteractor and is
therefore fairly powerful. It should also play nicely with the
vtk3DWidget code.

Created by Prabhu Ramachandran, May 2002
Based on David Gobbi’s QVTKRenderWidget.py [http://QVTKRenderWidget.py]

Changes by Gerard Vermeulen Feb. 2003
Win32 support.

Changes by Gerard Vermeulen, May 2003
Bug fixes and better integration with the Qt framework.

Changes by Phil Thompson, Nov. 2006
Ported to PyQt v4.
Added support for wheel events.

Changes by Phil Thompson, Oct. 2007
Bug fixes.

Changes by Phil Thompson, Mar. 2008
Added cursor support.

Changes by Rodrigo Mologni, Sep. 2013 (Credit to Daniele Esposti)
Bug fix to PySide: Converts PyCObject to void pointer.

Changes by Greg Schussman, Aug. 2014
The keyPressEvent function now passes keysym instead of None.

Changes by Alex Tsui, Apr. 2015
Port from PyQt4 to PyQt5.

Changes by Fabian Wenzel, Jan. 2016
Support for Python3

Changes by Tobias Hänel, Sep. 2018
Support for PySide2

Changes by Ruben de Bruin, Aug. 2019
Fixes to the keyPressEvent function

Changes by Chen Jintao, Aug. 2021
Support for PySide6

Changes by Eric Larson and Guillaume Favelier, Apr. 2022
Support for PyQt6

Module Contents

Classes

	QVTKRenderWindowInteractor

	A QVTKRenderWindowInteractor for Python and Qt. Uses a
vtkGenericRenderWindowInteractor to handle the interactions. Use
GetRenderWindow() to get the vtkRenderWindow. Create with the
keyword stereo=1 in order to generate a stereo-capable window.

Functions

	_get_event_pos

	

	QVTKRenderWidgetConeExample

	A simple example that uses the QVTKRenderWindowInteractor class.

Data

	QVTKRWIBase

	

	_keysyms_for_ascii

	

	_keysyms

	

API

	
vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRWIBase

	‘QWidget’

	
vtkmodules.qt.QVTKRenderWindowInteractor._get_event_pos(ev)

	

	
class vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor(parent=None, **kw)

	Bases: vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRWIBaseClass

A QVTKRenderWindowInteractor for Python and Qt. Uses a
vtkGenericRenderWindowInteractor to handle the interactions. Use
GetRenderWindow() to get the vtkRenderWindow. Create with the
keyword stereo=1 in order to generate a stereo-capable window.

The user interface is summarized in vtkInteractorStyle.h:

	Keypress j / Keypress t: toggle between joystick (position
sensitive) and trackball (motion sensitive) styles. In joystick
style, motion occurs continuously as long as a mouse button is
pressed. In trackball style, motion occurs when the mouse button
is pressed and the mouse pointer moves.

	Keypress c / Keypress o: toggle between camera and object
(actor) modes. In camera mode, mouse events affect the camera
position and focal point. In object mode, mouse events affect
the actor that is under the mouse pointer.

	Button 1: rotate the camera around its focal point (if camera
mode) or rotate the actor around its origin (if actor mode). The
rotation is in the direction defined from the center of the
renderer’s viewport towards the mouse position. In joystick mode,
the magnitude of the rotation is determined by the distance the
mouse is from the center of the render window.

	Button 2: pan the camera (if camera mode) or translate the actor
(if object mode). In joystick mode, the direction of pan or
translation is from the center of the viewport towards the mouse
position. In trackball mode, the direction of motion is the
direction the mouse moves. (Note: with 2-button mice, pan is
defined as -Button 1.)

 vtkmodules.wx

vtkmodules.wx

wxPython widgets for VTK.

Submodules

	vtkmodules.wx.wxVTKRenderWindow

	vtkmodules.wx.wxVTKRenderWindowInteractor

Package Contents

Data

	__all__

	

API

	
vtkmodules.wx.__all__

	[‘wxVTKRenderWindow’, ‘wxVTKRenderWindowInteractor’]

 vtkmodules.wx.wxVTKRenderWindow

vtkmodules.wx.wxVTKRenderWindow

A simple VTK widget for wxPython.

Find wxPython info at http://wxPython.org

Created by David Gobbi, December 2001
Based on vtkTkRenderWindget.py [http://vtkTkRenderWindget.py]

Updated to new wx namespace and some cleaning by Andrea Gavana,
December 2006

Module Contents

Classes

	wxVTKRenderWindow

	A wxRenderWindow for wxPython.
Use GetRenderWindow() to get the vtkRenderWindow.
Create with the keyword stereo=1 in order to
generate a stereo-capable window.

Functions

	wxVTKRenderWindowConeExample

	Like it says, just a simple example.

Data

	baseClass

	

	_useCapture

	

API

	
vtkmodules.wx.wxVTKRenderWindow.baseClass

	None

	
vtkmodules.wx.wxVTKRenderWindow._useCapture

	None

	
class vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow(parent, ID, *args, **kw)

	Bases: vtkmodules.wx.wxVTKRenderWindow.baseClass

A wxRenderWindow for wxPython.
Use GetRenderWindow() to get the vtkRenderWindow.
Create with the keyword stereo=1 in order to
generate a stereo-capable window.

Initialization

Default class constructor.
@param parent: parent window
@param ID: window id
@param **kw: wxPython keywords (position, size, style) plus the
‘stereo’ keyword

	
SetDesiredUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetDesiredUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
SetStillUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetStillUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
OnPaint(event)

	Handles the wx.EVT_PAINT event for wxVTKRenderWindow.

	
_OnSize(event)

	Handles the wx.EVT_SIZE event for wxVTKRenderWindow.

	
OnSize(event)

	Overridable event.

	
OnMove(event)

	Overridable event.

	
_OnEnterWindow(event)

	Handles the wx.EVT_ENTER_WINDOW event for
wxVTKRenderWindow.

	
OnEnterWindow(event)

	Overridable event.

	
_OnLeaveWindow(event)

	Handles the wx.EVT_LEAVE_WINDOW event for
wxVTKRenderWindow.

	
OnLeaveWindow(event)

	Overridable event.

	
OnSetFocus(event)

	Overridable event.

	
OnKillFocus(event)

	Overridable event.

	
_OnButtonDown(event)

	Handles the wx.EVT_LEFT/RIGHT/MIDDLE_DOWN events for
wxVTKRenderWindow.

	
OnButtonDown(event)

	Overridable event.

	
OnLeftDown(event)

	Overridable event.

	
OnRightDown(event)

	Overridable event.

	
OnMiddleDown(event)

	Overridable event.

	
_OnButtonUp(event)

	Handles the wx.EVT_LEFT/RIGHT/MIDDLE_UP events for
wxVTKRenderWindow.

	
OnButtonUp(event)

	Overridable event.

	
OnLeftUp(event)

	Overridable event.

	
OnRightUp(event)

	Overridable event.

	
OnMiddleUp(event)

	Overridable event.

	
OnMotion(event)

	Overridable event.

	
OnChar(event)

	Overridable event.

	
OnKeyDown(event)

	Handles the wx.EVT_KEY_DOWN events for wxVTKRenderWindow.

	
OnKeyUp(event)

	Overridable event.

	
GetZoomFactor()

	Returns the current zoom factor.

	
GetRenderWindow()

	Returns the render window (vtkRenderWindow).

	
GetPicker()

	Returns the current picker (vtkCellPicker).

	
Render()

	Actually renders the VTK scene on screen.

	
UpdateRenderer(event)

	UpdateRenderer will identify the renderer under the mouse and set
up _CurrentRenderer, _CurrentCamera, and _CurrentLight.

	
GetCurrentRenderer()

	Returns the current renderer.

	
Rotate(event)

	Rotates the scene (camera).

	
Pan(event)

	Pans the scene (camera).

	
Zoom(event)

	Zooms the scene (camera).

	
Reset(event=None)

	Resets the camera.

	
Wireframe()

	Sets the current actor representation as wireframe.

	
Surface()

	Sets the current actor representation as surface.

	
PickActor(event)

	Picks an actor.

	
vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindowConeExample()

	Like it says, just a simple example.

 vtkmodules.wx.wxVTKRenderWindowInteractor

vtkmodules.wx.wxVTKRenderWindowInteractor

A VTK RenderWindowInteractor widget for wxPython.

Find wxPython info at http://wxPython.org

Created by Prabhu Ramachandran, April 2002
Based on wxVTKRenderWindow.py [http://wxVTKRenderWindow.py]

Fixes and updates by Charl P. Botha 2003-2008

Updated to new wx namespace and some cleaning up by Andrea Gavana,
December 2006

Module Contents

Classes

	EventTimer

	Simple wx.Timer class.

	wxVTKRenderWindowInteractor

	A wxRenderWindow for wxPython.
Use GetRenderWindow() to get the vtkRenderWindow.
Create with the keyword stereo=1 in order to
generate a stereo-capable window.

Functions

	wxVTKRenderWindowInteractorConeExample

	Like it says, just a simple example

Data

	baseClass

	

	_useCapture

	

API

	
vtkmodules.wx.wxVTKRenderWindowInteractor.baseClass

	None

	
vtkmodules.wx.wxVTKRenderWindowInteractor._useCapture

	None

	
class vtkmodules.wx.wxVTKRenderWindowInteractor.EventTimer(iren)

	Bases: wx.Timer

Simple wx.Timer class.

Initialization

Default class constructor.
@param iren: current render window

	
Notify()

	The timer has expired.

	
class vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor(parent, ID, *args, **kw)

	Bases: vtkmodules.wx.wxVTKRenderWindowInteractor.baseClass

A wxRenderWindow for wxPython.
Use GetRenderWindow() to get the vtkRenderWindow.
Create with the keyword stereo=1 in order to
generate a stereo-capable window.

Initialization

Default class constructor.
@param parent: parent window
@param ID: window id
@param **kw: wxPython keywords (position, size, style) plus the
‘stereo’ keyword

	
USE_STEREO

	False

	
BindEvents()

	Binds all the necessary events for navigation, sizing,
drawing.

	
__getattr__(attr)

	Makes the object behave like a
vtkGenericRenderWindowInteractor.

	
CreateTimer(obj, evt)

	Creates a timer.

	
DestroyTimer(obj, evt)

	The timer is a one shot timer so will expire automatically.

	
_CursorChangedEvent(obj, evt)

	Change the wx cursor if the renderwindow’s cursor was
changed.

	
CursorChangedEvent(obj, evt)

	Called when the CursorChangedEvent fires on the render
window.

	
HideCursor()

	Hides the cursor.

	
ShowCursor()

	Shows the cursor.

	
GetDisplayId()

	Function to get X11 Display ID from WX and return it in a format
that can be used by VTK Python.

We query the X11 Display with a new call that was added in wxPython
2.6.0.1. The call returns a SWIG object which we can query for the
address and subsequently turn into an old-style SWIG-mangled string
representation to pass to VTK.

	
OnMouseCaptureLost(event)

	This is signalled when we lose mouse capture due to an
external event, such as when a dialog box is shown. See the
wx documentation.

	
OnPaint(event)

	Handles the wx.EVT_PAINT event for
wxVTKRenderWindowInteractor.

	
OnSize(event)

	Handles the wx.EVT_SIZE event for
wxVTKRenderWindowInteractor.

	
OnMotion(event)

	Handles the wx.EVT_MOTION event for
wxVTKRenderWindowInteractor.

	
OnEnter(event)

	Handles the wx.EVT_ENTER_WINDOW event for
wxVTKRenderWindowInteractor.

	
OnLeave(event)

	Handles the wx.EVT_LEAVE_WINDOW event for
wxVTKRenderWindowInteractor.

	
OnButtonDown(event)

	Handles the wx.EVT_LEFT/RIGHT/MIDDLE_DOWN events for
wxVTKRenderWindowInteractor.

	
OnButtonUp(event)

	Handles the wx.EVT_LEFT/RIGHT/MIDDLE_UP events for
wxVTKRenderWindowInteractor.

	
OnMouseWheel(event)

	Handles the wx.EVT_MOUSEWHEEL event for
wxVTKRenderWindowInteractor.

	
OnKeyDown(event)

	Handles the wx.EVT_KEY_DOWN event for
wxVTKRenderWindowInteractor.

	
OnKeyUp(event)

	Handles the wx.EVT_KEY_UP event for
wxVTKRenderWindowInteractor.

	
GetRenderWindow()

	Returns the render window (vtkRenderWindow).

	
Render()

	Actually renders the VTK scene on screen.

	
SetRenderWhenDisabled(newValue)

	Change value of __RenderWhenDisabled ivar.

If __RenderWhenDisabled is false (the default), this widget will not
call Render() on the RenderWindow if the top level frame (i.e. the
containing frame) has been disabled.

This prevents recursive rendering during wx.SafeYield() calls.
wx.SafeYield() can be called during the ProgressMethod() callback of
a VTK object to have progress bars and other GUI elements updated -
it does this by disabling all windows (disallowing user-input to
prevent re-entrancy of code) and then handling all outstanding
GUI events.

However, this often triggers an OnPaint() method for wxVTKRWIs,
resulting in a Render(), resulting in Update() being called whilst
still in progress.

	
vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractorConeExample()

	Like it says, just a simple example

 vtkmodules.numpy_interface

vtkmodules.numpy_interface

Utility modules for the VTK-Python wrappers.

Submodules

	vtkmodules.numpy_interface.internal_algorithms

	vtkmodules.numpy_interface.dataset_adapter

	vtkmodules.numpy_interface.algorithms

Package Contents

Data

	__all__

	

API

	
vtkmodules.numpy_interface.__all__

	[‘algorithms’, ‘dataset_adapter’]

 vtkmodules.numpy_interface.internal_algorithms

vtkmodules.numpy_interface.internal_algorithms

Module Contents

Functions

	_cell_derivatives

	

	_cell_quality

	

	_matrix_math_filter

	

	abs

	Returns the absolute values of an array of scalars/vectors/tensors.

	all

	Returns the min value of an array of scalars/vectors/tensors.

	area

	Returns the surface area of each cell in a mesh.

	aspect

	Returns the aspect ratio of each cell in a mesh.

	aspect_gamma

	Returns the aspect ratio gamma of each cell in a mesh.

	condition

	Returns the condition number of each cell in a mesh.

	cross

	Return the cross product for two 3D vectors from two arrays of 3D vectors.

	curl

	Returns the curl of an array of 3D vectors.

	divergence

	Returns the divergence of an array of 3D vectors.

	det

	Returns the determinant of an array of 2D square matrices.

	determinant

	Returns the determinant of an array of 2D square matrices.

	diagonal

	Returns the diagonal length of each cell in a dataset.

	dot

	Returns the dot product of two scalars/vectors of two array of scalars/vectors.

	eigenvalue

	Returns the eigenvalue of an array of 2D square matrices.

	eigenvector

	Returns the eigenvector of an array of 2D square matrices.

	gradient

	Returns the gradient of an array of scalars/vectors.

	inv

	Returns the inverse an array of 2D square matrices.

	inverse

	Returns the inverse of an array of 2D square matrices.

	jacobian

	Returns the jacobian of an array of 2D square matrices.

	laplacian

	Returns the jacobian of an array of scalars.

	ln

	Returns the natural logarithm of an array of scalars/vectors/tensors.

	log

	Returns the natural logarithm of an array of scalars/vectors/tensors.

	log10

	Returns the base 10 logarithm of an array of scalars/vectors/tensors.

	max

	Returns the maximum value of an array of scalars/vectors/tensors.

	max_angle

	Returns the maximum angle of each cell in a dataset.

	mag

	Returns the magnigude of an array of scalars/vectors.

	matmul

	Return the product of the inputs. Inputs can be vectors/tensors.

	mean

	Returns the mean value of an array of scalars/vectors/tensors.

	min

	Returns the min value of an array of scalars/vectors/tensors.

	min_angle

	Returns the minimum angle of each cell in a dataset.

	norm

	Returns the normalized values of an array of scalars/vectors.

	shear

	Returns the shear of each cell in a dataset.

	skew

	Returns the skew of each cell in a dataset.

	strain

	Returns the strain of an array of 3D vectors.

	sum

	Returns the min value of an array of scalars/vectors/tensors.

	surface_normal

	Returns the surface normal of each cell in a dataset.

	trace

	Returns the trace of an array of 2D square matrices.

	var

	Returns the mean value of an array of scalars/vectors/tensors.

	volume

	Returns the volume of each cell in a dataset.

	vorticity

	Returns the vorticity/curl of an array of 3D vectors.

	vertex_normal

	Returns the vertex normal of each point in a dataset.

	make_vector

	

API

	
vtkmodules.numpy_interface.internal_algorithms._cell_derivatives(narray, dataset, attribute_type, filter)

	

	
vtkmodules.numpy_interface.internal_algorithms._cell_quality(dataset, quality)

	

	
vtkmodules.numpy_interface.internal_algorithms._matrix_math_filter(narray, operation)

	

	
vtkmodules.numpy_interface.internal_algorithms.abs(narray)

	Returns the absolute values of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.all(narray, axis=None)

	Returns the min value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.area(dataset)

	Returns the surface area of each cell in a mesh.

	
vtkmodules.numpy_interface.internal_algorithms.aspect(dataset)

	Returns the aspect ratio of each cell in a mesh.

	
vtkmodules.numpy_interface.internal_algorithms.aspect_gamma(dataset)

	Returns the aspect ratio gamma of each cell in a mesh.

	
vtkmodules.numpy_interface.internal_algorithms.condition(dataset)

	Returns the condition number of each cell in a mesh.

	
vtkmodules.numpy_interface.internal_algorithms.cross(x, y)

	Return the cross product for two 3D vectors from two arrays of 3D vectors.

	
vtkmodules.numpy_interface.internal_algorithms.curl(narray, dataset=None)

	Returns the curl of an array of 3D vectors.

	
vtkmodules.numpy_interface.internal_algorithms.divergence(narray, dataset=None)

	Returns the divergence of an array of 3D vectors.

	
vtkmodules.numpy_interface.internal_algorithms.det(narray)

	Returns the determinant of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.determinant(narray)

	Returns the determinant of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.diagonal(dataset)

	Returns the diagonal length of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.dot(a1, a2)

	Returns the dot product of two scalars/vectors of two array of scalars/vectors.

	
vtkmodules.numpy_interface.internal_algorithms.eigenvalue(narray)

	Returns the eigenvalue of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.eigenvector(narray)

	Returns the eigenvector of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.gradient(narray, dataset=None)

	Returns the gradient of an array of scalars/vectors.

	
vtkmodules.numpy_interface.internal_algorithms.inv(narray)

	Returns the inverse an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.inverse(narray)

	Returns the inverse of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.jacobian(dataset)

	Returns the jacobian of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.laplacian(narray, dataset=None)

	Returns the jacobian of an array of scalars.

	
vtkmodules.numpy_interface.internal_algorithms.ln(narray)

	Returns the natural logarithm of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.log(narray)

	Returns the natural logarithm of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.log10(narray)

	Returns the base 10 logarithm of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.max(narray, axis=None)

	Returns the maximum value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.max_angle(dataset)

	Returns the maximum angle of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.mag(a)

	Returns the magnigude of an array of scalars/vectors.

	
vtkmodules.numpy_interface.internal_algorithms.matmul(a, b)

	Return the product of the inputs. Inputs can be vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.mean(narray, axis=None)

	Returns the mean value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.min(narray, axis=None)

	Returns the min value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.min_angle(dataset)

	Returns the minimum angle of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.norm(a)

	Returns the normalized values of an array of scalars/vectors.

	
vtkmodules.numpy_interface.internal_algorithms.shear(dataset)

	Returns the shear of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.skew(dataset)

	Returns the skew of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.strain(narray, dataset=None)

	Returns the strain of an array of 3D vectors.

	
vtkmodules.numpy_interface.internal_algorithms.sum(narray, axis=None)

	Returns the min value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.surface_normal(dataset)

	Returns the surface normal of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.trace(narray)

	Returns the trace of an array of 2D square matrices.

	
vtkmodules.numpy_interface.internal_algorithms.var(narray, axis=None)

	Returns the mean value of an array of scalars/vectors/tensors.

	
vtkmodules.numpy_interface.internal_algorithms.volume(dataset)

	Returns the volume of each cell in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.vorticity(narray, dataset=None)

	Returns the vorticity/curl of an array of 3D vectors.

	
vtkmodules.numpy_interface.internal_algorithms.vertex_normal(dataset)

	Returns the vertex normal of each point in a dataset.

	
vtkmodules.numpy_interface.internal_algorithms.make_vector(ax, ay, az=None)

	

 vtkmodules.numpy_interface.dataset_adapter

vtkmodules.numpy_interface.dataset_adapter

This module provides classes that allow Numpy-type access
to VTK datasets and arrays. This is best described with some examples.

To normalize a VTK array:

from vtkmodules.vtkImagingCore vtkRTAnalyticSource
import vtkmodules.numpy_interface.dataset_adapter as dsa
import vtkmodules.numpy_interface.algorithms as algs

rt = vtkRTAnalyticSource()
rt.Update()
image = dsa.WrapDataObject(rt.GetOutput())
rtdata = image.PointData[‘RTData’]
rtmin = algs.min(rtdata)
rtmax = algs.max(rtdata)
rtnorm = (rtdata - rtmin) / (rtmax - rtmin)
image.PointData.append(rtnorm, ‘RTData - normalized’)
print image.GetPointData().GetArray(‘RTData - normalized’).GetRange()

To calculate gradient:

grad= algs.gradient(rtnorm)

To access subsets:

grad[0:10]
VTKArray([[0.10729134, 0.03763443, 0.03136338],
[0.02754352, 0.03886006, 0.032589],
[0.02248248, 0.04127144, 0.03500038],
[0.02678365, 0.04357527, 0.03730421],
[0.01765099, 0.04571581, 0.03944477],
[0.02344007, 0.04763837, 0.04136734],
[0.01089381, 0.04929155, 0.04302051],
[0.01769151, 0.05062952, 0.04435848],
[0.002764 , 0.05161414, 0.04534309],
[0.01010841, 0.05221677, 0.04594573]])

grad[:, 0]
VTKArray([0.10729134, 0.02754352, 0.02248248, …, -0.02748174,
-0.02410045, 0.05509736])

All of this functionality is also supported for composite datasets
even though their data arrays may be spread across multiple datasets.
We have implemented a VTKCompositeDataArray class that handles many
Numpy style operators and is supported by all algorithms in the
algorithms module.

This module also provides an API to access composite datasets.
For example:

from vtkmodules.vtkCommonDataModel import vtkMultiBlockDataSet
mb = vtkMultiBlockDataSet()
mb.SetBlock(0, image.VTKObject)
mb.SetBlock(1e, image.VTKObject)
cds = dsa.WrapDataObject(mb)
for block in cds:
print block

Note that this module implements only the wrappers for datasets
and arrays. The classes implement many useful operators. However,
to make best use of these classes, take a look at the algorithms
module.

Module Contents

Classes

	ArrayAssociation

	Easy access to vtkDataObject.AttributeTypes

	VTKObjectWrapper

	Superclass for classes that wrap VTK objects with Python objects.
This class holds a reference to the wrapped VTK object. It also
forwards unresolved methods to the underlying object by overloading
__get__attr.

	VTKArrayMetaClass

	

	VTKArray

	This is a sub-class of numpy ndarray that stores a
reference to a vtk array as well as the owning dataset.
The numpy array and vtk array should point to the same
memory location.

	VTKNoneArrayMetaClass

	

	VTKNoneArray

	VTKNoneArray is used to represent a “void” array. An instance
of this class (NoneArray) is returned instead of None when an
array that doesn’t exist in a DataSetAttributes is requested.
All operations on the NoneArray return NoneArray. The main reason
for this is to support operations in parallel where one of the
processes may be working on an empty dataset. In such cases,
the process is still expected to evaluate a whole expression because
some of the functions may perform bulk MPI communication. None
cannot be used in these instances because it cannot properly override
operators such as add, sub etc. This is the main raison
d’etre for VTKNoneArray.

	VTKCompositeDataArrayMetaClass

	

	VTKCompositeDataArray

	This class manages a set of arrays of the same name contained
within a composite dataset. Its main purpose is to provide a
Numpy-type interface to composite data arrays which are naturally
nothing but a collection of vtkDataArrays. A VTKCompositeDataArray
makes such a collection appear as a single Numpy array and support
all array operations that this module and the associated algorithm
module support. Note that this is not a subclass of a Numpy array
and as such cannot be passed to native Numpy functions. Instead
VTK modules should be used to process composite arrays.

	DataSetAttributes

	This is a python friendly wrapper of vtkDataSetAttributes. It
returns VTKArrays. It also provides the dictionary interface.
Note that the stored array should have a shape that matches the number
of elements. E.g. for a PointData, narray.shape[0] should be equal
to dataset.GetNumberOfPoints()

	CompositeDataSetAttributes

	This is a python friendly wrapper for vtkDataSetAttributes for composite
datasets. Since composite datasets themselves don’t have attribute data,
but the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a
union of DataSetAttributes associated with all leaf nodes.

	CompositeDataIterator

	Wrapper for a vtkCompositeDataIterator class to satisfy
the python iterator protocol. This iterator iterates
over non-empty leaf nodes. To iterate over empty or
non-leaf nodes, use the vtkCompositeDataIterator directly.

	MultiCompositeDataIterator

	Iterator that can be used to iterate over multiple
composite datasets together. This iterator works only
with arrays that were copied from an original using
CopyStructured. The most common use case is to use
CopyStructure, then iterate over input and output together
while creating output datasets from corresponding input
datasets.

	DataObject

	A wrapper for vtkDataObject that makes it easier to access FielData
arrays as VTKArrays

	Table

	A wrapper for vtkTable that makes it easier to access RowData array as
VTKArrays

	HyperTreeGrid

	A wrapper for vtkHyperTreeGrid that makes it easier to access CellData
arrays as VTKArrays.

	CompositeDataSet

	A wrapper for vtkCompositeData and subclasses that makes it easier
to access Point/Cell/Field data as VTKCompositeDataArrays. It also
provides a Python type iterator.

	DataSet

	This is a python friendly wrapper of a vtkDataSet that defines
a few useful properties.

	PointSet

	This is a python friendly wrapper of a vtkPointSet that defines
a few useful properties.

	PolyData

	This is a python friendly wrapper of a vtkPolyData that defines
a few useful properties.

	UnstructuredGrid

	This is a python friendly wrapper of a vtkUnstructuredGrid that defines
a few useful properties.

	Graph

	This is a python friendly wrapper of a vtkGraph that defines
a few useful properties.

	Molecule

	This is a python friendly wrapper of a vtkMolecule that defines
a few useful properties.

Functions

	reshape_append_ones

	Returns a list with the two arguments, any of them may be
processed. If the arguments are numpy.ndarrays, append 1s to the
shape of the array with the smallest number of dimensions until
the arrays have the same number of dimensions. Does nothing if the
arguments are not ndarrays or the arrays have the same number of
dimensions.

	vtkDataArrayToVTKArray

	Given a vtkDataArray and a dataset owning it, returns a VTKArray.

	numpyTovtkDataArray

	Given a numpy array or a VTKArray and a name, returns a vtkDataArray.
The resulting vtkDataArray will store a reference to the numpy array:
the numpy array is released only when the vtkDataArray is destroyed.

	_make_tensor_array_contiguous

	

	_metaclass

	For compatibility between python 2 and python 3.

	WrapDataObject

	Returns a Numpy friendly wrapper of a vtkDataObject.

Data

	NoneArray

	

API

	
vtkmodules.numpy_interface.dataset_adapter.reshape_append_ones(a1, a2)

	Returns a list with the two arguments, any of them may be
processed. If the arguments are numpy.ndarrays, append 1s to the
shape of the array with the smallest number of dimensions until
the arrays have the same number of dimensions. Does nothing if the
arguments are not ndarrays or the arrays have the same number of
dimensions.

	
class vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

	Easy access to vtkDataObject.AttributeTypes

	
POINT

	None

	
CELL

	None

	
FIELD

	None

	
ROW

	None

	
class vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper(vtkobject)

	Bases: object

Superclass for classes that wrap VTK objects with Python objects.
This class holds a reference to the wrapped VTK object. It also
forwards unresolved methods to the underlying object by overloading
__get__attr.

Initialization

	
__getattr__(name)

	Forwards unknown attribute requests to VTK object.

	
vtkmodules.numpy_interface.dataset_adapter.vtkDataArrayToVTKArray(array, dataset=None)

	Given a vtkDataArray and a dataset owning it, returns a VTKArray.

	
vtkmodules.numpy_interface.dataset_adapter.numpyTovtkDataArray(array, name='numpy_array', array_type=None)

	Given a numpy array or a VTKArray and a name, returns a vtkDataArray.
The resulting vtkDataArray will store a reference to the numpy array:
the numpy array is released only when the vtkDataArray is destroyed.

	
vtkmodules.numpy_interface.dataset_adapter._make_tensor_array_contiguous(array)

	

	
vtkmodules.numpy_interface.dataset_adapter._metaclass(mcs)

	For compatibility between python 2 and python 3.

	
class vtkmodules.numpy_interface.dataset_adapter.VTKArrayMetaClass

	Bases: type

	
__new__(name, parent, attr)

	We overwrite numerical/comparison operators because we might need
to reshape one of the arrays to perform the operation without
broadcast errors. For instance:

An array G of shape (n,3) resulted from computing the
gradient on a scalar array S of shape (n,) cannot be added together without
reshaping.
G + expand_dims(S,1) works,
G + S gives an error:
ValueError: operands could not be broadcast together with shapes (n,3) (n,)

This metaclass overwrites operators such that it computes this
reshape operation automatically by appending 1s to the
dimensions of the array with fewer dimensions.

	
class vtkmodules.numpy_interface.dataset_adapter.VTKArray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)

	Bases: numpy.ndarray

This is a sub-class of numpy ndarray that stores a
reference to a vtk array as well as the owning dataset.
The numpy array and vtk array should point to the same
memory location.

Initialization

	
_numeric_op(other, attr_name)

	Used to implement numpy-style numerical operations such as add,
mul, etc.

	
_reverse_numeric_op(other, attr_name)

	Used to implement numpy-style numerical operations such as add,
mul, etc.

	
__new__(input_array, array=None, dataset=None)

	

	
__array_finalize__(obj)

	

	
__getattr__(name)

	Forwards unknown attribute requests to VTK array.

	
__array_wrap__(out_arr, context=None)

	

	
property DataSet

	Get the dataset this array is associated with. The reference to the
dataset is held through a vtkWeakReference to ensure it doesn’t prevent
the dataset from being collected if necessary.

	
class vtkmodules.numpy_interface.dataset_adapter.VTKNoneArrayMetaClass

	Bases: type

	
__new__(name, parent, attr)

	Simplify the implementation of the numeric/logical sequence API.

	
class vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray

	Bases: object

VTKNoneArray is used to represent a “void” array. An instance
of this class (NoneArray) is returned instead of None when an
array that doesn’t exist in a DataSetAttributes is requested.
All operations on the NoneArray return NoneArray. The main reason
for this is to support operations in parallel where one of the
processes may be working on an empty dataset. In such cases,
the process is still expected to evaluate a whole expression because
some of the functions may perform bulk MPI communication. None
cannot be used in these instances because it cannot properly override
operators such as add, sub etc. This is the main raison
d’etre for VTKNoneArray.

	
__getitem__(index)

	

	
_op(other, op)

	Used to implement numpy-style numerical operations such as add,
mul, etc.

	
astype(dtype)

	Implements numpy array’s astype method.

	
vtkmodules.numpy_interface.dataset_adapter.NoneArray

	‘VTKNoneArray(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArrayMetaClass

	Bases: type

	
__new__(name, parent, attr)

	Simplify the implementation of the numeric/logical sequence API.

	
class vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray(arrays=[], dataset=None, name=None, association=None)

	Bases: object

This class manages a set of arrays of the same name contained
within a composite dataset. Its main purpose is to provide a
Numpy-type interface to composite data arrays which are naturally
nothing but a collection of vtkDataArrays. A VTKCompositeDataArray
makes such a collection appear as a single Numpy array and support
all array operations that this module and the associated algorithm
module support. Note that this is not a subclass of a Numpy array
and as such cannot be passed to native Numpy functions. Instead
VTK modules should be used to process composite arrays.

Initialization

Construct a composite array given a container of
arrays, a dataset, name and association. It is sufficient
to define a container of arrays to define a composite array.
It is also possible to initialize an array by defining
the dataset, name and array association. In that case,
the underlying arrays will be created lazily when they
are needed. It is recommended to use the latter method
when initializing from an existing composite dataset.

	
__init_from_composite()

	

	
GetSize()

	Returns the number of elements in the array.

	
size

	‘property(…)’

	
GetArrays()

	Returns the internal container of VTKArrays. If necessary,
this will populate the array list from a composite dataset.

	
Arrays

	‘property(…)’

	
__getitem__(index)

	Overwritten to refer indexing to underlying VTKArrays.
For the most part, this will behave like Numpy. Note
that indexing is done per array - arrays are never treated
as forming a bigger array. If the index is another composite
array, a one-to-one mapping between arrays is assumed.

	
_numeric_op(other, op)

	Used to implement numpy-style numerical operations such as add,
mul, etc.

	
_reverse_numeric_op(other, op)

	Used to implement numpy-style numerical operations such as add,
mul, etc.

	
__str__()

	

	
astype(dtype)

	Implements numpy array’s as array method.

	
class vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes(vtkobject, dataset, association)

	Bases: vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper

This is a python friendly wrapper of vtkDataSetAttributes. It
returns VTKArrays. It also provides the dictionary interface.
Note that the stored array should have a shape that matches the number
of elements. E.g. for a PointData, narray.shape[0] should be equal
to dataset.GetNumberOfPoints()

Initialization

	
__getitem__(idx)

	Implements the [] operator. Accepts an array name or index.

	
GetArray(idx)

	Given an index or name, returns a VTKArray.

	
keys()

	Returns the names of the arrays as a list.

	
values()

	Returns the arrays as a list.

	
PassData(other)

	A wrapper for vtkDataSet.PassData.

	
append(narray, name)

	Appends narray to the dataset attributes.

If narray is a scalar, create an array with this scalar for each element.
If narray is an array with a size not matching the array association
(e.g. size should be equal to GetNumberOfPoints() for PointData),
copy the input narray for each element. This is intended to ease
initialization, typically using same 3d vector for each element.
In any case, be careful about memory explosion.

	
class vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes(dataset, association)

	This is a python friendly wrapper for vtkDataSetAttributes for composite
datasets. Since composite datasets themselves don’t have attribute data,
but the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a
union of DataSetAttributes associated with all leaf nodes.

Initialization

	
__determine_arraynames()

	

	
keys()

	Returns the names of the arrays as a list.

	
__getitem__(idx)

	Implements the [] operator. Accepts an array name.

	
append(narray, name)

	Appends a new array to the composite dataset attributes.

	
GetArray(idx)

	Given a name, returns a VTKCompositeArray.

	
PassData(other)

	Emulate PassData for composite datasets.

	
class vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator(cds)

	Bases: object

Wrapper for a vtkCompositeDataIterator class to satisfy
the python iterator protocol. This iterator iterates
over non-empty leaf nodes. To iterate over empty or
non-leaf nodes, use the vtkCompositeDataIterator directly.

Initialization

	
__iter__()

	

	
__next__()

	

	
next()

	

	
__getattr__(name)

	Returns attributes from the vtkCompositeDataIterator.

	
class vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator(cds)

	Bases: vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator

Iterator that can be used to iterate over multiple
composite datasets together. This iterator works only
with arrays that were copied from an original using
CopyStructured. The most common use case is to use
CopyStructure, then iterate over input and output together
while creating output datasets from corresponding input
datasets.

Initialization

	
__next__()

	

	
next()

	

	
class vtkmodules.numpy_interface.dataset_adapter.DataObject(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper

A wrapper for vtkDataObject that makes it easier to access FielData
arrays as VTKArrays

Initialization

	
GetAttributes(type)

	Returns the attributes specified by the type as a DataSetAttributes
instance.

	
HasAttributes(type)

	Returns if current object support this attributes type

	
GetFieldData()

	Returns the field data as a DataSetAttributes instance.

	
FieldData

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.Table(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkTable that makes it easier to access RowData array as
VTKArrays

Initialization

	
GetRowData()

	Returns the row data as a DataSetAttributes instance.

	
HasAttributes(type)

	Returns if current object support this attributes type

	
RowData

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkHyperTreeGrid that makes it easier to access CellData
arrays as VTKArrays.

Initialization

	
GetCellData()

	Returns the cell data as DataSetAttributes instance.

	
HasAttributes(type)

	Returns if current object support this attributes type

	
CellData

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkCompositeData and subclasses that makes it easier
to access Point/Cell/Field data as VTKCompositeDataArrays. It also
provides a Python type iterator.

Initialization

	
__iter__()

	Creates an iterator for the contained datasets.

	
GetNumberOfElements(assoc)

	Returns the total number of cells or points depending
on the value of assoc which can be ArrayAssociation.POINT or
ArrayAssociation.CELL.

	
GetNumberOfPoints()

	Returns the total number of points of all datasets
in the composite dataset. Note that this traverses the
whole composite dataset every time and should not be
called repeatedly for large composite datasets.

	
GetNumberOfCells()

	Returns the total number of cells of all datasets
in the composite dataset. Note that this traverses the
whole composite dataset every time and should not be
called repeatedly for large composite datasets.

	
GetAttributes(type)

	Returns the attributes specified by the type as a
CompositeDataSetAttributes instance.

	
HasAttributes(type)

	Returns true if every leaves of current composite object support this attributes type

	
GetPointData()

	Returns the point data as a DataSetAttributes instance.

	
GetCellData()

	Returns the cell data as a DataSetAttributes instance.

	
GetFieldData()

	Returns the field data as a DataSetAttributes instance.

	
GetPoints()

	Returns the points as a VTKCompositeDataArray instance.

	
PointData

	‘property(…)’

	
CellData

	‘property(…)’

	
FieldData

	‘property(…)’

	
Points

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.DataSet(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkDataSet that defines
a few useful properties.

Initialization

	
GetPointData()

	Returns the point data as a DataSetAttributes instance.

	
GetCellData()

	Returns the cell data as a DataSetAttributes instance.

	
HasAttributes(type)

	Returns if current object support this attributes type

	
PointData

	‘property(…)’

	
CellData

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.PointSet(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataSet

This is a python friendly wrapper of a vtkPointSet that defines
a few useful properties.

Initialization

	
GetPoints()

	Returns the points as a VTKArray instance. Returns None if the
dataset has implicit points.

	
SetPoints(pts)

	Given a VTKArray instance, sets the points of the dataset.

	
Points

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.PolyData(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.PointSet

This is a python friendly wrapper of a vtkPolyData that defines
a few useful properties.

Initialization

	
GetPolygons()

	Returns the polys as a VTKArray instance.

	
Polygons

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.PointSet

This is a python friendly wrapper of a vtkUnstructuredGrid that defines
a few useful properties.

Initialization

	
GetCellTypes()

	Returns the cell types as a VTKArray instance.

	
GetCellLocations()

	Returns the cell locations as a VTKArray instance.

	
GetCells()

	Returns the cells as a VTKArray instance.

	
SetCells(cellTypes, cellLocations, cells)

	Given cellTypes, cellLocations, cells as VTKArrays,
populates the unstructured grid data structures.

	
CellTypes

	‘property(…)’

	
CellLocations

	‘property(…)’

	
Cells

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.Graph(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkGraph that defines
a few useful properties.

Initialization

	
GetVertexData()

	Returns the vertex data as a DataSetAttributes instance.

	
GetEdgeData()

	Returns the edge data as a DataSetAttributes instance.

	
VertexData

	‘property(…)’

	
EdgeData

	‘property(…)’

	
class vtkmodules.numpy_interface.dataset_adapter.Molecule(vtkobject)

	Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkMolecule that defines
a few useful properties.

Initialization

	
GetAtomData()

	Returns the atom data as a DataSetAttributes instance.

	
GetBondData()

	Returns the bond data as a DataSetAttributes instance.

	
AtomData

	‘property(…)’

	
BondData

	‘property(…)’

	
vtkmodules.numpy_interface.dataset_adapter.WrapDataObject(ds)

	Returns a Numpy friendly wrapper of a vtkDataObject.

 vtkmodules.numpy_interface.algorithms

vtkmodules.numpy_interface.algorithms

This module provides a number of algorithms that can be used with
the dataset classes defined in the dataset_adapter module.
See the documentation of the dataset_adapter for some examples.
These algorithms work in serial and in parallel as long as the
data is partitioned according to VTK data parallel execution
guidelines. For details, see the documentation of individual
algorithms.

Module Contents

Functions

	_apply_func2

	Apply a function to each member of a VTKCompositeDataArray.
Returns a list of arrays.

	apply_ufunc

	Apply a function to each member of a VTKCompositeDataArray.
VTKArray and numpy arrays are also supported.

	_make_ufunc

	Given a ufunc, creates a closure that applies it to each member
of a VTKCompositeDataArray.

	apply_dfunc

	Apply a two argument function to each member of a VTKCompositeDataArray
and another argument The second argument can be a VTKCompositeDataArray, in
which case a one-to-one match between arrays is assumed. Otherwise, the
function is applied to the composite array with the second argument repeated.
VTKArray and numpy arrays are also supported.

	_make_dfunc

	Given a function that requires two arguments, creates a closure that
applies it to each member of a VTKCompositeDataArray.

	_make_dsfunc

	Given a function that requires two arguments (one array, one dataset),
creates a closure that applies it to each member of a VTKCompositeDataArray.
Note that this function is mainly for internal use by this module.

	_make_dsfunc2

	Given a function that requires a dataset, creates a closure that
applies it to each member of a VTKCompositeDataArray.

	_lookup_mpi_type

	

	_reduce_dims

	

	_global_func

	

	bitwise_or

	Implements element by element or (bitwise, | in C/C++) operation.
If one of the arrays is a NoneArray, this will return the array
that is not NoneArray, treating NoneArray as 0 in the or operation.

	make_point_mask_from_NaNs

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT.
These values are also combined with any ghost values that the
dataset may have.

	make_cell_mask_from_NaNs

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENCELL.
These values are also combined with any ghost values that the
dataset may have.

	make_mask_from_NaNs

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT or
HIDDENCELL is the is_cell argument is true. If an input ghost_array
is passed, the array is bitwise_or’ed with it, simply adding
the new ghost values to it.

	sum

	Returns the sum of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	max

	Returns the max of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	min

	Returns the min of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	_global_per_block

	

	sum_per_block

	Returns the sum of all values along a particular axis (dimension) for
each block of an VTKCompositeDataArray.

	count_per_block

	Return the number of elements of each block in a VTKCompositeDataArray
along an axis.

	mean_per_block

	Returns the mean of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.

	max_per_block

	Returns the max of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

	min_per_block

	Returns the min of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

	all

	Returns True if all values of an array evaluate to True, returns
False otherwise.
This is useful to check if all values of an array match a certain
condition such as:

	_local_array_count

	

	_array_count

	

	mean

	Returns the mean of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	var

	Returns the variance of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	std

	Returns the standard deviation of all values along a particular
axis (dimension).
Given an array of m tuples and n components:

	shape

	Returns the shape (dimensions) of an array.

	make_vector

	Given 2 or 3 scalar arrays, returns a vector array. If only
2 scalars are provided, the third component will be set to 0.

	unstructured_from_composite_arrays

	Given a set of VTKCompositeDataArrays, creates a vtkUnstructuredGrid.
The main goal of this function is to transform the output of XXX_per_block()
methods to a single dataset that can be visualized and further processed.
Here arrays is an iterable (e.g. list) of (array, name) pairs. Here is
an example:

Data

	in1d

	

	isnan

	

	sqrt

	

	negative

	

	reciprocal

	

	square

	

	exp

	

	floor

	

	ceil

	

	rint

	

	sin

	

	cos

	

	tan

	

	arcsin

	

	arccos

	

	arctan

	

	arctan2

	

	sinh

	

	cosh

	

	tanh

	

	arcsinh

	

	arccosh

	

	arctanh

	

	where

	

	flatnonzero

	

	nonzero

	

	expand_dims

	

	abs

	

	area

	

	aspect

	

	aspect_gamma

	

	condition

	

	cross

	

	curl

	

	divergence

	

	det

	

	determinant

	

	diagonal

	

	dot

	

	eigenvalue

	

	eigenvector

	

	gradient

	

	inv

	

	inverse

	

	jacobian

	

	laplacian

	

	ln

	

	log

	

	log10

	

	max_angle

	

	mag

	

	matmul

	

	min_angle

	

	norm

	

	shear

	

	skew

	

	strain

	

	surface_normal

	

	trace

	

	volume

	

	vorticity

	

	vertex_normal

	

	logical_not

	

	divide

	

	multiply

	

	add

	

	subtract

	

	mod

	

	remainder

	

	power

	

	hypot

	

API

	
vtkmodules.numpy_interface.algorithms._apply_func2(func, array, args)

	Apply a function to each member of a VTKCompositeDataArray.
Returns a list of arrays.

Note that this function is mainly for internal use by this module.

	
vtkmodules.numpy_interface.algorithms.apply_ufunc(func, array, args=())

	Apply a function to each member of a VTKCompositeDataArray.
VTKArray and numpy arrays are also supported.

	
vtkmodules.numpy_interface.algorithms._make_ufunc(ufunc)

	Given a ufunc, creates a closure that applies it to each member
of a VTKCompositeDataArray.

Note that this function is mainly for internal use by this module.

	
vtkmodules.numpy_interface.algorithms.apply_dfunc(dfunc, array1, val2)

	Apply a two argument function to each member of a VTKCompositeDataArray
and another argument The second argument can be a VTKCompositeDataArray, in
which case a one-to-one match between arrays is assumed. Otherwise, the
function is applied to the composite array with the second argument repeated.
VTKArray and numpy arrays are also supported.

	
vtkmodules.numpy_interface.algorithms._make_dfunc(dfunc)

	Given a function that requires two arguments, creates a closure that
applies it to each member of a VTKCompositeDataArray.

Note that this function is mainly for internal use by this module.

	
vtkmodules.numpy_interface.algorithms._make_dsfunc(dsfunc)

	Given a function that requires two arguments (one array, one dataset),
creates a closure that applies it to each member of a VTKCompositeDataArray.
Note that this function is mainly for internal use by this module.

	
vtkmodules.numpy_interface.algorithms._make_dsfunc2(dsfunc)

	Given a function that requires a dataset, creates a closure that
applies it to each member of a VTKCompositeDataArray.

Note that this function is mainly for internal use by this module.

	
vtkmodules.numpy_interface.algorithms._lookup_mpi_type(ntype)

	

	
vtkmodules.numpy_interface.algorithms._reduce_dims(array, comm)

	

	
vtkmodules.numpy_interface.algorithms._global_func(impl, array, axis, controller)

	

	
vtkmodules.numpy_interface.algorithms.bitwise_or(array1, array2)

	Implements element by element or (bitwise, | in C/C++) operation.
If one of the arrays is a NoneArray, this will return the array
that is not NoneArray, treating NoneArray as 0 in the or operation.

	
vtkmodules.numpy_interface.algorithms.make_point_mask_from_NaNs(dataset, array)

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT.
These values are also combined with any ghost values that the
dataset may have.

	
vtkmodules.numpy_interface.algorithms.make_cell_mask_from_NaNs(dataset, array)

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENCELL.
These values are also combined with any ghost values that the
dataset may have.

	
vtkmodules.numpy_interface.algorithms.make_mask_from_NaNs(array, ghost_array=dsa.NoneArray, is_cell=False)

	This method will create a ghost array corresponding to an
input with NaN values. For each NaN value, the output array will
have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT or
HIDDENCELL is the is_cell argument is true. If an input ghost_array
is passed, the array is bitwise_or’ed with it, simply adding
the new ghost values to it.

	
vtkmodules.numpy_interface.algorithms.sum(array, axis=None, controller=None)

	Returns the sum of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	Default is to return the sum of all values in an array.

	axis=0: Sum values of all components and return a one tuple,
n-component array.

	axis=1: Sum values of all components of each tuple and return an
m-tuple, 1-component array.

When called in parallel, this function will sum across processes
when a controller argument is passed or the global controller is
defined. To disable parallel summing when running in parallel, pass
a dummy controller as follows:

sum(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.max(array, axis=None, controller=None)

	Returns the max of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	Default is to return the max of all values in an array.

	axis=0: Return the max values of all tuples and return a
one tuple, n-component array.

	axis=1: Return the max values of all components of each tuple
and return an m-tuple, 1-component array.

When called in parallel, this function will compute the max across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

max(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.min(array, axis=None, controller=None)

	Returns the min of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	Default is to return the min of all values in an array.

	axis=0: Return the min values of all tuples and return a one
tuple, n-component array.

	axis=1: Return the min values of all components of each tuple and
return an m-tuple, 1-component array.

When called in parallel, this function will compute the min across processes
when a controller argument is passed or the global controller is defined.
To disable parallel summing when running in parallel, pass a dummy controller as follows:

min(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms._global_per_block(impl, array, axis=None, controller=None)

	

	
vtkmodules.numpy_interface.algorithms.sum_per_block(array, axis=None, controller=None)

	Returns the sum of all values along a particular axis (dimension) for
each block of an VTKCompositeDataArray.

Given an array of m tuples and n components:

	Default is to return the sum of all values in an array.

	axis=0: Sum values of all components and return a one tuple,
n-component array.

	axis=1: Sum values of all components of each tuple and return an
m-tuple, 1-component array.

When called in parallel, this function will sum across processes
when a controller argument is passed or the global controller is
defined. To disable parallel summing when running in parallel, pass
a dummy controller as follows:

sum_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.count_per_block(array, axis=None, controller=None)

	Return the number of elements of each block in a VTKCompositeDataArray
along an axis.

	if axis is None, the number of all elements (ntuples * ncomponents) is
returned.

	if axis is 0, the number of tuples is returned.

	
vtkmodules.numpy_interface.algorithms.mean_per_block(array, axis=None, controller=None)

	Returns the mean of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.

Given an array of m tuples and n components:

	Default is to return the mean of all values in an array.

	axis=0: Return the mean values of all components and return a one
tuple, n-component array.

	axis=1: Return the mean values of all components of each tuple and
return an m-tuple, 1-component array.

When called in parallel, this function will compute the mean across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

mean(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.max_per_block(array, axis=None, controller=None)

	Returns the max of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

	Default is to return the max of all values in an array.

	axis=0: Return the max values of all components and return a one
tuple, n-component array.

	axis=1: Return the max values of all components of each tuple and return
an m-tuple, 1-component array.

When called in parallel, this function will compute the max across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

max_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.min_per_block(array, axis=None, controller=None)

	Returns the min of all values along a particular axis (dimension)
for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

	Default is to return the min of all values in an array.

	axis=0: Return the min values of all components and return a one
tuple, n-component array.

	axis=1: Return the min values of all components of each tuple and
return an m-tuple, 1-component array.

When called in parallel, this function will compute the min across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

min_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.all(array, axis=None, controller=None)

	Returns True if all values of an array evaluate to True, returns
False otherwise.
This is useful to check if all values of an array match a certain
condition such as:

algorithms.all(array > 5)

	
vtkmodules.numpy_interface.algorithms._local_array_count(array, axis)

	

	
vtkmodules.numpy_interface.algorithms._array_count(array, axis, controller)

	

	
vtkmodules.numpy_interface.algorithms.mean(array, axis=None, controller=None, size=None)

	Returns the mean of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	Default is to return the mean of all values in an array.

	axis=0: Return the mean values of all components and return a one
tuple, n-component array.

	axis=1: Return the mean values of all components of each tuple and
return an m-tuple, 1-component array.

When called in parallel, this function will compute the mean across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

mean(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.var(array, axis=None, controller=None)

	Returns the variance of all values along a particular axis (dimension).
Given an array of m tuples and n components:

	Default is to return the variance of all values in an array.

	axis=0: Return the variance values of all components and return a one
tuple, n-component array.

	axis=1: Return the variance values of all components of each tuple and
return an m-tuple, 1-component array.

When called in parallel, this function will compute the variance across
processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a
dummy controller as follows:

var(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.std(array, axis=None, controller=None)

	Returns the standard deviation of all values along a particular
axis (dimension).
Given an array of m tuples and n components:

	Default is to return the standard deviation of all values in an array.

	axis=0: Return the standard deviation values of all components and
return a one tuple, n-component array.

	axis=1: Return the standard deviation values of all components of
each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the standard deviation
across processes when a controller argument is passed or the global controller
is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

std(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

	
vtkmodules.numpy_interface.algorithms.shape(array)

	Returns the shape (dimensions) of an array.

	
vtkmodules.numpy_interface.algorithms.make_vector(arrayx, arrayy, arrayz=None)

	Given 2 or 3 scalar arrays, returns a vector array. If only
2 scalars are provided, the third component will be set to 0.

	
vtkmodules.numpy_interface.algorithms.unstructured_from_composite_arrays(points, arrays, controller=None)

	Given a set of VTKCompositeDataArrays, creates a vtkUnstructuredGrid.
The main goal of this function is to transform the output of XXX_per_block()
methods to a single dataset that can be visualized and further processed.
Here arrays is an iterable (e.g. list) of (array, name) pairs. Here is
an example:

centroid = mean_per_block(composite_data.Points)
T = mean_per_block(composite_data.PointData[‘Temperature’])
ug = unstructured_from_composite_arrays(centroid, (T, ‘Temperature’))

When called in parallel, this function makes sure that each array in
the input dataset is represented only on 1 process. This is important
because methods like mean_per_block() return the same value for blocks
that are partitioned on all of the participating processes. If the
same point were to be created across multiple processes in the output,
filters like histogram would report duplicate values erroneously.

	
vtkmodules.numpy_interface.algorithms.in1d

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.isnan

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.sqrt

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.negative

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.reciprocal

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.square

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.exp

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.floor

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.ceil

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.rint

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.sin

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.cos

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.tan

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arcsin

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arccos

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arctan

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arctan2

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.sinh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.cosh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.tanh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arcsinh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arccosh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.arctanh

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.where

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.flatnonzero

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.nonzero

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.expand_dims

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.abs

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.area

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.aspect

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.aspect_gamma

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.condition

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.cross

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.curl

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.divergence

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.det

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.determinant

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.diagonal

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.dot

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.eigenvalue

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.eigenvector

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.gradient

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.inv

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.inverse

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.jacobian

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.laplacian

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.ln

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.log

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.log10

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.max_angle

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.mag

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.matmul

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.min_angle

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.norm

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.shear

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.skew

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.strain

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.surface_normal

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.trace

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.volume

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.vorticity

	‘_make_dsfunc(…)’

	
vtkmodules.numpy_interface.algorithms.vertex_normal

	‘_make_dsfunc2(…)’

	
vtkmodules.numpy_interface.algorithms.logical_not

	‘_make_ufunc(…)’

	
vtkmodules.numpy_interface.algorithms.divide

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.multiply

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.add

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.subtract

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.mod

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.remainder

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.power

	‘_make_dfunc(…)’

	
vtkmodules.numpy_interface.algorithms.hypot

	‘_make_dfunc(…)’

 vtkmodules.gtk

vtkmodules.gtk

pyGTK widgets for VTK.

Submodules

	vtkmodules.gtk.GtkVTKRenderWindow

	vtkmodules.gtk.GtkGLExtVTKRenderWindow

	vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

	vtkmodules.gtk.GtkVTKRenderWindowInteractor

Package Contents

Data

	__all__

	

API

	
vtkmodules.gtk.__all__

	[‘GtkVTKRenderWindow’, ‘GtkVTKRenderWindowInteractor’, ‘GtkGLExtVTKRenderWindow’, ‘GtkGLExtVTKRender…

 vtkmodules.gtk.GtkVTKRenderWindow

vtkmodules.gtk.GtkVTKRenderWindow

Description:

Provides a simple VTK widget for pyGtk. This embeds a
vtkRenderWindow inside a GTK widget. This is based on
vtkTkRenderWidget.py [http://vtkTkRenderWidget.py]. The GtkVTKRenderWindowBase class provides the
abstraction necessary for someone to use their own interaction
behaviour. The method names are similar to those in
vtkInteractorStyle.h.

The class uses the gtkgl.GtkGLArea widget (gtkglarea). This avoids
a lot of problems with flicker.

There is a working example at the bottom.

Credits:

Thanks to Dave Reed for testing the code under various platforms and
for his suggestion to use the GtkGLArea widget to avoid flicker
related issues.

Created by Prabhu Ramachandran, March 2001.

Using GtkGLArea, March, 2002.

Bugs:

(*) There is a focus related problem. Tkinter has a focus object
that handles focus events. I don’t know of an equivalent object
under GTK. So, when an ‘enter_notify_event’ is received on the
GtkVTKRenderWindow I grab the focus but I don’t know what to do when
I get a ‘leave_notify_event’.

(*) Will not work under Win32 because it uses the XID of a window in
OnRealize. Suggestions to fix this will be appreciated.

Module Contents

Classes

	GtkVTKRenderWindowBase

	A base class that enables one to embed a vtkRenderWindow into
a pyGTK widget. This class embeds the RenderWindow correctly.
Provided are some empty methods that can be overloaded to provide
a user defined interaction behaviour. The event handling
functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

	GtkVTKRenderWindow

	An example of a fully functional GtkVTKRenderWindow that is
based on the vtkRenderWidget.py [http://vtkRenderWidget.py] provided with the VTK sources.

Functions

	main

	

API

	
class vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase(*args)

	Bases: gtkgl.GtkGLArea

A base class that enables one to embed a vtkRenderWindow into
a pyGTK widget. This class embeds the RenderWindow correctly.
Provided are some empty methods that can be overloaded to provide
a user defined interaction behaviour. The event handling
functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

Initialization

	
ConnectSignals()

	

	
GetRenderWindow()

	

	
GetRenderer()

	

	
SetDesiredUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetDesiredUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
SetStillUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetStillUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
Render()

	

	
OnRealize(*args)

	

	
OnConfigure(wid, event=None)

	

	
OnExpose(*args)

	

	
OnDestroy(event=None)

	

	
OnButtonDown(wid, event)

	Mouse button pressed.

	
OnButtonUp(wid, event)

	Mouse button released.

	
OnMouseMove(wid, event)

	Mouse has moved.

	
OnEnter(wid, event)

	Entering the vtkRenderWindow.

	
OnLeave(wid, event)

	Leaving the vtkRenderWindow.

	
OnKeyPress(wid, event)

	Key pressed.

	
OnKeyRelease(wid, event)

	Key released.

	
class vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow(*args)

	Bases: vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase

An example of a fully functional GtkVTKRenderWindow that is
based on the vtkRenderWidget.py [http://vtkRenderWidget.py] provided with the VTK sources.

Initialization

	
OnButtonDown(wid, event)

	

	
OnButtonUp(wid, event)

	

	
OnMouseMove(wid, event=None)

	

	
OnEnter(wid, event=None)

	

	
OnLeave(wid, event)

	

	
OnKeyPress(wid, event=None)

	

	
GetZoomFactor()

	

	
SetZoomFactor(zf)

	

	
GetPicker()

	

	
Render()

	

	
UpdateRenderer(x, y)

	UpdateRenderer will identify the renderer under the mouse and set
up _CurrentRenderer, _CurrentCamera, and _CurrentLight.

	
GetCurrentRenderer()

	

	
StartMotion(wid, event=None)

	

	
EndMotion(wid, event=None)

	

	
Rotate(x, y)

	

	
Pan(x, y)

	

	
Zoom(x, y)

	

	
Reset()

	

	
Wireframe()

	

	
Surface()

	

	
PickActor(x, y)

	

	
vtkmodules.gtk.GtkVTKRenderWindow.main()

	

 vtkmodules.gtk.GtkGLExtVTKRenderWindow

vtkmodules.gtk.GtkGLExtVTKRenderWindow

Description:

This provides a VTK widget for pyGtk. This embeds a vtkRenderWindow
inside a GTK widget. This is based on GtkVTKRenderWindow.py [http://GtkVTKRenderWindow.py].

The extensions here allow the use of gtkglext rather than gtkgl and
pygtk-2 rather than pygtk-0. It requires pygtk-2.0.0 or later.

There is a working example at the bottom.

Credits:

John Hunter jdhunter@ace.bsd.uchicago.edu developed and tested
this code based on VTK’s GtkVTKRenderWindow.py [http://GtkVTKRenderWindow.py] and extended it to
work with pygtk-2.0.0.

License:

VTK license.

Module Contents

Classes

	GtkGLExtVTKRenderWindowBase

	A base class that enables one to embed a vtkRenderWindow into
a pyGTK widget. This class embeds the RenderWindow correctly.
Provided are some empty methods that can be overloaded to provide
a user defined interaction behaviour. The event handling
functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

	GtkGLExtVTKRenderWindow

	An example of a fully functional GtkGLExtVTKRenderWindow that
is based on the vtkRenderWidget.py [http://vtkRenderWidget.py] provided with the VTK
sources.

Functions

	main

	

API

	
class vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase(*args)

	Bases: gtk.gtkgl.DrawingArea

A base class that enables one to embed a vtkRenderWindow into
a pyGTK widget. This class embeds the RenderWindow correctly.
Provided are some empty methods that can be overloaded to provide
a user defined interaction behaviour. The event handling
functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

Initialization

	
ConnectSignals()

	

	
GetRenderWindow()

	

	
GetRenderer()

	

	
SetDesiredUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetDesiredUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
SetStillUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetStillUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
Render()

	

	
OnRealize(*args)

	

	
Created()

	

	
OnConfigure(widget, event)

	

	
OnExpose(*args)

	

	
OnDestroy(*args)

	

	
OnButtonDown(wid, event)

	Mouse button pressed.

	
OnButtonUp(wid, event)

	Mouse button released.

	
OnMouseMove(wid, event)

	Mouse has moved.

	
OnEnter(wid, event)

	Entering the vtkRenderWindow.

	
OnLeave(wid, event)

	Leaving the vtkRenderWindow.

	
OnKeyPress(wid, event)

	Key pressed.

	
OnKeyRelease(wid, event)

	Key released.

	
class vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow(*args)

	Bases: vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase

An example of a fully functional GtkGLExtVTKRenderWindow that
is based on the vtkRenderWidget.py [http://vtkRenderWidget.py] provided with the VTK
sources.

Initialization

	
OnButtonDown(wid, event)

	

	
OnButtonUp(wid, event)

	

	
OnMouseMove(wid, event=None)

	

	
OnEnter(wid, event=None)

	

	
OnKeyPress(wid, event=None)

	

	
GetZoomFactor()

	

	
SetZoomFactor(zf)

	

	
GetPicker()

	

	
Render()

	

	
UpdateRenderer(x, y)

	UpdateRenderer will identify the renderer under the mouse and set
up _CurrentRenderer, _CurrentCamera, and _CurrentLight.

	
GetCurrentRenderer()

	

	
GetCurrentCamera()

	

	
StartMotion(wid, event=None)

	

	
EndMotion(wid, event=None)

	

	
Rotate(x, y)

	

	
Pan(x, y)

	

	
Zoom(x, y)

	

	
Reset()

	

	
Wireframe()

	

	
Surface()

	

	
PickActor(x, y)

	

	
vtkmodules.gtk.GtkGLExtVTKRenderWindow.main()

	

 vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

Description:

Provides a pyGtk vtkRenderWindowInteractor widget. This embeds a
vtkRenderWindow inside a GTK widget and uses the
vtkGenericRenderWindowInteractor for the event handling. This is
similar to GtkVTKRenderWindowInteractor.py [http://GtkVTKRenderWindowInteractor.py].

The extensions here allow the use of gtkglext rather than gtkgl and
pygtk-2 rather than pygtk-0. It requires pygtk-2.0.0 or later.

There is a working example at the bottom.

Credits:

John Hunter jdhunter@ace.bsd.uchicago.edu developed and tested
this code based on VTK’s GtkVTKRenderWindow.py [http://GtkVTKRenderWindow.py] and extended it to
work with pygtk-2.0.0.

License:

VTK license.

Module Contents

Classes

	GtkGLExtVTKRenderWindowInteractor

	Embeds a vtkRenderWindow into a pyGTK widget and uses
vtkGenericRenderWindowInteractor for the event handling. This
class embeds the RenderWindow correctly. A getattr hook is
provided that makes the class behave like a
vtkGenericRenderWindowInteractor.

Functions

	main

	

API

	
class vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor(*args)

	Bases: gtk.gtkgl.DrawingArea

Embeds a vtkRenderWindow into a pyGTK widget and uses
vtkGenericRenderWindowInteractor for the event handling. This
class embeds the RenderWindow correctly. A getattr hook is
provided that makes the class behave like a
vtkGenericRenderWindowInteractor.

Initialization

	
set_size_request(w, h)

	

	
ConnectSignals()

	

	
__getattr__(attr)

	Makes the object behave like a
vtkGenericRenderWindowInteractor

	
CreateTimer(obj, event)

	

	
DestroyTimer(obj, event)

	The timer is a one shot timer so will expire automatically.

	
GetRenderWindow()

	

	
Render()

	

	
OnRealize(*args)

	

	
OnConfigure(widget, event)

	

	
OnExpose(*args)

	

	
OnDestroy(event=None)

	

	
_GetCtrlShift(event)

	

	
OnButtonDown(wid, event)

	Mouse button pressed.

	
OnButtonUp(wid, event)

	Mouse button released.

	
OnMouseMove(wid, event)

	Mouse has moved.

	
OnEnter(wid, event)

	Entering the vtkRenderWindow.

	
OnLeave(wid, event)

	Leaving the vtkRenderWindow.

	
OnKeyPress(wid, event)

	Key pressed.

	
OnKeyRelease(wid, event)

	Key released.

	
Initialize()

	

	
SetPicker(picker)

	

	
GetPicker(picker)

	

	
vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.main()

	

 vtkmodules.gtk.GtkVTKRenderWindowInteractor

vtkmodules.gtk.GtkVTKRenderWindowInteractor

Description:

Provides a pyGtk vtkRenderWindowInteractor widget. This embeds a
vtkRenderWindow inside a GTK widget and uses the
vtkGenericRenderWindowInteractor for the event handling. This is
based on vtkTkRenderWindow.py [http://vtkTkRenderWindow.py].

The class uses the gtkgl.GtkGLArea widget (gtkglarea). This avoids
a lot of problems with flicker.

There is a working example at the bottom.

Created by Prabhu Ramachandran, April 2002.

Bugs:

(*) There is a focus related problem. Tkinter has a focus object
that handles focus events. I don’t know of an equivalent object
under GTK. So, when an ‘enter_notify_event’ is received on the
GtkVTKRenderWindow I grab the focus but I don’t know what to do when
I get a ‘leave_notify_event’.

(*) Will not work under Win32 because it uses the XID of a window in
OnRealize. Suggestions to fix this will be appreciated.

Module Contents

Classes

	GtkVTKRenderWindowInteractor

	Embeds a vtkRenderWindow into a pyGTK widget and uses
vtkGenericRenderWindowInteractor for the event handling. This
class embeds the RenderWindow correctly. A getattr hook is
provided that makes the class behave like a
vtkGenericRenderWindowInteractor.

Functions

	main

	

API

	
class vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor(*args)

	Bases: gtkgl.GtkGLArea

Embeds a vtkRenderWindow into a pyGTK widget and uses
vtkGenericRenderWindowInteractor for the event handling. This
class embeds the RenderWindow correctly. A getattr hook is
provided that makes the class behave like a
vtkGenericRenderWindowInteractor.

Initialization

	
set_usize(w, h)

	

	
ConnectSignals()

	

	
__getattr__(attr)

	Makes the object behave like a
vtkGenericRenderWindowInteractor

	
CreateTimer(obj, event)

	

	
DestroyTimer(obj, event)

	The timer is a one shot timer so will expire automatically.

	
GetRenderWindow()

	

	
Render()

	

	
OnRealize(*args)

	

	
OnConfigure(wid, event=None)

	

	
OnExpose(*args)

	

	
OnDestroy(event=None)

	

	
_GetCtrlShift(event)

	

	
OnButtonDown(wid, event)

	Mouse button pressed.

	
OnButtonUp(wid, event)

	Mouse button released.

	
OnMouseMove(wid, event)

	Mouse has moved.

	
OnEnter(wid, event)

	Entering the vtkRenderWindow.

	
OnLeave(wid, event)

	Leaving the vtkRenderWindow.

	
OnKeyPress(wid, event)

	Key pressed.

	
OnKeyRelease(wid, event)

	Key released.

	
Initialize()

	

	
vtkmodules.gtk.GtkVTKRenderWindowInteractor.main()

	

 vtkmodules.test

vtkmodules.test

Modules used for testing VTK-Python wrappers and writing tests for
VTK using Python.

Submodules

	vtkmodules.test.BlackBox

	vtkmodules.test.Testing

	vtkmodules.test.ErrorObserver

	vtkmodules.test.rtImageTest

Package Contents

Data

	__all__

	

API

	
vtkmodules.test.__all__

	[‘Testing’, ‘BlackBox’, ‘ErrorObserver’, ‘rtImageTest’]

 vtkmodules.test.BlackBox

vtkmodules.test.BlackBox

Module Contents

Classes

	Tester

	

API

	
class vtkmodules.test.BlackBox.Tester(debug=0)

	Initialization

	
setDebug(val)

	Sets debug value of the vtkMethodParser. 1 is verbose and
0 is not. 0 is default.

	
testParse(obj)

	Testing if the object is parseable.

	
testGetSet(obj, excluded_methods=[])

	Testing Get/Set methods.

	
testBoolean(obj, excluded_methods=[])

	Testing boolean (On/Off) methods.

	
test(obj)

	Test the given vtk object.

 vtkmodules.test.Testing

vtkmodules.test.Testing

This module attempts to make it easy to create VTK-Python
unittests. The module uses unittest for the test interface. For more
documentation on what unittests are and how to use them, please read
these:

http://www.python.org/doc/current/lib/module-unittest.html

http://www.diveintopython.org/roman_divein.html

This VTK-Python test module supports image based tests with multiple
images per test suite and multiple images per individual test as well.
It also prints information appropriate for CDash
(http://open.kitware.com/).

This module defines several useful classes and functions to make
writing tests easy. The most important of these are:

class vtkTest:
Subclass this for your tests. It also has a few useful internal
functions that can be used to do some simple blackbox testing.

compareImage(renwin, img_fname, threshold=0.15):
Compares renwin with image and generates image if it does not
exist. The threshold determines how closely the images must match.
The function also handles multiple images and finds the best
matching image.

compareImageWithSavedImage(src_img, img_fname, threshold=0.15):
Compares given source image (in the form of a vtkImageData) with
saved image and generates the image if it does not exist. The
threshold determines how closely the images must match. The
function also handles multiple images and finds the best matching
image.

getAbsImagePath(img_basename):
Returns the full path to the image given the basic image name.

main(cases):
Does the testing given a list of tuples containing test classes and
the starting string of the functions used for testing.

interact():
Interacts with the user if necessary. The behavior of this is
rather trivial and works best when using Tkinter. It does not do
anything by default and stops to interact with the user when given
the appropriate command line arguments.

isInteractive():
If interact() is not good enough, use this to find if the mode is
interactive or not and do whatever is necessary to generate an
interactive view.

Examples:

The best way to learn on how to use this module is to look at a few
examples. The end of this file contains a trivial example. Please
also look at the following examples:

Rendering/Testing/Python/TestTkRenderWidget.py,
Rendering/Testing/Python/TestTkRenderWindowInteractor.py

Created: September, 2002

Prabhu Ramachandran prabhu@aero.iitb.ac.in

Module Contents

Classes

	vtkTest

	A simple default VTK test class that defines a few useful
blackbox tests that can be readily used. Derive your test cases
from this class and use the following if you’d like to.

Functions

	skip

	Cause the test to be skipped due to insufficient requirements.

	interact

	Interacts with the user if necessary.

	isInteractive

	Returns if the currently chosen mode is interactive or not
based on command line options.

	getAbsImagePath

	Returns the full path to the image given the basic image
name.

	_getTempImagePath

	

	compareImageWithSavedImage

	Compares a source image (src_img, which is a vtkImageData) with
the saved image file whose name is given in the second argument.
If the image file does not exist the image is generated and
stored. If not the source image is compared to that of the
figure. This function also handles multiple images and finds the
best matching image.

	compareImage

	Compares renwin’s (a vtkRenderWindow) contents with the image
file whose name is given in the second argument. If the image
file does not exist the image is generated and stored. If not the
image in the render window is compared to that of the figure.
This function also handles multiple images and finds the best
matching image.

	_printCDashImageError

	Prints the XML data necessary for CDash.

	_printCDashImageNotFoundError

	Prints the XML data necessary for Dart when the baseline image is not found.

	_printCDashImageSuccess

	Prints XML data for Dart when image test succeeded.

	_handleFailedImage

	Writes all the necessary images when an image comparison
failed.

	main

	Pass a list of tuples containing test classes and the starting
string of the functions used for testing.

	test

	Pass a list of tuples containing test classes and the
functions used for testing.

	usage

	

	parseCmdLine

	

	processCmdLine

	

Data

	VTK_DATA_ROOT

	

	VTK_DATA_PATHS

	

	VTK_BASELINE_ROOT

	

	VTK_TEMP_DIR

	

	VTK_BASELINE_PATHS

	

	_VERBOSE

	

	_INTERACT

	

	_NO_IMAGE

	

API

	
vtkmodules.test.Testing.VTK_DATA_ROOT = <Multiline-String>

	

	
vtkmodules.test.Testing.VTK_DATA_PATHS

	[]

	
vtkmodules.test.Testing.VTK_BASELINE_ROOT = <Multiline-String>

	

	
vtkmodules.test.Testing.VTK_TEMP_DIR = <Multiline-String>

	

	
vtkmodules.test.Testing.VTK_BASELINE_PATHS

	[]

	
vtkmodules.test.Testing._VERBOSE

	0

	
vtkmodules.test.Testing._INTERACT

	0

	
vtkmodules.test.Testing._NO_IMAGE

	0

	
vtkmodules.test.Testing.skip()

	Cause the test to be skipped due to insufficient requirements.

	
class vtkmodules.test.Testing.vtkTest(methodName='runTest')

	Bases: unittest.TestCase

A simple default VTK test class that defines a few useful
blackbox tests that can be readily used. Derive your test cases
from this class and use the following if you’d like to.

Note: Unittest instantiates this class (or your subclass) each
time it tests a method. So if you do not want that to happen when
generating VTK pipelines you should create the pipeline in the
class definition as done below for _blackbox.

Initialization

Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

	
_blackbox

	‘Tester(…)’

	
dl

	‘vtkDebugLeaks(…)’

	
_testParse(obj)

	Does a blackbox test by attempting to parse the class for
its various methods using vtkMethodParser. This is a useful
test because it gets all the methods of the vtkObject, parses
them and sorts them into different classes of objects.

	
_testGetSet(obj, excluded_methods=[])

	Checks the Get/Set method pairs by setting the value using
the current state and making sure that it equals the value it
was originally. This effectively calls _testParse
internally.

	
_testBoolean(obj, excluded_methods=[])

	Checks the Boolean methods by setting the value on and off
and making sure that the GetMethod returns the set value.
This effectively calls _testParse internally.

	
pathToData(filename)

	Given a filename with no path (i.e., no leading directories
prepended), return the full path to a file as specified on the
command line with a ‘-D’ option.

As an example, if a test is run with “-D /path/to/grid.vtu”
then calling

self.pathToData('grid.vtu')

in your test will return “/path/to/grid.vtu”. This is
useful in combination with ExternalData, where data may be
staged by CTest to a user-configured directory at build time.

In order for this method to work, you must specify
the JUST_VALID option for your test in CMake.

	
pathToValidatedOutput(filename)

	Given a filename with no path (i.e., no leading directories
prepended), return the full path to a file as specified on the
command line with a ‘-V’ option.

As an example, if a test is run with
“-V /path/to/validImage.png” then calling

self.pathToData('validImage.png')

in your test will return “/path/to/validImage.png”. This is
useful in combination with ExternalData, where data may be
staged by CTest to a user-configured directory at build time.

In order for this method to work, you must specify
the JUST_VALID option for your test in CMake.

	
prepareTestImage(interactor, **kwargs)

	

	
assertImageMatch(renwin, baseline, **kwargs)

	Throw an error if a rendering in the render window does not match the baseline image.

This method accepts a threshold keyword argument (with a default of 0.15)
that specifies how different a baseline may be before causing a failure.

	
vtkmodules.test.Testing.interact()

	Interacts with the user if necessary.

	
vtkmodules.test.Testing.isInteractive()

	Returns if the currently chosen mode is interactive or not
based on command line options.

	
vtkmodules.test.Testing.getAbsImagePath(img_basename)

	Returns the full path to the image given the basic image
name.

	
vtkmodules.test.Testing._getTempImagePath(img_fname)

	

	
vtkmodules.test.Testing.compareImageWithSavedImage(src_img, img_fname, threshold=0.15)

	Compares a source image (src_img, which is a vtkImageData) with
the saved image file whose name is given in the second argument.
If the image file does not exist the image is generated and
stored. If not the source image is compared to that of the
figure. This function also handles multiple images and finds the
best matching image.

	
vtkmodules.test.Testing.compareImage(renwin, img_fname, threshold=0.15)

	Compares renwin’s (a vtkRenderWindow) contents with the image
file whose name is given in the second argument. If the image
file does not exist the image is generated and stored. If not the
image in the render window is compared to that of the figure.
This function also handles multiple images and finds the best
matching image.

	
vtkmodules.test.Testing._printCDashImageError(img_err, err_index, img_base)

	Prints the XML data necessary for CDash.

	
vtkmodules.test.Testing._printCDashImageNotFoundError(img_fname)

	Prints the XML data necessary for Dart when the baseline image is not found.

	
vtkmodules.test.Testing._printCDashImageSuccess(img_err, err_index)

	Prints XML data for Dart when image test succeeded.

	
vtkmodules.test.Testing._handleFailedImage(idiff, pngr, img_fname)

	Writes all the necessary images when an image comparison
failed.

	
vtkmodules.test.Testing.main(cases)

	Pass a list of tuples containing test classes and the starting
string of the functions used for testing.

Example:

main ([(vtkTestClass, ‘test’), (vtkTestClass1, ‘test’)])

	
vtkmodules.test.Testing.test(cases)

	Pass a list of tuples containing test classes and the
functions used for testing.

It returns a unittest._TextTestResult object.

Example:

test = test_suite([(vtkTestClass, ‘test’),
(vtkTestClass1, ‘test’)])

	
vtkmodules.test.Testing.usage()

	

	
vtkmodules.test.Testing.parseCmdLine()

	

	
vtkmodules.test.Testing.processCmdLine()

	

 vtkmodules.test.ErrorObserver

vtkmodules.test.ErrorObserver

Module Contents

Classes

	vtkErrorObserver

	

API

	
class vtkmodules.test.ErrorObserver.vtkErrorObserver

	Bases: object

Initialization

	
__call__(caller, event, data)

	

	
_check(seen, actual, expect, what)

	

	
check_error(expect)

	

	
check_warning(expect)

	

	
reset()

	

	
property saw_error

	

	
property error_message

	

	
property saw_warning

	

	
property warning_message

	

 vtkmodules.test.rtImageTest

vtkmodules.test.rtImageTest

Module Contents

Functions

	_GetController

	

	main

	Run a regression test, and compare the contents of the window against
against a valid image. This will use arguments from sys.argv to set the
testing options via the vtkTesting class, run the test script, and then
call vtkTesting.RegressionTest() to validate the image. The return
value will the one provided by vtkTesting.RegressionTest().

API

	
vtkmodules.test.rtImageTest._GetController()

	

	
vtkmodules.test.rtImageTest.main(test_script)

	Run a regression test, and compare the contents of the window against
against a valid image. This will use arguments from sys.argv to set the
testing options via the vtkTesting class, run the test script, and then
call vtkTesting.RegressionTest() to validate the image. The return
value will the one provided by vtkTesting.RegressionTest().

 vtkmodules.tk

vtkmodules.tk

Tkinter widgets for VTK.

Submodules

	vtkmodules.tk.vtkTkRenderWidget

	vtkmodules.tk.vtkTkRenderWindowInteractor

	vtkmodules.tk.vtkTkPhotoImage

	vtkmodules.tk.vtkLoadPythonTkWidgets

	vtkmodules.tk.vtkTkImageViewerWidget

Package Contents

Data

	__all__

	

API

	
vtkmodules.tk.__all__

	[‘vtkTkRenderWidget’, ‘vtkTkImageViewerWidget’, ‘vtkTkRenderWindowInteractor’, ‘vtkTkPhotoImage’]

 vtkmodules.tk.vtkTkRenderWidget

vtkmodules.tk.vtkTkRenderWidget

A simple vtkTkRenderWidget for tkinter.

Created by David Gobbi, April 1999

May ??, 1999 - Modifications performed by Heather Drury,
to rewrite _pan to match method in TkInteractor.tcl
May 11, 1999 - Major rewrite by David Gobbi to make the
interactor bindings identical to the TkInteractor.tcl
bindings.
July 14, 1999 - Added modification by Ken Martin for VTK 2.4, to
use vtk widgets instead of Togl.
Aug 29, 1999 - Renamed file to vtkRenderWidget.py [http://vtkRenderWidget.py]
Nov 14, 1999 - Added support for keyword ‘rw’
Mar 23, 2000 - Extensive but backwards compatible changes,
improved documentation

A few important notes:

This class is meant to be used as a base-class widget for
doing VTK rendering in Python.

In VTK (and C++) there is a very important distinction between
public ivars (attributes in pythonspeak), protected ivars, and
private ivars. When you write a python class that you want
to ‘look and feel’ like a VTK class, you should follow these rules.

	Attributes should never be public. Attributes should always be
either protected (prefixed with a single underscore) or private
(prefixed with a double underscore). You can provide access to
attributes through public Set/Get methods (same as VTK).

	Use a single underscore to denote a protected attribute, e.g.
self._RenderWindow is protected (can be accessed from this
class or a derived class).

	Use a double underscore to denote a private attribute, e.g.
self.__InExpose cannot be accessed outside of this class.

All attributes should be ‘declared’ in the init() function
i.e. set to some initial value. Don’t forget that ‘None’ means
‘NULL’ - the python/vtk wrappers guarantee their equivalence.

Module Contents

Classes

	vtkTkRenderWidget

	A vtkTkRenderWidget for Python.

Functions

	vtkRenderWidgetConeExample

	Like it says, just a simple example

API

	
class vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget(master, cnf={}, **kw)

	Bases: tkinter.Widget

A vtkTkRenderWidget for Python.

Use GetRenderWindow() to get the vtkRenderWindow.

Create with the keyword stereo=1 in order to generate a
stereo-capable window.

Create with the keyword focus_on_enter=1 to enable
focus-follows-mouse. The default is for a click-to-focus mode.

Initialization

Constructor.

Keyword arguments:

rw – Use passed render window instead of creating a new one.

stereo – If True, generate a stereo-capable window.
Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode.
Defaults to False where the widget will use a click-to-focus
mode.

	
__getattr__(attr)

	

	
BindTkRenderWidget()

	Bind some default actions.

	
GetZoomFactor()

	

	
SetDesiredUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetDesiredUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
SetStillUpdateRate(rate)

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetStillUpdateRate()

	Mirrors the method with the same name in
vtkRenderWindowInteractor.

	
GetRenderWindow()

	

	
GetPicker()

	

	
Expose()

	

	
Render()

	

	
UpdateRenderer(x, y)

	UpdateRenderer will identify the renderer under the mouse and set
up _CurrentRenderer, _CurrentCamera, and _CurrentLight.

	
GetCurrentRenderer()

	

	
Enter(x, y)

	

	
Leave(x, y)

	

	
StartMotion(x, y)

	

	
EndMotion(x, y)

	

	
Rotate(x, y)

	

	
Pan(x, y)

	

	
Zoom(x, y)

	

	
Reset(x, y)

	

	
Wireframe()

	

	
Surface()

	

	
PickActor(x, y)

	

	
vtkmodules.tk.vtkTkRenderWidget.vtkRenderWidgetConeExample()

	Like it says, just a simple example

 vtkmodules.tk.vtkTkRenderWindowInteractor

vtkmodules.tk.vtkTkRenderWindowInteractor

A fully functional VTK widget for tkinter that uses
vtkGenericRenderWindowInteractor. The widget is called
vtkTkRenderWindowInteractor. The initialization part of this code is
similar to that of the vtkTkRenderWidget.

Created by Prabhu Ramachandran, April 2002

Module Contents

Classes

	vtkTkRenderWindowInteractor

	A vtkTkRenderWidndowInteractor for Python.

Functions

	vtkRenderWindowInteractorConeExample

	Like it says, just a simple example

API

	
class vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor(master, cnf={}, **kw)

	Bases: tkinter.Widget

A vtkTkRenderWidndowInteractor for Python.

Use GetRenderWindow() to get the vtkRenderWindow.

Create with the keyword stereo=1 in order to generate a
stereo-capable window.

Create with the keyword focus_on_enter=1 to enable
focus-follows-mouse. The default is for a click-to-focus mode.

getattr is used to make the widget also behave like a
vtkGenericRenderWindowInteractor.

Initialization

Constructor.

Keyword arguments:

rw – Use passed render window instead of creating a new one.

stereo – If True, generate a stereo-capable window.
Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode.
Defaults to False where the widget will use a click-to-focus
mode.

	
__getattr__(attr)

	

	
BindEvents()

	Bind all the events.

	
CreateTimer(obj, evt)

	

	
DestroyTimer(obj, event)

	The timer is a one shot timer so will expire automatically.

	
_GrabFocus(enter=0)

	

	
MouseMoveEvent(event, ctrl, shift)

	

	
LeftButtonPressEvent(event, ctrl, shift)

	

	
LeftButtonReleaseEvent(event, ctrl, shift)

	

	
MiddleButtonPressEvent(event, ctrl, shift)

	

	
MiddleButtonReleaseEvent(event, ctrl, shift)

	

	
RightButtonPressEvent(event, ctrl, shift)

	

	
RightButtonReleaseEvent(event, ctrl, shift)

	

	
MouseWheelEvent(event, ctrl, shift)

	

	
MouseWheelForwardEvent(event, ctrl, shift)

	

	
MouseWheelBackwardEvent(event, ctrl, shift)

	

	
KeyPressEvent(event, ctrl, shift)

	

	
KeyReleaseEvent(event, ctrl, shift)

	

	
ConfigureEvent(event)

	

	
EnterEvent(event, ctrl, shift)

	

	
LeaveEvent(event, ctrl, shift)

	

	
ExposeEvent()

	

	
GetRenderWindow()

	

	
Render()

	

	
vtkmodules.tk.vtkTkRenderWindowInteractor.vtkRenderWindowInteractorConeExample()

	Like it says, just a simple example

 vtkmodules.tk.vtkTkPhotoImage

vtkmodules.tk.vtkTkPhotoImage

A subclass of tkinter.PhotoImage that connects a
vtkImageData to a photo widget.

Created by Daniel Blezek, August 2002

Module Contents

Classes

	vtkTkPhotoImage

	A subclass of PhotoImage with helper functions
for displaying vtkImageData

API

	
class vtkmodules.tk.vtkTkPhotoImage.vtkTkPhotoImage(**kw)

	Bases: tkinter.PhotoImage

A subclass of PhotoImage with helper functions
for displaying vtkImageData

Initialization

Create an image with NAME.

Valid resource names: data, format, file, gamma, height, palette,
width.

	
PutImageSlice(image, z, orientation='transverse', window=256, level=128)

	

 vtkmodules.tk.vtkLoadPythonTkWidgets

vtkmodules.tk.vtkLoadPythonTkWidgets

Module Contents

Functions

	vtkLoadPythonTkWidgets

	vtkLoadPythonTkWidgets(interp) – load vtk-tk widget extensions

API

	
vtkmodules.tk.vtkLoadPythonTkWidgets.vtkLoadPythonTkWidgets(interp)

	vtkLoadPythonTkWidgets(interp) – load vtk-tk widget extensions

This is a mess of mixed python and tcl code that searches for the
shared object file that contains the python-vtk-tk widgets. Both
the python path and the tcl path are searched.

 vtkmodules.tk.vtkTkImageViewerWidget

vtkmodules.tk.vtkTkImageViewerWidget

A vtkTkImageViewerWidget for python, which is based on the
vtkTkImageWindowWidget.

Specify double=1 to get a double-buffered window.

Created by David Gobbi, Nov 1999

Module Contents

Classes

	vtkTkImageViewerWidget

	A vtkTkImageViewerWidget for Python.

API

	
class vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget(master, cnf={}, **kw)

	Bases: tkinter.Widget

A vtkTkImageViewerWidget for Python.

Use GetImageViewer() to get the vtkImageViewer.

Create with the keyword double=1 in order to generate a
double-buffered viewer.

Create with the keyword focus_on_enter=1 to enable
focus-follows-mouse. The default is for a click-to-focus mode.

Initialization

Constructor.

Keyword arguments:

iv – Use passed image viewer instead of creating a new one.

double – If True, generate a double-buffered viewer.
Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode.
Defaults to False where the widget will use a click-to-focus
mode.

	
__getattr__(attr)

	

	
GetImageViewer()

	

	
Render()

	

	
BindTkImageViewer()

	

	
_GrabFocus()

	

	
EnterTkViewer()

	

	
LeaveTkViewer()

	

	
ExposeTkImageViewer()

	

	
StartWindowLevelInteraction(x, y)

	

	
EndWindowLevelInteraction()

	

	
UpdateWindowLevelInteraction(x, y)

	

	
ResetTkImageViewer()

	

	
StartQueryInteraction(x, y)

	

	
EndQueryInteraction()

	

	
UpdateQueryInteraction(x, y)

	

 vtkmodules.generate_pyi

vtkmodules.generate_pyi

This program will generate .pyi files for all the VTK modules
in the “vtkmodules” package (or whichever package you specify).
These files are used for type checking and autocompletion in
some Python IDEs.

The VTK modules must be in Python’s path when you run this script.
Options are as follows:

-p PACKAGE The package to generate .pyi files for [vtkmodules]
-o OUTPUT The output directory [default is the package directory]
-e EXT The file suffix [.pyi]
-i IMPORTER The static module importer (for static builds only)
-h HELP

With no arguments, the script runs with the defaults (the .pyi files
are put inside the existing vtkmodules package). This is equivalent
to the following:

python -m vtkmodules.generate_pyi -p vtkmodules

To put the pyi files somewhere else, perhaps with a different suffix:

python -m vtkmodules.generate_pyi -o /path/to/vtkmodules -e .pyi

To generate pyi files for just one or two modules:

python -m vtkmodules.generate_pyi -p vtkmodules vtkCommonCore vtkCommonDataModel

To generate pyi files for your own modules in your own package:

python -m vtkmodules.generate_pyi -p mypackage mymodule [mymodule2 ...]

Module Contents

Classes

	Graph

	A graph for topological sorting.

	Node

	A node for the graph.

Functions

	isvtkmethod

	Check for VTK’s custom method descriptor

	isnamespace

	Check for namespaces within a module

	isenum

	Check for enums (currently derived from int)

	typename

	Generate a typename that can be used for annotation.

	typename_forward

	Generate a typename, or if necessary, a forward reference.

	build_graph

	Build a graph from a module’s dictionary.

	sorted_graph_helper

	Helper for topological sorting.

	sorted_graph

	Sort a graph and return the sorted items.

	topologically_sorted_items

	Return the items from a module’s dictionary, topologically sorted.

	parse_error

	Print a parse error, syntax or otherwise.

	annotation_text

	Return the new text to be used for an annotation.

	fix_annotations

	Fix the annotations in a method definition.
The signature must be a single-line function def, no decorators.

	push_signature

	Process a method signature and add it to the list.

	get_signatures

	Return a list of method signatures found in the docstring.

	get_constructors

	Get constructors from the class documentation.

	handle_static

	If method has no “self”, add @static decorator.

	add_indent

	Add the given indent before every line in the string.

	namespace_pyi

	Fake a namespace by creating a dummy class.

	class_pyi

	Generate all the method stubs for a class.

	module_pyi

	Generate the contents of a .pyi file for a VTK module.

	main

	

Data

	types

	

	ismethod

	

	isclass

	

	vtkmethod

	

	template

	

	string

	

	identifier

	

	indent

	

	has_self

	

	keychar

	

API

	
vtkmodules.generate_pyi.types

	‘set(…)’

	
vtkmodules.generate_pyi.ismethod

	None

	
vtkmodules.generate_pyi.isclass

	None

	
vtkmodules.generate_pyi.vtkmethod

	‘type(…)’

	
vtkmodules.generate_pyi.template

	‘type(…)’

	
vtkmodules.generate_pyi.isvtkmethod(m)

	Check for VTK’s custom method descriptor

	
vtkmodules.generate_pyi.isnamespace(m)

	Check for namespaces within a module

	
vtkmodules.generate_pyi.isenum(m)

	Check for enums (currently derived from int)

	
vtkmodules.generate_pyi.typename(o)

	Generate a typename that can be used for annotation.

	
vtkmodules.generate_pyi.typename_forward(o)

	Generate a typename, or if necessary, a forward reference.

	
class vtkmodules.generate_pyi.Graph

	A graph for topological sorting.

Initialization

	
__getitem__(name)

	

	
__setitem__(name, node)

	

	
class vtkmodules.generate_pyi.Node(o, d)

	A node for the graph.

Initialization

	
vtkmodules.generate_pyi.build_graph(d)

	Build a graph from a module’s dictionary.

	
vtkmodules.generate_pyi.sorted_graph_helper(graph, m, visited, items)

	Helper for topological sorting.

	
vtkmodules.generate_pyi.sorted_graph(graph)

	Sort a graph and return the sorted items.

	
vtkmodules.generate_pyi.topologically_sorted_items(d)

	Return the items from a module’s dictionary, topologically sorted.

	
vtkmodules.generate_pyi.string

	‘compile(…)’

	
vtkmodules.generate_pyi.identifier

	‘compile(…)’

	
vtkmodules.generate_pyi.indent

	‘compile(…)’

	
vtkmodules.generate_pyi.has_self

	‘compile(…)’

	
vtkmodules.generate_pyi.keychar

	‘compile(…)’

	
vtkmodules.generate_pyi.parse_error(message, text, begin, pos)

	Print a parse error, syntax or otherwise.

	
vtkmodules.generate_pyi.annotation_text(a, text, is_return)

	Return the new text to be used for an annotation.

	
vtkmodules.generate_pyi.fix_annotations(signature)

	Fix the annotations in a method definition.
The signature must be a single-line function def, no decorators.

	
vtkmodules.generate_pyi.push_signature(o, l, signature)

	Process a method signature and add it to the list.

	
vtkmodules.generate_pyi.get_signatures(o)

	Return a list of method signatures found in the docstring.

	
vtkmodules.generate_pyi.get_constructors(c)

	Get constructors from the class documentation.

	
vtkmodules.generate_pyi.handle_static(o, signature)

	If method has no “self”, add @static decorator.

	
vtkmodules.generate_pyi.add_indent(s, indent)

	Add the given indent before every line in the string.

	
vtkmodules.generate_pyi.namespace_pyi(c, mod)

	Fake a namespace by creating a dummy class.

	
vtkmodules.generate_pyi.class_pyi(c)

	Generate all the method stubs for a class.

	
vtkmodules.generate_pyi.module_pyi(mod, output)

	Generate the contents of a .pyi file for a VTK module.

	
vtkmodules.generate_pyi.main(argv=sys.argv)

	

 CMake

CMake

For a thorough description of the module system see the Module System section.

The CMake API can be separated into several categories:

	Module APIs module

This category includes functions to find and build VTK modules. A module is a set
of related functionality. These are then compiled together into libraries at
the “kit” level. Each module may be enabled or disabled individually and its
dependencies will be built as needed.

All functions strictly check their arguments. Any unrecognized or invalid
values for a function cause errors to be raised.

	Internal APIs module-internal

The VTK module system provides some API functions for use by other code which
consumes VTK modules (primarily language wrappers). This file documents these
APIs. They may start with _vtk_module, but they are intended for use in cases
of language wrappers or dealing with trickier third party packages.

	Implementation APIs module-impl

These functions are purely internal implementation details. No guarantees are
made for them and they may change at any time (including wrapping code calls).
Note that these functions are usually very lax in their argument parsing.

	Python Wrapping APIs module-wrapping-python

APIs for wrapping modules for Python.

	Java Wrapping APIs module-wrapping-java

APIs for wrapping modules for Java.

	Support APIs module-support

Miscellaneous utilities.

 Module System

Module System

VTK 9.0 introduces a new build system compared to previous versions. This
version uses CMake’s built-in functionality for behaviors that were performed
manually in the previous iteration of the build system.

Terminology

	module: A unit of API provided by a project. This is the core of the
system and there are lots of features available through this mechanism that
are not provided by CMake’s library or other usage requirements.

	group: A configure-time collection of modules. These may be used to
control whether member modules will be built or not with a single flag.

	kit: A collection of modules for which all the compiled code is placed
in a single library.

	property: An attribute of a module. Only of real interest to developers
of the module system and its extensions.

	autoinit: A mechanism for triggering registration to global registries
based on the complete set of linked-to libraries.

	third party: A module representing an external dependency.

	enable status: A 4-way state to allow for “weak” and “strong” selection
or deselection of a module or group for building.

Principles

The module system was designed with a number of principles in mind. These
should be followed as much as possible when developing extensions as well.

	The minimum CMake version required by the module system should be as low
as possible to get the required features. For example, if a new feature is
available in 3.15 that improves core module functionality, that’d be a
reasonable reason to require it. But a bugfix in 3.10 that can be worked
around should not bump the minimum version. Currently CMake 3.8 is
expected to work, though various features (such as kits) are only
available with newer CMake versions.

	Build tree looks like the install tree. The layout of the build tree is set
up to mirror the layout of the install tree. This allows more code content
to be shared between build and install time.

	Convention over configuration. CMake conventions should be followed. Of
note, projects are assumed to be “well-behaved” including, but not limited
to:

	use of BUILD_SHARED_LIBS [https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html] to control shared vs.
static library compilation;

	use of GNUInstallDirs [https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html]; and

	sensible defaults based on things like
CMAKE_PROJECT_NAME [https://cmake.org/cmake/help/latest/variable/CMAKE_PROJECT_NAME.html] as set by the
project() [https://cmake.org/cmake/help/latest/command/project.html] function.

	Configuration through API. Where configuration is provided, instead of
using global state or “magic” variables, configuration should be provided
through parameters to the API functions provided. Concessions are made for
rarely-used functionality or where the API would be complicated to plumb
through the required information. These variables (which are typically
parameterized) are documented at the end of this document. Such variables
should be named so that it is unambiguous that they are for the module
system.

	Don’t pollute the environment. Variables should be cleaned up at the end of
macros and functions should use variable names that don’t conflict with the
caller environment (usually by prefixing with _function_name_ or the
like).

	Relocatable installs. Install trees should not bake-in paths from the build
tree or build machine (at least by default). This makes it easier to create
packages from install trees instead of having to run a post-processing step
over it before it may be used for distributable packages.

Build process

Building modules involves two phases. The first phase is called “scanning” and
involves collecting all the information necessary for the second phase,
“building”. Scanning uses the vtk_module_scan() function to search the
vtk.module files for metadata, gathers the set of modules
to build and returns them to the caller. That list of modules is eventually passed to
vtk_module_build() which sorts the modules for their build order and then
builds each module in turn. This separation allows for scanning and building
modules in different groups. For example, the main set of modules may be scanned
to determine which of some internal set of modules are required by those which
is then scanned separately with different options.

Scanning should occur from the leaf-most module set and work its way inward to
the lower levels. This is done so that modules in the lower level that are
required higher up can be enabled gracefully. Builds should start at the lower
level and move up the tree so that targets required by the higher groups exist
when they are built.

Modules

Modules are described by vtk.module files. These files are “scanned” using
the vtk_module_scan() function. They provide all the information necessary for
the module system to:

	provide cache variables for selecting the module (e.g.,
VTK_MODULE_ENABLE_ModuleName);

	construct the dependency tree to automatically enable or disable modules
based on whether it is built or not;

	provide module-level metadata (such as exclusion from any wrapping and
marking modules as third party)

The vtk.module files are read and “parsed”, but not executed directly. This
ensures that the module files do not contain any procedural CMake code. The
files may contain comments starting with # like CMake code. They may either
be passed manually to vtk_module_scan() or discovered by using the
vtk_module_find_modules() convenience function.

The most important (and only required) parameter is the NAME of a module.
This is used as the target name in CMake and is how the module’s target should
be referred to in all CMake code, inside the build and from the
find_package [https://cmake.org/cmake/help/latest/command/find_package.html] which provides the module. To change the
name of the compiled artifact (library or executable), the LIBRARY_NAME
argument may be used.

It is highly recommended to provide a DESCRIPTION for the module. This is
added to the documentation for the cache variable so that the user has more than
just the module name to know what the module’s purpose is.

Modules may also belong to groups which are created implicitly by adding
modules to the same-named group. Groups are listed under the GROUPS argument
and are checked in order for a non-default setting to use.

A module may be hidden by using the CONDITION argument. The values passed to
this field is added into a CMake if statement and checked for validity (all
quoting is passed along verbatim). If the condition evaluates to FALSE, the
module is treated as if it did not exist at all.

Module metadata

A number of pieces of metadata are considered important enough to indicate them
at the module level. These are used for managing slightly different workflows
for modules which have these properties.

	EXCLUDE_WRAP: This marks the module with a flag that all language wrapping
facilities should use to know that this module is not meant for wrapping in
any language. Usually this is for modules containing user interface classes,
low-level functionality, or logic that is language specific.

	IMPLEMENTABLE and IMPLEMENTS: These are used by the
autoinit functionality to trigger the static factory
registration calls. A module which is listed under an IMPLEMENTS list must
be marked as IMPLEMENTABLE itself.

	THIRD_PARTY: Indicates that the module represents a third party
dependency. It may be internal or external to the source tree, but may be
used as an additional configuration point if necessary. These modules are
implicitly EXCLUDE_WRAP, not IMPLEMENTABLE and do not IMPLEMENTS any
module.

Enabling modules for build

Modules are enabled in a number of ways. These ways allow for project control
and user control of which modules should be built or not. There are 4 states for
controlling a module’s enable status
as well as a DEFAULT
setting which is used to allow for other mechanisms to select the enable status:

	YES: The module must be built.

	NO: The module must not be built. If a YES module has a NO module in
its dependency tree, an error is raised.

	WANT: The module should be built. It will not be built, however, if it
depends on a NO module.

	DONT_WANT: The module doesn’t need to be built. It will be built if a
YES or WANT module depends on it.

	DEFAULT: Look at other metadata to determine the status.

The first check for modules are via the REQUEST_MODULES and REJECT_MODULES
arguments to the vtk_module_scan function. Modules passed to
REQUEST_MODULES are treated as if they use YES and REJECT_MODULES as if
they use NO. A module may not be passed to both arguments. Modules selected
in this way do not have CMake cache variables exposed for them (since it is
assumed they are selected via some other mechanism outside the module system).

The next selector is the VTK_MODULE_ENABLE_ variable for the module. This is
added to the cache and defaults to DEFAULT. Assuming HIDE_MODULES_FROM_CACHE
is not set to ON, this setting is exposed in the cache and allows users to
change the status of modules not handled via the REQUEST_MODULES and
REJECT_MODULES mechanism.

If a module is still selected as DEFAULT, the list of GROUPS it is a member
of is used. In order, each group is looked at for a non-DEFAULT value. If so,
its value is used for the module. Groups also default to using DEFAULT for
their setting, but a project may set the _vtk_module_group_default_${group}
variable to change this default value.

After all of the above logic, if a module is still marked as DEFAULT, the
WANT_BY_DEFAULT argument to vtk_module_scan() is used to determine whether
it is treated as a WANT or DONT_WANT request.

Now that all modules have a non-DEFAULT enable setting, the set of modules and
kits that are available may be determined by traversing the dependency tree of
the modules.

Dependencies

Modules have three types of dependencies:

	DEPENDS: These are dependencies which must be available and are
transitively provided to modules depending on this module. The API of the
module may be affected by changes in these modules. This includes, but is
not limited to, classes in this module inherit or expose classes from the
dependent modules.

	PRIVATE_DEPENDS: Dependencies which are only used in the implementation
details of the module. The API of the module is not affected by changes in
these modules.

	OPTIONAL_DEPENDS: Dependencies which will be used if available, but the
implementation can cope with their absence. These are always treated as
PRIVATE_DEPENDS if they are available.

Modules which are listed in DEPENDS or PRIVATE_DEPENDS are always available
to the module and can be assumed to exist if the module is being built. Modules
listed in OPTIONAL_DEPENDS cannot be assumed to exist. In CMake code, a
TARGET optional_depend condition may be used to detect whether it is available
or not. The module system will add a VTK_MODULE_ENABLE_${module} compilation
definition set to either 0 or 1 if it is available for use in the module’s
code. This flag is made preprocessor-safe by replacing any :: in the module
name with _. So an optional dependency on Namespace::Target will use a flag
named VTK_MODULE_ENABLE_Namespace_Target.

At this stage, the dependency tree for all scanned modules is traversed, marking
dependencies of YES modules as those that should be built, marking modules
depending on NO modules as not to be built (and triggering an error if a
conflict is found). Any WANT modules that have not been found in the trees of
YES or NO modules are then enabled with their dependencies.

There is a script to help figuring out dependencies when building your own modules
or VTK-dependant code (*.cxx, *.h) in order to generate a find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
command. The required json argument is only available in a build tree though.

Utilities/Maintenance/FindNeededModules.py -s /path/to/sources -j path/to/vtk_build/modules.json

Testing

There is some support for testing in the module system, but it is not as
comprehensive as the build side. This is because testing infrastructure and
strategies vary wildly between projects. Rather than trying to handle the
minimum baseline of any plausible testing infrastructure or framework, the
module system merely handles dependency management for testing and entering a
subdirectory with the tests.

Modules may have TEST_DEPENDS and TEST_OPTIONAL_DEPENDS lists provided as
well. These modules are required or optionally used by the testing code for the
module.

When scanning, the ENABLE_TESTS argument may be set to ON, OFF, WANT
(the default), or DEFAULT. Modules which appear in TEST_DEPENDS for the
module are affected by this setting.

	ON: Modules required for testing are treated as required. Tests will be
enabled.

	OFF: Tests will not be enabled.

	WANT: If possible, TEST_DEPENDS modules will also be enabled if they are
not disabled in some other way.

	DEFAULT: Check when tests are checked whether all of TEST_DEPENDS are
available. If they are, enable testing for the module, otherwise skip it.

The only guarantee for testing provided is that all modules in the
TEST_DEPENDS will be available before the testing is added and
TEST_OPTIONAL_DEPENDS are available if they’d be available at all (i.e., they
won’t be made available later).

Modules may also have TEST_LABELS set to ease labeling all tests for the
module. The module system itself does nothing with this other than set a global
property with the value. It is up to any test infrastructure used within the
module’s CMake code to make use of the value.

The tests for a module are expected to live in a subdirectory of the module code
itself. The name of this directory is given by the TEST_DIRECTORY_NAME
argument to the vtk_module_build() function. If the directory is available and
the module’s testing is enabled, the module system will
add_subdirectory [https://cmake.org/cmake/help/latest/command/add_subdirectory.html] this directory at the appropriate
time. This is decoupled so that testing code can depend on modules that depend
on the module that is being tested and the same TARGET ${dependency} check can
be used for optional module dependencies.

Building modules

After scanning is complete, vtk_module_scan() returns a list of modules and
kits to build in the variables given by the PROVIDES_MODULES and
PROVIDES_KITS arguments to it. It also provides lists of modules that were
found during scanning that were not scanned by that call. These are given back
in the variables passed to the UNRECOGNIZED_MODULES and REQUIRES_MODULES
variables.

The UNRECOGNIZED_MODULES list contains modules passed to REQUIRES_MODULES
and REJECT_MODULES that were not found during the scan. This typically
indicates that the values passed to those arguments were not constructed
properly. However, it may also mean that they should be passed on to further
scans if they may be found elsewhere. Callers should handle the variable as
necessary for their use case.

The REQUIRES_MODULES are modules that were named as dependencies of the
scanned modules and need to be provided in some way before building the provided
modules (the build step will require that they exist when it tries to build the
modules which required them). These can be passed on to future
REQUIRES_MODULES arguments in future scans or used to error out depending on
the use case of the caller.

When using vtk_module_build(), the PROVIDES_MODULES and PROVIDES_KITS from
a single scan should be passed together. Multiple scans may be built together as
well if they all use the same build parameters as each other.

Build-time parameters

The vtk_module_build() function is where the decision to build with or without
kits is decided through the BUILD_WITH_KITS option. Only if this is set will
kits be built for this set of modules.

The decision to default third party modules to using an external or internal
copy (where such a decision is possible) is done using the USE_EXTERNAL
argument.

Where build artifacts end up in the build tree are left to CMake’s typical
variables for controlling these locations:

	CMAKE_ARCHIVE_OUTPUT_DIRECTORY [https://cmake.org/cmake/help/latest/variable/CMAKE_ARCHIVE_OUTPUT_DIRECTORY.html]

	CMAKE_LIBRARY_OUTPUT_DIRECTORY [https://cmake.org/cmake/help/latest/variable/CMAKE_LIBRARY_OUTPUT_DIRECTORY.html]

	CMAKE_RUNTIME_OUTPUT_DIRECTORY [https://cmake.org/cmake/help/latest/variable/CMAKE_RUNTIME_OUTPUT_DIRECTORY.html]

The defaults for these place outputs into the binary directory where the targets
were added. The module system will set these to be sensible for itself if they
are not already set, but it is recommended to set these at the top-level so that
targets not built under vtk_module_build() also end up at a sensible location.

Library parameters

When building libraries, it is sometimes useful to have top-level control of
library metadata. For example, VTK suffixes its library filenames with a version
number. The variables that control this include:

	LIBRARY_NAME_SUFFIX: If non-empty, all libraries and executable names will
be suffixed with this value prefixed with a hyphen (e.g., a suffix of foo
will make Namespace::Target’s library be named Target-foo or, if the
module sets its LIBRARY_NAME to nsTarget, nsTarget-foo).

	VERSION: Controls the VERSION [https://cmake.org/cmake/help/latest/prop_tgt/VERSION.html] property for all library
modules.

	SOVERSION: Controls the SOVERSION [https://cmake.org/cmake/help/latest/prop_tgt/SOVERSION.html] property for all
library modules.

Installation support

vtk_module_build() also offers arguments to aid in installing module
artifacts. These include destinations for pieces that are installed, CMake
packaging controls, and components to use for the installations.

A number of destinations control arguments are provided:

	ARCHIVE_DESTINATION

	HEADERS_DESTINATION

	LIBRARY_DESTINATION

	RUNTIME_DESTINATION

	CMAKE_DESTINATION

	LICENSE_DESTINATION

	HIERARCHY_DESTINATION

See the API documentation for default values for each which are based on
GNUInstallDirs [https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html] variables. Note that all installation
destinations are expected to be relative paths. This is because the conveniences
provided by the module system are all assumed to be installed to a single prefix
(CMAKE_INSTALL_PREFIX [https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html]) and placed underneath it.

Suppression of header installation is provided via the INSTALL_HEADERS
argument to vtk_module_build(). Setting this to OFF will suppress the
installation of:

	headers

	CMake package files

	hierarchy files (since their use requires headers)

Basically, suppression of headers means that SDK components for the built
modules are not available in the install tree.

Components for the installation are provided via the HEADERS_COMPONENT and
TARGETS_COMPONENT arguments. The former is used for SDK bits and the latter
for runtime bits (libraries, executables, etc.).

For CMake package installation, the PACKAGE and INSTALL_EXPORT arguments are
available. The former controls the names used by the CMake files created by the
module system while the former is the export set to use for the member modules
when creating those CMake files. Non-module targets may also exist in this
export set when vtk_module_build() is called, but the export set is considered
“closed” afterwards since it has already been exported (if INSTALL_HEADERS is
true).

Test data information

The directory that is looked for in each module is specified by using the
TEST_DIRECTORY_NAME argument. If it is set to the value of NONE, no testing
directories will be searched for. It defaults to Testing due to VTK’s
conventions.

The module system, due to VTK’s usage of it, has convenience parameters for
controlling the ExternalData [https://cmake.org/cmake/help/latest/module/ExternalData.html] module that is available to
testing infrastructure. These include:

	TEST_DATA_TARGET: The data target to use for tests.

	TEST_INPUT_DATA_DIRECTORY: Where ExternalData should look for data
files.

	TEST_OUTPUT_DATA_DIRECTORY: Where ExternalData should place the
downloaded data files.

	TEST_OUTPUT_DIRECTORY: Where tests should place output files.

Each is provided in the testing subdirectory as _vtk_build_${name}, so the
TEST_DATA_TARGET argument is available as _vtk_build_TEST_DATA_TARGET.

Building a module

Building a module is basically the same as a normal CMake library or executable,
but is wrapped to use arguments to facilitate wrapping, exporting, and
installation of the tools as well.

There are two main functions provided for this:

	vtk_module_add_module()

	vtk_module_add_executable()

The former creates a library for the module being built while the latter can
create an executable for the module itself or create utility executable
associated with the module. The module system requires that the CMakeLists.txt
for a module create a target with the name of the module. In the case of
INTERFACE modules, it suffices to create the module manually in many cases.

Libraries

Most modules end up being libraries that can be linked against by other
libraries. Due to cross-platform support generally being a good thing, the
EXPORT_MACRO_PREFIX argument is provided to specify the prefix for macro names
to be used by GenerateExportHeader [https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html]. By default, the
LIBRARY_NAME for the module is transformed to uppercase to make the prefix.

Some modules may need to add additional information to the library name that
will be used that is not statically know and depends on other environmental
settings. The LIBRARY_NAME_SUFFIX may be specified to add an additional suffix
to the LIBRARY_NAME for the module. The vtk_module_build()
LIBRARY_NAME_SUFFIX argument value will be appended to this name as well.

Normally, libraries are built according to the
BUILD_SHARED_LIBS [https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html] variable, however, some modules may
need to be built statically all the time. The FORCE_STATIC parameter exists
for this purpose. This is generally only necessary if the module is in some
other must-be-static library’s dependency tree (which may happen for a number of
reasons). It is not an escape hatch for general usage; it is there because use
cases which only support static libraries (even in a shared build) exist.

If a library module is part of a kit and it is being built via the
vtk_module_build() BUILD_WITH_KITS argument, it will be built as an
OBJECT [https://cmake.org/cmake/help/latest/command/add_library.html] library and the kit machinery in vtk_module_build()
will create the resulting kit library artifact.

Header-only modules must pass HEADER_ONLY to create an INTERFACE library
instead of expecting a linkable artifact.

Note

HEADER_ONLY modules which are part of kits is currently untested. This
should be supported, but might not work at the moment.

Source listing

Instead of using CMake’s “all sources in a single list” pattern for
add_library, vtk_module_add_module() classifies its source files explicitly:

	SOURCES

	HEADERS

	TEMPLATES

The HEADERS and TEMPLATES are installed into the HEADERS_DESTINATION
specified to vtk_module_build() and may be added to a subdirectory of this
destination by using the HEADERS_SUBDIR argument. Note that the structure of
the header paths passed is ignored. If more structure is required from the
installed header layout, vtk_module_install_headers() should be used.

Files passed via HEADERS are treated as the API interface to the code of the
module and are added to properties so that language wrappers can
discover the API of the module.

Note

Only headers passed via HEADERS are eligible for wrapping; those
installed via vtk_module_install_headers() are not. This is a known limitation
at the moment.

There are also private variations for HEADERS and TEMPLATES named
PRIVATE_HEADERS and PRIVATE_TEMPLATES respectively. These are never
installed nor exposed to wrapping mechanisms.

There are also a couple of convenience parameters that use VTK’s file naming
conventions to ease usage. These include:

	CLASSES: For each value <class>, adds <class>.cxx to SOURCES and
<class>.h to HEADERS.

	TEMPLATE_CLASSES: For each value <class>, adds <class>.txx to
TEMPLATES and <class>.h to HEADERS.

	PRIVATE_CLASSES: For each value <class>, adds <class>.cxx to SOURCES
and <class>.h to PRIVATE_HEADERS.

	PRIVATE_TEMPLATE_CLASSES: For each value <class>, adds <class>.txx to
PRIVATE_TEMPLATES and <class>.h to PRIVATE_HEADERS.

Executables

Executables may be created using vtk_module_add_executable(). The first
argument is the name of the executable to build. Since the scanning phase does
not know what kind of target will be created for each module (and it may change
based on other configuration values), an executable module which claims it is
part of a kit raises an error since this is not possible to do.

For modules that are executables using this function, the metadata from the
module information is used to set the relevant properties. The module
dependencies are also automatically linked in the same way as a library module
would do so.

For utility executables, NO_INSTALL may be passed to keep it within the build
tree. It will not be available to consumers of the project. If the name of the
executable is different from the target name, BASENAME may be used to change
the executable’s name.

Module APIs

All of CMake’s target_ function calls have analogues for
modules. This is primarily due to the kits feature which causes the target name
created by the module system that is required to use the target_ functions
dependent on whether the module is a member of a kit and kits are being built.
The CMake version of the function and the module API analogue (as well as
differences, if any) is:

	set_target_properties [https://cmake.org/cmake/help/latest/command/set_target_properties.html] becomes
vtk_module_set_properties()

	set_property(TARGET) [https://cmake.org/cmake/help/latest/command/set_property.html] becomes
vtk_module_set_property()

	get_property(TARGET) [https://cmake.org/cmake/help/latest/command/get_property.html] becomes
vtk_module_get_property()

	add_dependencies [https://cmake.org/cmake/help/latest/command/add_dependencies.html] becomes vtk_module_depend()

	target_include_directories [https://cmake.org/cmake/help/latest/command/target_include_directories.html] becomes
vtk_module_include()

	target_compile_definitions [https://cmake.org/cmake/help/latest/command/target_compile_definitions.html] becomes
vtk_module_definitions()

	target_compile_options [https://cmake.org/cmake/help/latest/command/target_compile_options.html] becomes
vtk_module_compile_options()

	target_compile_features [https://cmake.org/cmake/help/latest/command/target_compile_features.html] becomes
vtk_module_compile_features()

	target_link_libraries [https://cmake.org/cmake/help/latest/command/target_link_libraries.html] becomes
vtk_module_link(): When kits are enabled, any PRIVATE links are
forwarded to the kit itself. This necessitates making all of these targets
globally scoped rather than locally scoped.

	target_link_options [https://cmake.org/cmake/help/latest/command/target_link_options.html] becomes
vtk_module_link_options()

Packaging support

Getting installed packages to work for CMake is, unfortunately, not trivial. The
module system provides some support for helping with this, but it does place
some extra constraints on the project so that some assumptions that vastly
simplify the process can be made.

Assumptions

The main assumption is that all modules passed to a single vtk_module_build()
have the same CMake namespace (the part up to and including the ::, if any,
in a module name. For exporting dependencies, that namespace matches the
PACKAGE argument for vtk_module_build(). These are done so that the
generated code can use
CMAKE_FIND_PACKAGE_NAME [https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_PACKAGE_NAME.html] variable can be
used to discover information about the package that is being found.

The package support also assumes that all modules may be queried using
COMPONENTS and OPTIONAL_COMPONENTS and that the component name for a module
corresponds to the name of a module without the namespace.

These rules basically mean that a module named Namespace::Target will be found
using find_package(Namespace), that COMPONENTS Target may be passed to
ensure that that module exists, and OPTIONAL_COMPONENTS Target may be passed
to allow the component to not exist while not failing the main
find_package [https://cmake.org/cmake/help/latest/command/find_package.html] call.

Creating a full package

The module system provides no support for the top-level file that is used by
find_package [https://cmake.org/cmake/help/latest/command/find_package.html]. This is because this logic is highly
project-specific and hard to generalize in a useful way. Instead, files are
generated which should be included from the main file.

Here, the list of files generated are based on the PACKAGE argument passed to
vtk_module_build():

	<PACKAGE>-targets.cmake: The CMake-generated export file for the targets
in the INSTALL_EXPORT.

	<PACKAGE>-vtk-module-properties.cmake: Properties for the targets exported
into the build.

The module properties file must be included after the targets file so that they
exist when it tries to add properties to the imported targets.

External dependencies

Since the module system is heavily skewed towards using imported targets, these
targets show up by name in the find_package [https://cmake.org/cmake/help/latest/command/find_package.html] of the
project as well. This means that these external projects need to be found to
recreate their imported targets at that time. To this end, there is the
vtk_module_export_find_packages() function. This function writes a file named
according to its FILE_NAME argument and place it in the build and install
trees according to its CMAKE_DESTINATION argument.

This file will be populated with logic to determine whether third party packages
found using vtk_module_find_package() are required during the
find_package [https://cmake.org/cmake/help/latest/command/find_package.html] of the package or not. It will forward
REQUIRED and QUIET parameters to other find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
calls as necessary based on the REQUIRED and QUIET flags for the package
and whether that call is involved in a non-optional COMPONENT (a
component-less find_package [https://cmake.org/cmake/help/latest/command/find_package.html] call is assumed to mean
“all components”).

This file should be included after the <PACKAGE>-vtk-module-properties.cmake
file generated by the vtk_module_build() call so that it can use the module
dependency information set via that file.

After this file is included, for each component that it checks, it will set
${CMAKE_FIND_PACKAGE_NAME}_<component>_FOUND to 0 if it is not valid and
append a reason to ${CMAKE_FIND_PACKAGE_NAME}_<component>_NOT_FOUND_MESSAGE
so that the package can collate the reason why things are not available.

Setting the _FOUND variable

The module system does not currently help in determining the top-level
${CMAKE_FIND_PACKAGE_NAME}_FOUND variable based on the results of the
components that were requested and the status of dependent packages. This may be
provided at some point, but there has not currently been enough experience to
determine what patterns are available for factoring it out as a utility
function.

The general pattern should be to go through the list of components requested,
determine whether targets for those components exist. Then for each found
component, use the module dependency information to ensure that all targets in
the dependency trees are found (propagating not-found statuses through the
dependency tree). The ${CMAKE_FIND_PACKAGE_NAME}_NOT_FOUND_MESSAGE should be
built up based on the reasons the find_package [https://cmake.org/cmake/help/latest/command/find_package.html] call did
not work based on these discoveries.

This is the process for modules in a package, but packages may contain
non-module components, and it is hard for the module system to provide support
for them, so they are not attempted. See the CMake documentation for more
details about creating a package configuration [https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-a-package-configuration-file].

Advanced topics

There are a number of advanced features provided by the module system that are
not normally required in a simple project.

Kits

Kits are described in vtk.kit files which act much like vtk.module
files. However, they only have NAME, LIBRARY_NAME, and DESCRIPTION fields.
These all act just like they do in the vtk.module context. These files may
either be passed manually to vtk_module_scan() or discovered by using the
vtk_module_find_kits() convenience function.

Before a module may be a member of a kit, a vtk.kit must declare it and be
scanned at the same time. This means that kits may only contain modules that are
scanned with them and cannot be extended later nor may kits be made of modules
that they do not know about.

Requirements

In order to actually use kits, CMake 3.12 is necessary in order to do the
OBJECT [https://cmake.org/cmake/help/latest/command/add_library.html] library manipulations done behind the scenes to make it
Just Work. 3.8 is still the minimum version for using a project that is built
with kits however. This is only checked when kits are actually in use, so
projects requiring older CMake versions as their minimum version may still
provide kits so that users with newer CMake versions can use them.

Kits create a single library on disk, but the usage requirements of the modules
should still be the same (except for that which is inherently required to be
different by combining libraries). So include directories, compile definitions,
and other usage requirements should not leak from other modules that are members
of the same kit.

[bookmark: autoinit]

Autoinit

The module system supports a mechanism for triggering static code construction
for modules which require it. This cannot be done through normal CMake usage
requirements because the requirements are intersectional. For example, a module
F having a factory where module I provides an implementation for it means
that a target linking to both F and I needs to ensure that I registers its
implementation to the factory code. There is no such support in CMake and due to
the complexities and code generation involved with this support, it is unlikely
to exist.

Code which uses modules may call the vtk_module_autoinit() function to use
this functionality. The list of modules passed to the function are used to
compute the defines necessary to trigger the registration to factories when
necessary.

For details on the implementation of the autoinit system, please see
the relevant section in the API documentation.

[bookmark: wrapping]

Wrapping

VTK comes with support for wrapping its classes into other languages.
Currently, VTK supports wrapping its classes for use in the Python and Java
languages. In order to wrap a set of modules for a language, a separate
function is used for each language.

All languages read the headers of classes with a __VTK_WRAP__ preprocessor
definition defined. This may be used to hide methods or other details from the
wrapping code if wanted.

Python

For Python, the vtk_module_wrap_python() function must be used. This function
takes a list of modules in its MODULES argument and creates Python modules
for use under the PYTHON_PACKAGE package. No __init__.py for this package
is created automatically and must be provided in some other way.

A target named by the TARGET argument is created and installed. This target
may be linked to in order to be able to import static Python modules. In this
case, a header and function named according to the basename of TARGET (e.g.,
VTK::PythonWrapped has a basename of PythonWrapped) must be used. The
header is named <TARGET_BASENAME>.h and the function which adds the wrapped
modules to the static import table is <void TARGET_BASENAME>_load(). This
function is also created in shared builds, but does nothing so that it may
always be called in static or shared builds.

The modules will be installed under the MODULE_DESTINATION given to the
function into the PYTHON_PACKAGE directory needed for it. The
vtk_module_python_default_destination() function is used to determine a
default if one is not passed.

The Python wrappers define a __VTK_WRAP_PYTHON__ preprocessor definition when
reading code which may be used to hide methods or other details from the Python
wrapping code.

Java

For Java, the vtk_module_wrap_java() function must be used. This function
creates Java sources for classes in the modules passed in its MODULES
argument. The sources are written to a JAVA_OUTPUT directory. These then can
be compiled by CMake normally.

For this purpose, there are <MODULE>Java targets which contain a
_vtk_module_java_files properties containing a list of .java sources
generated for the given module. There is also a <MODULE>Java-java-sources
target which may be depended upon if just the source generation needs to used
in an add_dependencies [https://cmake.org/cmake/help/latest/command/add_dependencies.html] call.

The Java wrappers define a __VTK_WRAP_JAVA__ preprocessor definition when
reading code which may be used to hide methods or other details from the Java
wrapping code.

Hierarchy files

Hierarchy files are used by the language wrapper tools to know the class
inheritance for classes within a module. Each module has a hierarchy file
associated with it. The path to a module’s hierarchy file is stored in its
hierarchy module property.

Third party

The module system has support for representing third party modules in its
build. These may be built as part of the project or represented using other
mechanisms (usually find_package [https://cmake.org/cmake/help/latest/command/find_package.html] and a set of imported
targets from it).

The primary API is vtk_module_third_party() which creates a
VTK_MODULE_USE_EXTERNAL_Namespace_Target option for the module to switch
between an internal and external source for the third party code. This value
defaults to the setting of the USE_EXTERNAL argument for the calling
vtk_module_build() function. Arguments passed under the INTERNAL and
EXTERNAL arguments to this command are then passed on to
vtk_module_third_party_internal() or vtk_module_third_party_external(),
respectively, depending on the VTK_MODULE_USE_EXTERNAL_Namespace_Target
option.

Note that third party modules (marked as such by adding the THIRD_PARTY
keyword to a vtk.module file) may not be part of a kit, be wrapped, or
participate in autoinit.

External third party modules

External modules are found using CMake’s find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
mechanism. In addition to the arguments supported by
vtk_module_find_package() (except PRIVATE and
PRIVATE_IF_SHARED), information about the found package is used to construct
a module target which represents the third party package. The preferred
mechanism is to give a list of imported targets to the LIBRARIES argument.
These will be added to the INTERFACE of the module and provide the third
party package for use within the module system.

If imported targets are not available (they really should be created if not),
variable names may be passed to INCLUDE_DIRS, LIBRARIES, and DEFINITIONS
to create the module interface.

In addition, any variables which should be forwarded from the package to the
rest of the build may be specified using the USE_VARIABLES argument.

The STANDARD_INCLUDE_DIRS argument creates an include interface for the
module target which includes the “standard” module include directories to.
Basically, the source and binary directories of the module.

Internal third party modules

Internal modules are those that may be built as part of the build. These should
ideally specify a set of LICENSE_FILES indicating the license status of the
third party code. These files will be installed along with the third party
package to aid in any licensing requirements of the code. It is also
recommended to set the VERSION argument so that it is known what version of
the code is provided at a glance.

By default, the LIBRARY_NAME of the module is used as the name of the
subdirectory to include, but this may be changed by using the SUBDIRECTORY
argument.

Header-only third party modules may be indicated by using the HEADER_ONLY
argument. Modules which represent multiple libraries at once from a project may
use the INTERFACE argument.

The STANDARD_INCLUDE_DIRS argument creates an include interface for the
module target which includes the “standard” module include directories to.
Basically, the source and binary directories of the module. A subdirectory may
be used by setting the HEADERS_SUBDIR option. It is implied for
HEADERS_ONLY third party modules.

After the subdirectory is added a target with the module’s name must exist.
However, a target is automatically created if it is HEADERS_ONLY.

Properly shipping internal third party code

There are many things that really should be done to ship internal third party
code (also known as vendoring) properly. The issue is mainly that the internal
code may conflict with other code bringing in another copy of the same package
into a process. Most platforms do not behave well in this situation.

In order to avoid conflicts at every level possible, a process called “name
mangling” should be performed. A non-exhaustive list of name manglings that
must be done to fully handle this case includes:

	moving headers to a subdirectory (to avoid compilations from finding
incompatible headers);

	changing the library name (to avoid DLL lookups from finding incompatible
copies); and

	mangling symbols (to avoid symbol lookup from confusing two copies in the
same process).

Some projects may need further work like editing CMake APIs or the like to be
mangled as well.

Moving headers and changing library names is fairly straightforward by editing
CMake code. Mangling symbols usually involves creating a header which has a
#define for each public symbol to change its name at runtime to be distinct
from another copy that may end up existing in the same process from another
project.

Typically, a header needs to be created at the module level which hides the
differences between third party code which may or may not be provided by an
external package. In this case, it is recommended that code using the third
party module use unmangled names and let the module interface and mangling
headers handle the mangling at that level.

Debugging

The module system can output debugging information about its inner workings by
using the _vtk_module_log variable. This variable is a list of “domains” to
log about, or the special ALL value causes all domains to log output. The
following domains are used in the internals of the module system:

	kit: discovery and membership of kits

	module: discovery and CONDITION results of modules

	enable: resolution of the enable status of modules

	provide: determination of module provision

	building: when building a module occurs

	testing: missing test dependencies

It is encouraged that projects expose user-friendly flags to control logging
rather than exposing _vtk_module_log directly.

Control variables

These variables do not follow the API convention and are used if set:

	_vtk_module_warnings: If enabled, “strict” warnings are generated. These
are not strictly problems, but may be used as linting for improving usage of
the module system.

	_vtk_module_log: A list of “domains” to output debugging information.

	_vtk_module_group_default_${group}: used to set a non-DEFAULT default
for group settings.

Some mechanisms use global properties instead:

	_vtk_module_autoinit_include: The file that needs to be included in order
to make the VTK_MODULE_AUTOINIT symbol available for use in the
autoinit support.

SPDX files generation

The generation of VTK module SPDX files relies on three components:

	SPDX arguments in vtk_module_build()

	SPDX arguments in each vtk.module

	SPDX Tags in the sources files

SPDX files are named after <ModuleName>.spdx and are generated for
all VTK modules.

Generated SPDX files are based on the SPDX 2.2 specification [https://spdx.dev/specifications/].

If some information is missing, VTK will warn during configuration or during build
but the SPDX file will still be generated with unknown fields being attributed a
NOASSERTION or other default value.

The collected license identifiers are joined together using AND keyword.

Similarly all collected copyright texts are joined using a new line.

SPDX arguments in vtk_module_build

Support for SPDX file generation requires to specify the following
vtk_module_build() arguments:

	GENERATE_SPDX

	SPDX_DOCUMENT_NAMESPACE

	SPDX_DOWNLOAD_LOCATION

GENERATE_SPDX is used to enable the generation and install of SPDX file for
each modules. Set this to ON to enable it.

SPDX_DOCUMENT_NAMESPACE is used as a basename for the DocumentNamespace
SPDX field. The name of the module will simply be appended to the basename.
If not provided, https://vtk.org/spdx will be used. This is the value VTK
project uses as well. Note that the namespace does not need to be an actual
website URL, but just a unique Uniform Resource Identifier (URI).

Caution

If VTK decide to host SPDX files in the future, the namespace in use for the
VTK SPDX files may change accordingly.

SPDX_DOWNLOAD_LOCATION is used as a basename for the PackageDownloadLocation
when not provided at module level. The relative path to the module will simply
be appended in order to generate the actual PackageDownloadLocation SPDX field.
If not provided at module or in vtk_module_build(), NOASSERTION
will be used.

SPDX arguments in vtk.module

Defining these three arguments in vtk.module is required:

	SPDX_LICENSE_IDENTIFIER

	SPDX_COPYRIGHT_TEXT

	SPDX_DOWNLOAD_LOCATION

SPDX_LICENSE_IDENTIFIER is an expected field corresponding to the PackageLicenseDeclared
SPDX field that is considered as the global license for all files of the
module that are not parsed during generation. This field is used to set
the PackageLicenseConcluded SPDX field.

Note

The SPDX generation system do not and cannot replace the LICENSE_FILES mechanism.
Indeed, certains license (e.g Apache 2.0) requires additional files (e.g NOTICE) to
also be distributed.

SPDX_COPYRIGHT_TEXT is an expected field that correspond to the copyright applying
to all files that are not parsed during generation, it is used to generate PackageCopyrightText.

SPDX_DOWNLOAD_LOCATION is a optional field for modules (see above for setting
this in vtk_module_build) and expected field for third parties.
If provided, it is used as is for the PackageDownloadLocation SPDX field.

SPDX arguments in vtk_module_add_module

It is possible to specify a SPDX_SKIP_REGEX when adding a module in order
to skip specific file during SPDX tags parsing.
It is a python regex which is used to match with the filename of the source files.

Custom license support

If the VTK module contains a custom license that is not part of the SPDX license list [https://spdx.org/licenses/]
then adding a custom license may be needed.

The SPDX generation system support to specify exactly one custom license by module, supplemental to standard licenses.
The text of this license should be made available in a file and added to the module definition using SPDX_CUSTOM_LICENSE_FILE
, the name of the license should be specified using SPDX_CUSTOM_LICENSE_NAME (eg: LicenseName and the SPDX_LICENSE_IDENTIFIER for this license
should be LicenseRef- followed by the name (eg: LicenseRef-licenseName). See this entry for more info.

Note

If this custom license is to be added to VTK proper, it must be compatible with the BSD-3-Clause license of VTK and
not add more restriction to the code.

SPDX Tags in the sources files

For VTK modules (except the one declared as THIRD_PARTY), sources files
are parsed for specific SPDX tags in a specific order.

First N lines of with the the SPDX-FileCopyrightText tag, then one line with
the SPDX-License-Identifier tag. Like this:

// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: BSD-3-Clause

If a source file does not contain both SPDX-FileCopyrightText and SPDX-License-Identifier
tags, a warning at build time is reported.

Limitations

	Correctness of the SPDX-FileCopyrightText and SPDX-License-Identifier tags is not ensured. The value
will be used as is.

	The generated SPDX files only include the Package information [https://spdx.github.io/spdx-spec/v2.2.2/package-information/]
section. This means that there are no File information [https://spdx.github.io/spdx-spec/v2.2.2/file-information/] sections
describing source files or build artifacts.

	Third party source files are not parsed for SPDX tags.

	Adding empty lines between // SPDX-FileCopyrightText and // SPDX-License-Identifier
tags is not supported.

	Certain files are not parsed at all, eg: cmake files, python files, test files, …

 vtkModule

vtkModule

	
_vtk_module_debug

	Conditionally output debug statements
module-internal

The _vtk_module_debug() function is provided to assist in debugging. It is
controlled by the _vtk_module_log variable which contains a list of “domains”
to debug.

_vtk_module_debug(<domain> <format>)

If the domain is enabled for debugging, the format argument is configured
and printed. It should contain @ variable expansions to replace rather than
it being done outside. This helps to avoid the cost of generating large strings
when debugging is disabled.

	
vtk_module_find_kits

	Find vtk.kit files in a set of directories
module

vtk_module_find_kits(<output> [<directory>...])

This scans the given directories recursively for vtk.kit files and put the
paths into the output variable.

	
vtk_module_find_modules

	Find vtk.module files in a set of directories
module

vtk_module_find_modules(<output> [<directory>...])

This scans the given directories recursively for vtk.module files and put the
paths into the output variable. Note that module files are assumed to live next
to the CMakeLists.txt file which will build the module.

	
_vtk_module_split_module_name

	Split a module name into a namespace and target component
module-internal

Module names may include a namespace. This function splits the name into a
namespace and target name part.

_vtk_module_split_module_name(<name> <prefix>)

The <prefix>_NAMESPACE and <prefix>_TARGET_NAME variables will be set in
the calling scope.

	
_vtk_module_optional_dependency_exists

	Detect whether an optional dependency exists or not.
module-internal

Optional dependencies need to be detected
namespace and target name part.

_vtk_module_optional_dependency_exists(<dependency>
 SATISFIED_VAR <var>)

The result will be returned in the variable specified by SATISFIED_VAR.

vtk.module file contents

The vtk.module file is parsed and used as arguments to a CMake function which
stores information about the module for use when building it. Note that no
variable expansion is allowed and it is not CMake code, so no control flow is
allowed. Comments are supported and any content after a # on a line is
treated as a comment. Due to the breakdown of the content, quotes are not
meaningful within the files.

Example:

NAME
 VTK::CommonCore
LIBRARY_NAME
 vtkCommonCore
DESCRIPTION
 The base VTK library.
LICENSE_FILES
 Copyright.txt
SPDX_COPYRIGHT_TEXT
 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
SPDX_LICENSE_IDENTIFIER
 BSD-3-Clause
GROUPS
 StandAlone
DEPENDS
 VTK::kwiml
PRIVATE_DEPENDS
 VTK::vtksys
 VTK::utf8

All values are optional unless otherwise noted. The following arguments are
supported:

	NAME: (Required) The name of the module.

	LIBRARY_NAME: The base name of the library file. It defaults to the
module name, but any namespaces are removed. For example, a NS::Foo
module will have a default LIBRARY_NAME of Foo.

	DESCRIPTION: (Recommended) Short text describing what the module is for.

	KIT: The name of the kit the module belongs to (see Kits files for more
information).

	IMPLEMENTABLE: If present, the module contains logic which supports the
autoinit functionality.

	GROUPS: Modules may belong to “groups” which is exposed as a build
option. This allows for enabling a set of modules with a single build
option.

	CONDITION: Arguments to CMake’s if command which may be used to hide
the module for certain platforms or other reasons. If the expression is
false, the module is completely ignored.

	DEPENDS: A list of modules which are required by this module and modules
using this module.

	PRIVATE_DEPENDS: A list of modules which are required by this module, but
not by those using this module.

	OPTIONAL_DEPENDS: A list of modules which are used by this module if
enabled; these are treated as PRIVATE_DEPENDS if they exist.

	ORDER_DEPENDS: Dependencies which only matter for ordering. This does not
mean that the module will be enabled, just guaranteed to build before this
module.

	IMPLEMENTS: A list of modules for which this module needs to register
with.

	TEST_DEPENDS: Modules required by the test suite for this module.

	TEST_OPTIONAL_DEPENDS: Modules used by the test suite for this module if
available.

	TEST_LABELS: Labels to apply to the tests of this module. By default, the
module name is applied as a label.

	EXCLUDE_WRAP: If present, this module should not be wrapped in any
language.

	INCLUDE_MARSHAL: If present, this module opts into automatic code generation
of (de)serializers. This option requires that the module is not excluded from wrapping
with EXCLUDE_WRAP.

	THIRD_PARTY: If present, this module is a third party module.

	LICENSE_FILES: A list of license files to install for the module.

	SPDX_LICENSE_IDENTIFIER: A license identifier for SPDX file generation.

	SPDX_DOWNLOAD_LOCATION: A download location for the SPDX file generation.

	SPDX_COPYRIGHT_TEXT: A copyright text for the SPDX file generation.

	SPDX_CUSTOM_LICENSE_FILE: A relative path to a single custom license file to include in generated SPDX file.

	SPDX_CUSTOM_LICENSE_NAME: The name of the single custom license, without the LicenseRef-

	
_vtk_module_parse_module_args

	Parse vtk.module file contents

module-impl

This macro places all vtk.module keyword “arguments” into the caller’s scope
prefixed with the value of name_output which is set to the NAME of the
module.

_vtk_module_parse_module_args(name_output <vtk.module args...>)

For example, this vtk.module file:

NAME
 Namespace::Target
LIBRARY_NAME
 nsTarget

called with _vtk_module_parse_module_args(name ...) will set the following
variables in the calling scope:

	name: Namespace::Target

	Namespace::Target_LIBRARY_NAME: nsTarget

With namespace support for module names, the variable should instead be
referenced via ${${name}_LIBRARY_NAME} instead.

vtk.kit file contents

The vtk.kit file is parsed similarly to vtk.module files. Kits are intended
to bring together related modules into a single library in order to reduce the
number of objects that linkers need to deal with.

Example:

NAME
 VTK::Common
LIBRARY_NAME
 vtkCommon
DESCRIPTION
 Core utilities for VTK.

All values are optional unless otherwise noted. The following arguments are
supported:

	NAME: (Required) The name of the kit.

	LIBRARY_NAME: The base name of the library file. It defaults to the
module name, but any namespaces are removed. For example, a NS::Foo
module will have a default LIBRARY_NAME of Foo.

	DESCRIPTION: (Recommended) Short text describing what the kit contains.

	
_vtk_module_parse_kit_args

	Parse vtk.kit file contents
module-impl

Just like _vtk_module_parse_module_args(), but for kits.

Enable status values

Modules and groups are enable and disable preferences are specified using a
5-way flag setting:

	YES: The module or group must be built.

	NO: The module or group must not be built.

	WANT: The module or group should be built if possible.

	DONT_WANT: The module or group should only be built if required (e.g.,
via a dependency).

	DEFAULT: Acts as either WANT or DONT_WANT based on the group settings
for the module or WANT_BY_DEFAULT option to vtk_module_scan() if no
other preference is specified. This is usually handled via another setting
in the main project.

If a YES module preference requires a module with a NO preference, an error
is raised.

A module with a setting of DEFAULT will look for its first non-DEFAULT
group setting and only if all of those are set to DEFAULT is the
WANT_BY_DEFAULT setting used.

	
_vtk_module_verify_enable_value

	Verify enable values
module-impl

Verifies that the variable named as the first parameter is a valid enable
status value.

_vtk_module_verify_enable_value(var)

	
vtk_module_scan

	Scan modules and kits
module

Once all of the modules and kits files have been found, they are “scanned” to
determine what modules are enabled or required.

vtk_module_scan(
 MODULE_FILES <file>...
 [KIT_FILES <file>...]
 PROVIDES_MODULES <variable>
 [PROVIDES_KITS <variable>]
 [REQUIRES_MODULES <variable>]
 [REQUEST_MODULES <module>...]
 [REJECT_MODULES <module>...]
 [UNRECOGNIZED_MODULES <variable>]
 [WANT_BY_DEFAULT <ON|OFF>]
 [HIDE_MODULES_FROM_CACHE <ON|OFF>]
 [ENABLE_TESTS <ON|OFF|WANT|DEFAULT>])

The MODULE_FILES and PROVIDES_MODULES arguments are required. Modules which
refer to kits must be scanned at the same time as their kits. This is so that
modules may not add themselves to kits declared prior. The arguments are as follows:

	MODULE_FILES: (Required) The list of module files to scan.

	KIT_FILES: The list of kit files to scan.

	PROVIDES_MODULES: (Required) This variable will contain the list of
modules which are enabled due to this scan.

	PROVIDES_KITS: (Required if KIT_FILES are provided) This variable will
contain the list of kits which are enabled due to this scan.

	REQUIRES_MODULES: This variable will contain the list of modules required
by the enabled modules that were not scanned.

	REQUEST_MODULES: The list of modules required by previous scans.

	REJECT_MODULES: The list of modules to exclude from the scan. If any of
these modules are required, an error will be raised.

	UNRECOGNIZED_MODULES: This variable will contain the list of requested
modules that were not scanned.

	WANT_BY_DEFAULT: (Defaults to OFF) Whether modules should default to
being built or not.

	HIDE_MODULES_FROM_CACHE: (Defaults to OFF) Whether or not to hide the
control variables from the cache or not. If enabled, modules will not be
built unless they are required elsewhere.

	ENABLE_TESTS: (Defaults to DEFAULT) Whether or not modules required by
the tests for the scanned modules should be enabled or not.

	ON: Modules listed as TEST_DEPENDS will be required.

	OFF: Test modules will not be considered.

	WANT: Test dependencies will enable modules if possible. Note that this
has known issues where modules required only via testing may not have
their dependencies enabled.

	DEFAULT: Test modules will be enabled if their required dependencies
are satisfied and skipped otherwise.

To make error messages clearer, modules passed to REQUIRES_MODULES and
REJECT_MODULES may have a _vtk_module_reason_<MODULE> variable set to the
reason for the module appearing in either argument. For example, if the
Package::Frobnitz module is required due to a ENABLE_FROBNITZ cache
variable:

set("_vtk_module_reason_Package::Frobnitz"
 "via the `ENABLE_FROBNITZ` setting")

Additionally, the reason for the WANT_BY_DEFAULT value may be provided via
the _vtk_module_reason_WANT_BY_DEFAULT variable.

Scanning multiple groups of modules

When scanning complicated projects, multiple scans may be required to get
defaults set properly. The REQUIRES_MODULES, REQUEST_MODULES, and
UNRECOGNIZED_MODULES arguments are meant to deal with this case. As an
example, imagine a project with its source code, third party dependencies, as
well as some utility modules which should only be built as necessary. Here, the
project would perform three scans, one for each “grouping” of modules:

Scan our modules first because we need to know what of the other groups we
need.
vtk_module_find_modules(our_modules "${CMAKE_CURRENT_SOURCE_DIR}/src")
vtk_module_scan(
 MODULE_FILES ${our_modules}
 PROVIDES_MODULES our_enabled_modules
 REQUIRES_MODULES required_modules)

Scan the third party modules, requesting only those that are necessary, but
allowing them to be toggled during the build.
vtk_module_find_modules(third_party_modules "${CMAKE_CURRENT_SOURCE_DIR}/third-party")
vtk_module_scan(
 MODULE_FILES ${third_party_modules}
 PROVIDES_MODULES third_party_enabled_modules
 # These modules were requested by an earlier scan.
 REQUEST_MODULES ${required_modules}
 REQUIRES_MODULES required_modules
 UNRECOGNIZED_MODULES unrecognized_modules)

These modules are internal and should only be built if necessary. There is no
need to support them being enabled independently, so hide them from the
cache.
vtk_module_find_modules(utility_modules "${CMAKE_CURRENT_SOURCE_DIR}/utilities")
vtk_module_scan(
 MODULE_FILES ${utility_modules}
 PROVIDES_MODULES utility_enabled_modules
 # These modules were either requested or unrecognized by an earlier scan.
 REQUEST_MODULES ${required_modules}
 ${unrecognized_modules}
 REQUIRES_MODULES required_modules
 UNRECOGNIZED_MODULES unrecognized_modules
 HIDE_MODULES_FROM_CACHE ON)

if (required_modules OR unrecognized_modules)
 # Not all of the modules we required were found. This should probably error out.
endif ()

Module-as-target functions

Due to the nature of VTK modules supporting being built as kits, the module
name might not be usable as a target to CMake’s target_ family of commands.
Instead, there are various wrappers around them which take the module name as
an argument. These handle the forwarding of relevant information to the kit
library as well where necessary.

	vtk_module_set_properties()

	vtk_module_set_property()

	vtk_module_get_property()

	vtk_module_depend()

	vtk_module_include()

	vtk_module_definitions()

	vtk_module_compile_options()

	vtk_module_compile_features()

	vtk_module_link()

	vtk_module_link_options()

Module target internals

When manipulating modules as targets, there are a few functions provided for
use in wrapping code to more easily access them.

	_vtk_module_real_target()

	_vtk_module_real_target_kit()

	
_vtk_module_real_target

	

The real target for a module
module-internal

_vtk_module_real_target(<var> <module>)

Sometimes the actual, core target for a module is required (e.g., setting
CMake-level target properties or install rules). This function returns the real
target for a module.

	
_vtk_module_real_target_kit

	The real target for a kit module-internal

_vtk_module_real_target_kit(<var> <kit>)

Sometimes the actual, core target for a module is required (e.g., setting
CMake-level target properties or install rules). This function returns the real
target for a kit.

	
vtk_module_set_properties

	Set multiple properties on a module
module

A wrapper around set_target_properties that works for modules.

vtk_module_set_properties(<module>
 [<property> <value>]...)

	
vtk_module_set_property

	Set a property on a module. module

A wrapper around set_property(TARGET) that works for modules.

vtk_module_set_property(<module>
 [APPEND] [APPEND_STRING]
 PROPERTY <property>
 VALUE <value>...)

	
vtk_module_get_property

	Get a property from a module
module

A wrapper around get_property(TARGET) that works for modules.

vtk_module_get_property(<module>
 PROPERTY <property>
 VARIABLE <variable>)

The variable name passed to the VARIABLE argument will be unset if the
property is not set (rather than the empty string).

	
_vtk_module_target_function

	Generate arguments for target function wrappers module-impl

Create the INTERFACE, PUBLIC, and PRIVATE arguments for a function
wrapping CMake’s target_ functions to call the wrapped function.

This is necessary because not all of the functions support empty lists given a
keyword.

	
vtk_module_depend

	Add dependencies to a module module

A wrapper around add_dependencies that works for modules.

vtk_module_depend(<module> <depend>...)

	
vtk_module_sources

	Add source files to a module. module

A wrapper around target_sources that works for modules.

vtk_module_sources(<module>
 [PUBLIC <source>...]
 [PRIVATE <source>...]
 [INTERFACE <source>...])

	
vtk_module_include

	Add include directories to a module
module

A wrapper around target_include_directories that works for modules.

vtk_module_include(<module>
 [SYSTEM]
 [PUBLIC <directory>...]
 [PRIVATE <directory>...]
 [INTERFACE <directory>...])

	
vtk_module_definitions

	Add compile definitions to a module. module

A wrapper around target_compile_definitions that works for modules.

vtk_module_definitions(<module>
 [PUBLIC <define>...]
 [PRIVATE <define>...]
 [INTERFACE <define>...])

	
vtk_module_compile_options

	Add compile options to a module. module

A wrapper around target_compile_options that works for modules.

vtk_module_compile_options(<module>
 [PUBLIC <option>...]
 [PRIVATE <option>...]
 [INTERFACE <option>...])

	
vtk_module_compile_features

	Add compile features to a module. module

A wrapper around target_compile_features that works for modules.

vtk_module_compile_features(<module>
 [PUBLIC <feature>...]
 [PRIVATE <feature>...]
 [INTERFACE <feature>...])

	
_vtk_private_kit_link_target

	Manage the private link target for a module. module-impl

This function manages the private link target for a module.

_vtk_private_kit_link_target(<module>
 [CREATE_IF_NEEDED]
 [SETUP_TARGET_NAME <var>]
 [USAGE_TARGET_NAME <var>])

	
vtk_module_link

	Add link libraries to a module. module

A wrapper around target_link_libraries that works for modules. Note that this
function does extra work in kit builds, so circumventing it may break in kit
builds.

The NO_KIT_EXPORT_IF_SHARED argument may be passed to additionally prevent
leaking PRIVATE link targets from kit builds. Intended to be used for
targets coming from a vtk_module_find_package(PRIVATE_IF_SHARED) call.
Applies to all PRIVATE arguments; if different treatment is needed for
subsets of these arguments, use a separate call to vtk_module_link.

vtk_module_link(<module>
 [NO_KIT_EXPORT_IF_SHARED]
 [PUBLIC <link item>...]
 [PRIVATE <link item>...]
 [INTERFACE <link item>...])

	
vtk_module_link_options

	Add link options to a module. module

A wrapper around target_link_options that works for modules.

vtk_module_link_options(<module>
 [PUBLIC <option>...]
 [PRIVATE <option>...]
 [INTERFACE <option>...])

Module properties

module-internal

The VTK module system leverages CMake’s target propagation and storage. As
such, there are a number of properties added to the targets representing
modules. These properties are intended for use by the module system and
associated functionality. In particular, more properties may be available by
language wrappers.

Naming properties

When creating properties for use with the module system, they should be
prefixed with INTERFACE_vtk_module_. The INTERFACE_ portion is required in
order to work with interface libraries. The vtk_module_ portion is to avoid
colliding with any other properties. This function assumes this naming scheme
for some of its convenience features as well.

Properties should be the same in the local build as well as when imported to
ease use.

VTK module system properties

There are a number of properties that are used and expected by the core of the
module system. These are generally module metadata (module dependencies,
whether to wrap or not, etc.). The properties all have the
INTERFACE_vtk_module_ prefix mentioned in the previous section.

	third_party: If set, the module represents a third party
dependency and should be treated specially. Third party modules are very
restricted and generally do not have any other properties set on them.

	exclude_wrap: If set, the module should not be wrapped by an external
language.

	depends: The list of dependent modules. Language wrappers will generally
require this to satisfy references to parent classes of the classes in the
module.

	private_depends: The list of privately dependent modules. Language
wrappers may require this to satisfy references to parent classes of the
classes in the module.

	optional_depends: The list of optionally dependent modules. Language
wrappers may require this to satisfy references to parent classes of the
classes in the module.

	kit: The kit the module is a member of. Only set if the module is
actually a member of the kit (i.e., the module was built with
BUILD_WITH_KITS ON).

	implements: The list of modules for which this module registers to. This
is used by the autoinit subsystem and generally is not required.

	implementable: If set, this module provides registries which may be
populated by dependent modules. It is used to check the implements
property to help minimize unnecessary work from the autoinit subsystem.

	needs_autoinit: If set, linking to this module requires the autoinit
subsystem to ensure that registries in modules are fully populated.

	headers: Paths to the public headers from the module. These are the
headers which should be handled by language wrappers.

	hierarchy: The path to the hierarchy file describing inheritance of the
classes for use in language wrappers.

	
	forward_link: Usage requirements that must be forwarded even though the
	module is linked to privately.

	include_marshal: If set, the whole module opts into automatic code generation
of (de)serializers. Note that only classes annotated with VTK_MARSHALAUTO are
considered for code generation.

Kits have the following properties available (but only if kits are enabled):

	kit_modules: Modules which are compiled into the kit.

	
_vtk_module_set_module_property

	Set a module property. module-internal

This function sets a module property on a module. The
required prefix will automatically be added to the passed name.

_vtk_module_set_module_property(<module>
 [APPEND] [APPEND_STRING]
 PROPERTY <property>
 VALUE <value>...)

	
_vtk_module_get_module_property

	Get a module property. module-internal

Get a module property from a module.

_vtk_module_get_module_property(<module>
 PROPERTY <property>
 VARIABLE <variable>)

As with vtk_module_get_property(), the output variable will be unset if the
property is not set. The property name is automatically prepended with the
required prefix.

	
_vtk_module_check_destinations

	Check that destinations are valid. module-internal

All installation destinations are expected to be relative so that
CMAKE_INSTALL_PREFIX can be relied upon in all code paths. This function may
be used to verify that destinations are relative.

_vtk_module_check_destinations(<prefix> [<suffix>...])

For each suffix, prefix is prefixed to it and the resulting variable name
is checked for validity as an install prefix. Raises an error if any is
invalid.

	
_vtk_module_write_import_prefix

	Write an import prefix statement. module-internal

CMake files, once installed, may need to construct paths to other locations
within the install prefix. This function writes a prefix computation for file
given its install destination.

_vtk_module_write_import_prefix(<file> <destination>)

The passed file is cleared so that it occurs at the top of the file. The prefix
is available in the file as the _vtk_module_import_prefix variable. It is
recommended to unset the variable at the end of the file.

	
_vtk_module_export_properties

	Export properties on modules and targets. module-internal

This function is intended for use in support functions which leverage the
module system, not by general system users. This function supports exporting
properties from the build into dependencies via target properties which are
loaded from a project’s config file which is loaded via CMake’s find_package
function.

_vtk_module_export_properties(
 [MODULE <module>]
 [KIT <kit>]
 BUILD_FILE <path>
 INSTALL_FILE <path>
 [PROPERTIES <property>...]
 [FROM_GLOBAL_PROPERTIES <property fragment>...]
 [SPLIT_INSTALL_PROPERTIES <property fragment>...])

The BUILD_FILE and INSTALL_FILE arguments are required. Exactly one of
MODULE and KIT is also required. The MODULE or KIT argument holds the
name of the module or kit that will have properties exported. The BUILD_FILE
and INSTALL_FILE paths are appended to. As such, when setting up these
files, it should be preceded with:

file(WRITE "${build_file}")
file(WRITE "${install_file}")

To avoid accidental usage of the install file from the build tree, it is
recommended to store it under a CMakeFiles/ directory in the build tree with
an additional .install suffix and use install(RENAME) to rename it at
install time.

The set of properties exported is computed as follows:

	PROPERTIES queries the module target for the given property and exports
its value as-is to both the build and install files. In addition, these
properties are set on the target directly as the same name.

	FROM_GLOBAL_PROPERTIES queries the global
_vtk_module_<MODULE>_<fragment> property and exports it to both the build
and install files as INTERFACE_vtk_module_<fragment>.

	SPLIT_INSTALL_PROPERTIES queries the target for
INTERFACE_vtk_module_<fragment> and exports its value to the build file
and INTERFACE_vtk_module_<fragment>_install to the install file as the
non-install property name. This is generally useful for properties which
change between the build and installation.

	
vtk_module_build

	Build modules and kits. module

Once all of the modules have been scanned, they need to be built. Generally,
there will be just one build necessary for a set of scans, though they may be
built distinctly as well. If there are multiple calls to this function, they
should generally in reverse order of their scans.

vtk_module_build(
 MODULES <module>...
 [KITS <kit>...]

 [LIBRARY_NAME_SUFFIX <suffix>]
 [VERSION <version>]
 [SOVERSION <soversion>]

 [PACKAGE <package>]

 [BUILD_WITH_KITS <ON|OFF>]

 [ENABLE_WRAPPING <ON|OFF>]
 [ENABLE_SERIALIZATION <ON|OFF>]

 [USE_EXTERNAL <ON|OFF>]

 [INSTALL_HEADERS <ON|OFF>]
 [HEADERS_COMPONENT <component>]
 [HEADERS_EXCLUDE_FROM_ALL <ON|OFF>]
 [USE_FILE_SETS <ON|OFF>]

 [TARGETS_COMPONENT <component>]
 [INSTALL_EXPORT <export>]

 [TARGET_SPECIFIC_COMPONENTS <ON|OFF>]

 [LICENSE_COMPONENT <component>]

 [UTILITY_TARGET <target>]

 [TEST_DIRECTORY_NAME <name>]
 [TEST_DATA_TARGET <target>]
 [TEST_INPUT_DATA_DIRECTORY <directory>]
 [TEST_OUTPUT_DATA_DIRECTORY <directory>]
 [TEST_OUTPUT_DIRECTORY <directory>]

 [GENERATE_SPDX <ON|OFF>]
 [SPDX_COMPONENT <component>]
 [SPDX_DOCUMENT_NAMESPACE <uri>]
 [SPDX_DOWNLOAD_LOCATION <url>]

 [ARCHIVE_DESTINATION <destination>]
 [HEADERS_DESTINATION <destination>]
 [LIBRARY_DESTINATION <destination>]
 [RUNTIME_DESTINATION <destination>]
 [CMAKE_DESTINATION <destination>]
 [LICENSE_DESTINATION <destination>]
 [HIERARCHY_DESTINATION <destination>])

The only requirement of the function is the list of modules to build, the rest
have reasonable defaults if not specified.

	MODULES: (Required) The list of modules to build.

	KITS: (Required if BUILD_WITH_KITS is ON) The list of kits to build.

	LIBRARY_NAME_SUFFIX: (Defaults to "") A suffix to add to library names.
If it is not empty, it is prefixed with - to separate it from the kit
name.

	VERSION: If specified, the VERSION property on built libraries will be
set to this value.

	SOVERSION: If specified, the SOVERSION property on built libraries will
be set to this value.

	PACKAGE: (Defaults to ${CMAKE_PROJECT_NAME}) The name the build is
meant to be found as when using find_package. Note that separate builds
will require distinct PACKAGE values.

	BUILD_WITH_KITS: (Defaults to OFF) If enabled, kit libraries will be
built.

	ENABLE_WRAPPING: (Default depends on the existence of
VTK::WrapHierarchy or VTKCompileTools::WrapHierarchy targets) If
enabled, wrapping will be available to the modules built in this call.

	ENABLE_SERIALIZATION: (Defaults to OFF) If enabled, (de)serialization
code will be autogenerated for classes with the correct wrapping hints.

	USE_EXTERNAL: (Defaults to OFF) Whether third party modules should find
external copies rather than building their own copy.

	INSTALL_HEADERS: (Defaults to ON) Whether or not to install public headers.

	HEADERS_COMPONENT: (Defaults to development) The install component to
use for header installation. Note that other SDK-related bits use the same
component (e.g., CMake module files).

	HEADERS_EXCLUDE_FROM_ALL: (Defaults to OFF) Whether to install the headers
component in ALL or not.

	USE_FILE_SETS: (Defaults to OFF) Whether to use FILE_SET source
specification or not.

	TARGETS_COMPONENT: Defaults to ``runtime) The install component to use
for the libraries built.

	TARGET_SPECIFIC_COMPONENTS: (Defaults to OFF) If ON, place artifacts
into target-specific install components (<TARGET>-<COMPONENT>).

	LICENSE_COMPONENT: (Defaults to licenses) The install component to use
for licenses.

	UTILITY_TARGET: If specified, all libraries and executables made by the
VTK Module API will privately link to this target. This may be used to
provide things such as project-wide compilation flags or similar.

	TARGET_NAMESPACE: Defaults to ``\<AUTO\>) The namespace for installed
targets. All targets must have the same namespace. If set to \<AUTO\>,
the namespace will be detected automatically.

	INSTALL_EXPORT: (Defaults to "") If non-empty, targets will be added to
the given export. The export will also be installed as part of this build
command.

	TEST_DIRECTORY_NAME: (Defaults to Testing) The name of the testing
directory to look for in each module. Set to NONE to disable automatic
test management.

	TEST_DATA_TARGET: (Defaults to <PACKAGE>-data) The target to add
testing data download commands to.

	TEST_INPUT_DATA_DIRECTORY: (Defaults to
${CMAKE_CURRENT_SOURCE_DIR}/Data) The directory which will contain data
for use by tests.

	TEST_OUTPUT_DATA_DIRECTORY: (Defaults to
${CMAKE_CURRENT_BINARY_DIR}/Data) The directory which will contain data
for use by tests.

	TEST_OUTPUT_DIRECTORY: (Defaults to
${CMAKE_BINARY_DIR}/<TEST_DIRECTORY_NAME>/Temporary) The directory which
tests may write any output files to.

	GENERATE_SPDX: (Defaults to OFF) Whether or not to generate and install
SPDX file for each modules and third parties.

	SPDX_COMPONENT: (Defaults to spdx) The install component to use
for SPDX files.

	SPDX_DOCUMENT_NAMESPACE: (Defaults to "") Document namespace to use when
generating SPDX files.

	SPDX_DOWNLOAD_LOCATION: (Defaults to "") Download location to use when
generating SPDX files.

The remaining arguments control where to install files related to the build.
See CMake documentation for the difference between ARCHIVE, LIBRARY, and
RUNTIME.

	ARCHIVE_DESTINATION: (Defaults to ${CMAKE_INSTALL_LIBDIR}) The install
destination for archive files.

	HEADERS_DESTINATION: (Defaults to ${CMAKE_INSTALL_INCLUDEDIR}) The
install destination for header files.

	LIBRARY_DESTINATION: (Defaults to ${CMAKE_INSTALL_LIBDIR}) The install
destination for library files.

	RUNTIME_DESTINATION: (Defaults to ${CMAKE_INSTALL_BINDIR}) The install
destination for runtime files.

	CMAKE_DESTINATION: (Defaults to <LIBRARY_DESTINATION>/cmake/<PACKAGE>)
The install destination for CMake files.

	LICENSE_DESTINATION: (Defaults to ${CMAKE_INSTALL_DATAROOTDIR}/licenses/${CMAKE_PROJECT_NAME})
The install destination for license files.

	SPDX_DESTINATION: (Defaults to ${CMAKE_INSTALL_DATAROOTDIR}/doc/${CMAKE_PROJECT_NAME}/spdx/)
The install destination for SPDX files.

	HIERARCHY_DESTINATION: (Defaults to
<LIBRARY_DESTINATION>/vtk/hierarchy/<PACKAGE>) The install destination
for hierarchy files (used for language wrapping).

	
_vtk_module_standard_includes

	Add “standard” include directories to a module. module-impl

Add the “standard” includes for a module to its interface. These are the source
And build directories for the module itself. They are always either PUBLIC or
INTERFACE (depending on the module’s target type).

_vtk_module_standard_includes(
 [SYSTEM]
 [INTERFACE]
 TARGET <target>
 [HEADERS_DESTINATION <destination>])

	
_vtk_module_default_library_name

	Determine the default export macro for a module. module-impl

Determines the export macro to be used for a module from its metadata. Assumes
it is called from within a vtk_module_build call().

_vtk_module_default_library_name(<varname>)

Autoinit

module

When a module contains a factory which may be populated by other modules, these
factories need to be populated when the modules are loaded by the dynamic linker
(for shared builds) or program load time (for static builds). To provide for
this, the module system contains an autoinit “subsystem”.

Leveraging the autoinit subsystem

The subsystem provides the following hooks for use by projects:

	In modules which IMPLEMENTS other modules, in the generated
<module>Module.h header (which provides export symbols as well) will
include the modules which are implemented.

	In modules which are IMPLEMENTABLE or IMPLEMENTS another module, the
generated <module>Module.h file will include the following block:

#ifdef <module>_AUTOINIT_INCLUDE
#include <module>_AUTOINIT_INCLUDE
#endif
#ifdef <module>_AUTOINIT
#include <header>
VTK_MODULE_AUTOINIT(<module>)
#endif

The vtk_module_autoinit() function will generate an include file and provide
its path via the <module>_AUTOINIT_INCLUDE define. once it has been included,
if the <module>_AUTOINIT symbol is defined, a header is included which is
intended to provide the VTK_MODULE_AUTOINIT macro. This macro is given the
module name and should use <module>_AUTOINIT to fill in the factories in the
module with those from the IMPLEMENTS modules listed in that symbol.

The <module>_AUTOINIT symbol’s value is:

<count>(<module1>,<module2>,<module3>)

where <count> is the number of modules in the parentheses and each module
listed need to register something to <module>.

If not provided via the AUTOINIT_INCLUDE argument to the
vtk_module_add_module() function, the header to use is fetched from the
_vtk_module_autoinit_include global property. This only needs to be managed
in modules that IMPLEMENTS or are IMPLEMENTABLE. This should be provided by
projects using the module system at its lowest level. Projects not implementing
the VTK_MODULE_AUTOINIT macro should have its value provided by
find_package dependencies in some way.

	
vtk_module_autoinit

	Linking to autoinit-using modules. module

When linking to modules, in order for the autoinit system to work, modules need
to declare their registration. In order to do this, defines may need to be
provided to targets in order to trigger registration. These defines may be
added to targets by using this function.

vtk_module_autoinit(
 TARGETS <target>...
 MODULES <module>...)

After this call, the targets given to the TARGETS argument will gain the
preprocessor definitions to trigger registrations properly.

	
_vtk_module_depfile_args

	Compute supported depfile tracking arguments. module-internal

Support for add_custom_command(DEPFILE) has changed over the CMake
timeline. Generate the required arguments as supported for the current CMake
version and generator.

_vtk_module_depfile_args(
 [MULTI_CONFIG_NEEDS_GENEX]
 TOOL_ARGS <variable>
 CUSTOM_COMMAND_ARGS <variable>
 DEPFILE_PATH <path>
 [SOURCE <path>]
 [SOURCE_LANGUAGE <lang>]
 [DEPFILE_NO_GENEX_PATH <path>]
 [TOOL_FLAGS <flag>...])

The arguments to pass to the tool are returned in the variable given to
TOOL_ARGS while the arguments for add_custom_command itself are
returned in the variable given to CUSTOM_COMMAND_ARGS. DEPFILE_PATH
is the path to the depfile to use. If a generator expression can optionally
be used, DEPFILE_NO_GENEX_PATH can be specified as a fallback in case of
no generator expression support (unless MULTI_CONFIG_NEEDS_GENEX is
specified and a multi-config generator is used). TOOL_FLAGS specifies the
flags the tool needs to specify the depfile if used. If support is not
available, the path given to SOURCE is used for IMPLICIT_DEPENDS
using SOURCE_LANGUAGE (which defaults to CXX).

	
_vtk_module_write_wrap_hierarchy

	Generate the hierarchy for a module. module-impl

Write wrap hierarchy files for the module currently being built. This also
installs the hierarchy file for use by dependent projects if INSTALL_HEADERS
is set. This function honors the HEADERS_COMPONENT, and
HEADERS_EXCLUDE_FROM_ALL arguments to vtk_module_build().

_vtk_module_write_wrap_hierarchy()

	
_vtk_module_add_file_set

	Add a file set to a target. module-internal

_vtk_module_add_file_set(<target>
 NAME <name>
 [VIS <visibility>]
 [TYPE <type>]
 [BASE_DIRS <base directory>...]
 FILES
 [members...])

Add a file set to the <target> named <name>.

	NAME: The name of the file set.

	VIS: The visibility of the file set. Defaults to PRIVATE.
Must be a valid CMake visibility (PUBLIC, PRIVATE, or
INTERFACE).

	TYPE: The type of the file set. Defaults to HEADERS. File sets
types that are recognized and known to not be supported by the CMake
version in use will be added as PRIVATE sources not part of any file
set.

	BASE_DIRS: Base directories for the files. Defaults to
${CMAKE_CURRENT_SOURCE_DIR} and ${CMAKE_CURRENT_BINARY_DIR} if not
specified.

	FILES: The paths to add to the file set.

Note that prior to CMake 3.19, usage of FILE_SET with INTERFACE
targets is severely restricted and instead this function will do nothing. Any
PUBLIC files specified this way need installed using standard mechanisms.

	
vtk_module_add_module

	Create a module library. module

vtk_module_add_module(<name>
 [NO_INSTALL] [FORCE_STATIC|FORCE_SHARED]
 [HEADER_ONLY] [HEADER_DIRECTORIES]
 [EXPORT_MACRO_PREFIX <prefix>]
 [HEADERS_SUBDIR <subdir>]
 [LIBRARY_NAME_SUFFIX <suffix>]
 [CLASSES <class>...]
 [TEMPLATE_CLASSES <template class>...]
 [NOWRAP_CLASSES <nowrap class>...]
 [NOWRAP_TEMPLATE_CLASSES <nowrap template class>...]
 [SOURCES <source>...]
 [HEADERS <header>...]
 [NOWRAP_HEADERS <header>...]
 [TEMPLATES <template>...]
 [PRIVATE_CLASSES <class>...]
 [PRIVATE_TEMPLATE_CLASSES <template class>...]
 [PRIVATE_HEADERS <header>...]
 [PRIVATE_TEMPLATES <template>...]
 [SPDX_SKIP_REGEX <regex>])

The PRIVATE_ arguments are analogous to their non-PRIVATE_ arguments, but
the associated files are not installed or available for wrapping (SOURCES are
always private, so there is no PRIVATE_ variant for that argument).

	NO_INSTALL: Skip installation of the module and all its installation
artifacts. Note that if this target is used by any other target that is
exported, this option may not be used because CMake (in addition to VTK
module APIs such as vtk_module_export_find_packages and ‘ ‘) will generate
references to the target that are expected to be satisfied. It is highly
recommended to test that the build and install exports (as used) be tested
to make sure that the module is not actually referenced.

	FORCE_STATIC or FORCE_SHARED: For a static (respectively, shared)
library to be created. If neither is provided, BUILD_SHARED_LIBS will
control the library type.

	HEADER_ONLY: The module only contains headers (or templates) and contains
no compilation steps. Mutually exclusive with FORCE_STATIC.

	HEADER_DIRECTORIES: The headers for this module are in a directory
structure which should be preserved in the install tree.

	EXPORT_MACRO_PREFIX: The prefix for the export macro definitions.
Defaults to the library name of the module in all uppercase.

	HEADERS_SUBDIR: The subdirectory to install headers into in the install
tree.

	LIBRARY_NAME_SUFFIX: The suffix to the module’s library name if
additional information is required.

	CLASSES: A list of classes in the module. This is a shortcut for adding
<class>.cxx to SOURCES and <class>.h to HEADERS.

	TEMPLATE_CLASSES: A list of template classes in the module. This is a
shortcut for adding <class>.txx to TEMPLATES and <class>.h to
HEADERS.

	SOURCES: A list of source files which require compilation.

	HEADERS: A list of header files which will be available for wrapping and
installed.

	NOWRAP_CLASSES: A list of classes which will not be available for
wrapping but installed. This is a shortcut for adding <class>.cxx to
SOURCES and <class>.h to NOWRAP_HEADERS.

	NOWRAP_TEMPLATE_CLASSES: A list of template classes which will not be

	available for
wrapping but installed. This is a shortcut for adding <class>.txx to
TEMPLATES and <class>.h to NOWRAP_HEADERS.

	NOWRAP_HEADERS: A list of header files which will not be available for
wrapping but installed.

	TEMPLATES: A list of template files which will be installed.

	
	SPDX_SKIP_REGEX: A python regex to skip a file based on its name
	when parsing for SPDX headers.

	
_vtk_module_add_header_tests

	Add header tests for a module. module-impl

Todo

Move this function out to be VTK-specific, probably into
vtkModuleTesting.cmake. Each module would then need to manually call this
function. It currently assumes it is in VTK itself.

_vtk_module_add_header_tests()

	
_vtk_module_apply_properties

	Apply properties to a module. module-internal

Apply build properties to a target. Generally only useful to wrapping code or
other modules that cannot use vtk_module_add_module() for some reason.

_vtk_module_apply_properties(<target>
 [BASENAME <basename>])

If BASENAME is given, it will be used instead of the target name as the basis
for OUTPUT_NAME. Full modules (as opposed to third party or other non-module
libraries) always use the module’s LIBRARY_NAME setting.

The following target properties are set based on the arguments to the calling
vtk_module_build call()

	OUTPUT_NAME (based on the module’s LIBRARY_NAME and
vtk_module_build(LIBRARY_NAME_SUFFIX))

	VERSION (based on vtk_module_build(VERSION))

	SOVERSION (based on vtk_module_build(SOVERSION))

	DEBUG_POSTFIX (on Windows unless already set via CMAKE_DEBUG_POSTFIX)

	
_vtk_module_install

	Install a module target. module-internal

Install a target within the module context. Generally only useful to wrapping
code, modules that cannot use vtk_module_add_module() for some reason, or
modules which create utility targets that need installed.

_vtk_module_install(<target>)

This function uses the various installation options to vtk_module_build()
function to keep the install uniform.

	
vtk_module_add_executable

	Create a module executable. module

Some modules may have associated executables with them. By using this function,
the target will be installed following the options given to the associated
vtk_module_build() command. Its name will also be changed according to the
LIBRARY_NAME_SUFFIX option.

vtk_module_add_executable(<name>
 [NO_INSTALL]
 [DEVELOPMENT]
 [BASENAME <basename>]
 <source>...)

If NO_INSTALL is specified, the executable will not be installed. If
BASENAME is given, it will be used as the name of the executable rather than
the target name.

If DEVELOPMENT is given, it marks the executable as a development tool and
will not be installed if INSTALL_HEADERS is not set for the associated
vtk_module_build() command.

If the executable being built is the module, its module properties are used
rather than BASENAME. In addition, the dependencies of the module will be
linked.

	
vtk_module_find_package

	Find a package. module

A wrapper around find_package that records information for use so that the
same targets may be found when finding this package.

Modules may need to find external dependencies. CMake often provides modules to
find these dependencies, but when imported targets are involved, these.need to
also be found from dependencies of the current project. Since the benefits of
imported targets greatly outweighs not using them, it is preferred to use them.

The module system provides the vtk_module_find_package() function in order
to extend find_package support to include finding the dependencies from an
install of the project.

vtk_module_find_package(
 [PRIVATE] [PRIVATE_IF_SHARED] [CONFIG_MODE]
 PACKAGE <package>
 [VERSION <version>]
 [COMPONENTS <component>...]
 [OPTIONAL_COMPONENTS <component>...]
 [FORWARD_VERSION_REQ <MAJOR|MINOR|PATCH|EXACT>]
 [VERSION_VAR <variable>])

	PACKAGE: The name of the package to find.

	VERSION: The minimum version of the package that is required.

	COMPONENTS: Components of the package which are required.

	OPTIONAL_COMPONENTS: Components of the package which may be missing.

	FORWARD_VERSION_REQ: If provided, the found version will be promoted to
the minimum version required matching the given version scheme.

	VERSION_VAR: The variable to use as the provided version (defaults to
<PACKAGE>_VERSION). It may contain @ in which case it will be
configured. This is useful for modules which only provide components of the
actual version number.

	CONFIG_MODE: If present, pass CONFIG to the underlying find_package
call.

	PRIVATE: The dependency should not be exported to the install.

	PRIVATE_IF_SHARED: The dependency should not be exported to the install
if the module is built as a SHARED library.

The PACKAGE argument is the only required argument. The rest are optional.

Note that PRIVATE is only applicable for private dependencies on interface
targets (basically, header libraries) because some platforms require private
shared libraries dependencies to be present when linking dependent libraries
and executables as well. Such usages should additionally be used only via a
$<BUILD_INTERFACE> generator expression to avoid putting the target name into
the install tree at all.

	
vtk_module_export_find_packages

	Export find_package calls for dependencies. module

When installing a project that is meant to be found via find_package from
CMake, using imported targets in the build means that imported targets need to
be created during the find_package as well. This function writes a file
suitable for inclusion from a <package>-config.cmake file to satisfy
dependencies. It assumes that the exported targets are named
${CMAKE_FIND_PACKAGE_NAME}::${component}. Dependent packages will only be
found if a requested component requires the package to be found either directly
or transitively.

vtk_module_export_find_packages(
 CMAKE_DESTINATION <directory>
 FILE_NAME <filename>
 [COMPONENT <component>]
 MODULES <module>...)

The file will be named according to the FILE_NAME argument will be installed
into CMAKE_DESTINATION in the build and install trees with the given
filename. If not provided, the development component will be used.

The vtk_module_find_package calls made by the modules listed in MODULES
will be exported to this file.

Third party support

module

The module system acknowledges that third party support is a pain and offers
APIs to help wrangle them. Sometimes third party code needs a shim introduced
to make it behave better, so an INTERFACE library to add that in is very
useful. Other times, third party code is hard to ensure that it exists
everywhere, so it is bundled. When that happens, the ability to select between
the bundled copy and an external copy is useful. All three (and more) of these
are possible.

The following functions are used to handle third party modules:

	vtk_module_third_party()

	vtk_module_third_party_external()

	vtk_module_third_party_internal()

	
vtk_module_third_party

	Third party module.|module|

When a project has modules which represent third party packages, there are some
convenience functions to help deal with them. First, there is the meta-wrapper:

vtk_module_third_party(
 [INTERNAL <internal arguments>...]
 [EXTERNAL <external arguments>...])

This offers a cache variable named VTK_MODULE_USE_EXTERNAL_<module name> that
may be set to trigger between the internal copy and an externally provided
copy. This is available as a local variable named
VTK_MODULE_USE_EXTERNAL_<library name>. See the
vtk_module_third_party_external() and :cmake:command`vtk_module_third_party_internal`
functions for the arguments supported by the EXTERNAL and INTERNAL
arguments, respectively.

	
_vtk_module_mark_third_party

	Mark a module as being third party. module-impl

Mark a module as being a third party module.

_vtk_module_mark_third_party(<target>)

	
vtk_module_third_party_external

	External third party package. module

A third party dependency may be expressed as a module using this function.
Third party packages are found using CMake’s find_package function. It is
highly recommended that imported targets are used to make usage easier. The
module itself will be created as an INTERFACE library which exposes the
package.

vtk_module_third_party_external(
 PACKAGE <package>
 [VERSION <version>]
 [COMPONENTS <component>...]
 [OPTIONAL_COMPONENTS <component>...]
 [TARGETS <target>...]
 [INCLUDE_DIRS <path-or-variable>...]
 [LIBRARIES <target-or-variable>...]
 [DEFINITIONS <variable>...]
 [FORWARD_VERSION_REQ <MAJOR|MINOR|PATCH|EXACT>]
 [VERSION_VAR <version-spec>]
 [USE_VARIABLES <variable>...]
 [CONFIG_MODE]
 [STANDARD_INCLUDE_DIRS])

Only the PACKAGE argument is required. The arguments are as follows:

	PACKAGE: (Required) The name of the package to find.

	VERSION: If specified, the minimum version of the dependency that must be
found.

	COMPONENTS: The list of components to request from the package.

	OPTIONAL_COMPONENTS: The list of optional components to request from the
package.

	TARGETS: The list of targets to search for when using this package.
Targets which do not exist will be ignored to support different versions of
a package using different target names.

	STANDARD_INCLUDE_DIRS: If present, standard include directories will be
added to the module target. This is usually only required if both internal
and external are supported for a given dependency.

	INCLUDE_DIRS: If specified, this is added as a SYSTEM INTERFACE include
directory for the target. If a variable name is given, it will be
dereferenced.

	LIBRARIES: The libraries to link from the package. If a variable name is
given, it will be dereferenced, however a warning that imported targets are
not being used will be emitted.

	DEFINITIONS: If specified, the given variables will be added to the
target compile definitions interface.

	CONFIG_MODE: Force CONFIG mode.

	FORWARD_VERSION_REQ and VERSION_VAR: See documentation for
vtk_module_find_package().

	USE_VARIABLES: List of variables from the find_package to make
available to the caller.

	
vtk_module_third_party_internal

	Internal third party package. module

Third party modules may also be bundled with the project itself. In this case,
it is an internal third party dependency. The dependency is assumed to be in a
subdirectory that will be used via add_subdirectory. Unless it is marked as
HEADERS_ONLY, it is assumed that it will create a target with the name of the
module.

SPDX generation requires that SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT
are specified.

vtk_module_third_party_internal(
 [SUBDIRECTORY <path>]
 [HEADERS_SUBDIR <subdir>]
 [LICENSE_FILES <file>...]
 [VERSION <version>]
 [HEADER_ONLY]
 [INTERFACE]
 [STANDARD_INCLUDE_DIRS])

All arguments are optional, however warnings are emitted if LICENSE_FILES,
VERSION, SPDX_LICENSE_IDENTIFIER or SPDX_COPYRIGHT_TEXT are not specified.

They are as follows:

	SUBDIRECTORY: (Defaults to the library name of the module) The
subdirectory containing the CMakeLists.txt for the dependency.

	HEADERS_SUBDIR: If non-empty, the subdirectory to use for installing
headers.

	LICENSE_FILES: A list of license files to install for the dependency. If
not given, a warning will be emitted.

	SPDX_LICENSE_IDENTIFIER: A license identifier for SPDX file generation

	SPDX_DOWNLOAD_LOCATION: A download location for SPDX file generation

	SPDX_COPYRIGHT_TEXT: A copyright text for SPDX file generation

	SPDX_CUSTOM_LICENSE_FILE: A relative path to a single custom license file to include in generated SPDX file.

	SPDX_CUSTOM_LICENSE_NAME: The name of the single custom license, without the LicenseRef-

	VERSION: The version of the library that is included.

	HEADER_ONLY: The dependency is header only and will not create a target.

	INTERFACE: The dependency is an INTERFACE library.

	STANDARD_INCLUDE_DIRS: If present, module-standard include directories
will be added to the module target.

	
_vtk_module_generate_spdx

	SPDX file generation at build time.
module-internal

Modules can specify a copyright and a license identifier as well as other information
to generate a SPDX file in order to provide a Software Bill Of Materials (SBOM).
Inputs files can be parsed for SPDX copyrights and license identifier to add to the
SPDX file as well.

_vtk_module_generate_spd(
 [MODULE_NAME <name>]
 [TARGET <target>]
 [OUTPUT <file>]
 [SKIP_REGEX <regex>]
 [INPUT_FILES <file>...]

All arguments are required except for INPUT_FILES.

	MODULE_NAME: The name of the module that will be used as package name
in the SPDX file.

	TARGET: A CMake target for the generation of the SPDX file at build time

	OUTPUT: Path to the SPDX file to generate

	SKIP_REGEX: A python regex to exclude certain source files from SPDX parsing

	INPUT_FILES: A list of input files to parse for SPDX copyrights and license identifiers,
some files are automatically excluded from parsing.

 vtkModuleTesting

vtkModuleTesting

VTK uses the ExternalData [https://cmake.org/cmake/help/latest/module/ExternalData.html] CMake module to handle the data management for
its test suite. Test data is only downloaded when a test which requires it is
enabled and it is cached so that every build does not need to redownload the
same data.

To facilitate this workflow, there are a number of CMake functions available in
order to indicate that test data is required.

Loading data

	
vtk_module_test_data

	Download test data. module

Data may be downloaded manually using this function:

vtk_module_test_data(<PATHSPEC>...)

This will download data inside of the input data directory for the modules
being built at that time (see the TEST_INPUT_DATA_DIRECTORY argument of
vtk_module_build).

For supported PATHSPEC syntax, see the
associated documentation in ref:ExternalData. These
arguments are already wrapped in the DATA{} syntax and are assumed to be
relative paths from the input data directory.

Creating test executables

	
vtk_module_test_executable

	This function creates an executable from the list of sources passed to it. It
is automatically linked to the module the tests are intended for as well as any
declared test dependencies of the module.

vtk_module_test_executable(<NAME> <SOURCE>...)

This function is not usually used directly, but instead through the other
convenience functions.

Test name parsing

Test names default to using the basename of the filename which contains the
test. Two tests may share the same file by prefixing with a custom name for the
test and a comma.

The two parsed syntaxes are:
- CustomTestName,TestFile
- TestFile

Note that TestFile should already have had its extension stripped (usually
done by _vtk_test_parse_args).

In general, the name of a test will be <EXENAME>-<TESTNAME>, however, by
setting vtk_test_prefix, the test name will instead be
<EXENAME>-<PREFIX><TESTNAME>.

Test function arguments

Each test is specified using one of the two following syntaxes

	<NAME>.<SOURCE_EXT>

	<NAME>.<SOURCE_EXT>,<OPTIONS>

Where NAME is a valid test name. If present, the specified OPTIONS are only
for the associated test. The expected extension is specified by the associated
test function.

	
_vtk_test_parse_args

	module-internal
Given a list of valid “options”, this function will parse out a the following
variables:

	args: Unrecognized arguments. These should be interpreted as arguments
that should be passed on the command line to all tests in this parse group.

	options: Options specified globally (for all tests in this group).

	names: A list containing all named tests. These should be parsed by
_vtk_test_parse_name.

	_<NAME>_options: Options specific to a certain test.

_vtk_test_parse_args(<OPTIONS> <SOURCE_EXT> <ARG>...)

In order to be recognized as a source file, the SOURCE_EXT must be used.
Without it, all non-option arguments are placed into args. Each test is
parsed out matching these:

	
_vtk_test_set_options

	For handling global option settings module-internal, this function sets variables in the
calling scoped named <PREFIX><OPTION> to either 0 or 1 if the option is
present in the remaining argument list.

_vtk_test_set_options(<OPTIONS> <PREFIX> <ARG>...)

Additionally, a non-0 default for a given option may be specified by a
variable with the same name as the option and specifying a prefix for the
output variables.

C++ tests

	
vtk_add_test_cxx

	This function declares C++ tests module. Source files are required to use the cxx
extension.

vtk_add_test_cxx(<EXENAME> <VARNAME> <ARG>...)

Each argument should be either an option, a test specification, or it is passed
as flags to all tests declared in the group. The list of tests is set in the
<VARNAME> variable in the calling scope.

Options:

	NO_DATA: The test does not need to know the test input data directory. If
it does, it is passed on the command line via the -D flag.

	NO_VALID: The test does not have a valid baseline image. If it does, the
baseline is assumed to be in ../Data/Baseline/<NAME>.png relative to the
current source directory. If alternate baseline images are required,
<NAME> may be suffixed by _1, _2, etc. The valid image is passed via
the -V flag.
- TIGHT_VALID: Uses euclidian type metrics to compare baselines. Baseline
comparison is sensitive to outliers in this setting.
- LOOSE_VALID: Uses L1 type metrics to compare baselines. Baseline comparison
is somewhat more forgiving. Typical use cases involve rendering that is highly GPU
dependent, and baselines with text.
- LEGACY_VALID: Uses legacy image compare. This metric generates a lot of
false negatives. It is recommended not to use it.

	NO_OUTPUT: The test does not need to write out any data to the
filesystem. If it does, a directory which may be written to is passed via
the -T flag.

Additional flags may be passed to tests using the ${_vtk_build_test}_ARGS
variable or the <NAME>_ARGS variable.

MPI tests

	
vtk_add_test_mpi

	This function declares C++ tests which should be run under an MPI environment. module
Source files are required to use the cxx extension.

vtk_add_test_mpi(<EXENAME> <VARNAME> <ARG>...)

Each argument should be either an option, a test specification, or it is passed
as flags to all tests declared in the group. The list of tests is set in the
<VARNAME> variable in the calling scope.

Options:

	TESTING_DATA

	NO_VALID: The test does not have a valid baseline image. If it does, the
baseline is assumed to be in ../Data/Baseline/<NAME>.png relative to the
current source directory. If alternate baseline images are required,
<NAME> may be suffixed by _1, _2, etc. The valid image is passed via
the -V flag.

Each test is run using the number of processors specified by the following
variables (using the first one which is set):

	<NAME>_NUMPROCS

	<EXENAME>_NUMPROCS

	VTK_MPI_NUMPROCS (defaults to 2)

Additional flags may be passed to tests using the ${_vtk_build_test}_ARGS
variable or the <NAME>_ARGS variable.

C++ test executable

	
vtk_test_cxx_executable

	vtk_test_cxx_executable(<EXENAME> <VARNAME> [RENDERING_FACTORY] [<SRC>...])

Creates an executable named EXENAME which contains the tests listed in the
variable named in the VARNAME argument. The EXENAME must match the
EXENAME passed to the test declarations when building the list of tests.

If RENDERING_FACTORY is provided, VTK’s rendering factories are initialized
during the test.

By default, VTK’s rendering tests enable FP exceptions to find floating point
errors in debug builds. If DISABLE_FLOATING_POINT_EXCEPTIONS is provided,
FP exceptions are not enabled for the test. This is useful when testing against
external libraries to ignore exceptions in third-party code.

Any additional arguments are added as additional sources for the executable.

	
vtk_test_mpi_executable

	

MPI executables used to have their own test executable function.|module-internal| This is no
longer necessary and is deprecated. Instead, vtk_test_cxx_executable should
be used instead.

Python tests

	
vtk_add_test_python

	This function declares Python tests.|module| Test files are required to use the py
extension.

vtk_add_test_python(<EXENAME> <VARNAME> <ARG>...)

If the _vtk_testing_python_exe variable is not set, the vtkpython binary is
used by default. Additional arguments may be passed in this variable as well.

If the given Python executable supports VTK’s --enable-bt flag, setting
_vtk_testing_python_exe_supports_bt to 1 is required to enable it.

JavaScript tests

	
vtk_add_test_module_javascript_node

	This function declares JavaScript tests run with NodeJS.
Test files are required to use the mjs extension.
Additional arguments to node can be passed via _vtk_node_args variable.

vtk_add_test_module_javascript_node(<VARNAME> <ARG>...)

The _vtk_testing_nodejs_exe variable must point to the path of a node interpreter.

MPI tests

	
vtk_add_test_python_mpi

	A small wrapper around vtk_add_test_python which adds support for running
MPI-aware tests written in Python.

The $<module library name>_NUMPROCS variable may be used to use a non-default
number of processors for a test.

This forces running with the pvtkpython executable.

ABI Mangling tests

	
vtk_add_test_mangling

	

This function declares a test to verify that all of the exported symbols in the
VTK module library contain the correct ABI mangling prefix. This test requires
setting the option VTK_ABI_NAMESPACE_NAME to a value that is not “<DEFAULT>”.

Current limitations of this test are:
- Does not run on non-UNIX platforms
- Is not compatible with the option “VTK_ENABLE_KITS”
- May not work outside of VTK itself

vtk_add_test_mangling(module_name [EXEMPTIONS ...])

Options:
- EXEMPTIONS: List of symbol patterns to excluded from the ABI mangling test

where it is known that the symbols do not support the ABI mangling but are still
exported. This option should be extremely rare to use, see the documentation on ABI
mangling for how the handle C and C++ symbols before adding an EXEMPTION.

 vtkModuleWrapPython

vtkModuleWrapPython

APIs for wrapping modules for Python

Limitations

Known limitations include:

	Shared Python modules only really support shared builds of modules. VTK
does not provide mangling facilities for itself, so statically linking VTK
into its Python modules precludes using VTK’s C++ interface anywhere else
within the Python environment.

	Only supports CPython. Other implementations are not supported by the
VTK::WrapPython executable.

	Links directly to a Python library. See the VTK::Python module for more
details.

	
vtk_module_python_default_destination

	Determine Python module destination. module-wrapping-python

Some projects may need to know where Python expects its modules to be placed in
the install tree (assuming a shared prefix). This function computes the default
and sets the passed variable to the value in the calling scope.

vtk_module_python_default_destination(<var>
 [MAJOR_VERSION <major>])

By default, the destination is ${CMAKE_INSTALL_BINDIR}/Lib/site-packages on
Windows and ${CMAKE_INSTALL_LIBDIR}/python<VERSION>/site-packages otherwise.

<MAJOR_VERSION>, if specified, must be 3.

	
_vtk_module_wrap_python_sources

	Generate sources for using a module’s classes from Python. module-impl

This function generates the wrapped sources for a module. It places the list of
generated source files and classes in variables named in the second and third
arguments, respectively.

_vtk_module_wrap_python_sources(<module> <sources> <classes>)

	
_vtk_module_wrap_python_library

	Generate a CPython library for a set of modules. module-impl

A Python module library may consist of the Python wrappings of multiple
modules. This is useful for kit-based builds where the modules part of the same
kit belong to the same Python module as well.

_vtk_module_wrap_python_library(<name> <module>...)

The first argument is the name of the Python module. The remaining arguments
are modules to include in the Python module.

The remaining information it uses is assumed to be provided by the
vtk_module_wrap_python function().

	
vtk_module_wrap_python

	Wrap a set of modules for use in Python.|module-wrapping-python|

vtk_module_wrap_python(
 MODULES <module>...
 [TARGET <target>]
 [WRAPPED_MODULES <varname>]

 [BUILD_STATIC <ON|OFF>]
 [INSTALL_HEADERS <ON|OFF>]
 [BUILD_PYI_FILES <ON|OFF>]

 [DEPENDS <target>...]
 [UTILITY_TARGET <target>]

 [MODULE_DESTINATION <destination>]
 [STATIC_MODULE_DESTINATION <destination>]
 [CMAKE_DESTINATION <destination>]
 [LIBRARY_DESTINATION <destination>]
 [HEADERS_DESTINATION <destination>]

 [PYTHON_PACKAGE <package>]
 [SOABI <soabi>]
 [USE_DEBUG_SUFFIX <ON|OFF>]
 [REPLACE_DEBUG_SUFFIX <ON|OFF>]

 [INTERPRETER <interpreter>]

 [INSTALL_EXPORT <export>]
 [COMPONENT <component>])
 [TARGET_SPECIFIC_COMPONENTS <ON|OFF>]

 [WARNINGS <warning>...]
)

	MODULES: (Required) The list of modules to wrap.

	TARGET: (Recommended) The target to create which represents all wrapped
Python modules. This is mostly useful when supporting static Python modules
in order to add the generated modules to the built-in table.

	WRAPPED_MODULES: (Recommended) Not all modules are wrappable. This
variable will be set to contain the list of modules which were wrapped.
These modules will have a INTERFACE_vtk_module_python_package property
set on them which is the name that should be given to import statements
in Python code.

	BUILD_STATIC: Defaults to ${BUILD_SHARED_LIBS}. Note that shared
modules with a static build is not completely supported. For static Python
module builds, a header named <TARGET>.h will be available with a
function void <TARGET>_load() which will add all Python modules created
by this call to the imported module table. For shared Python module builds,
the same function is provided, but it is a no-op.

	INSTALL_HEADERS (Defaults to ON): If unset, CMake properties will not
be installed.

	BUILD_PYI_FILES (Defaults to OFF): If set, .pyi files will be built
and installed for the generated modules.

	TARGET_SPECIFIC_COMPONENTS (Defaults to OFF): If set, prepend the
output target name to the install component (<TARGET>-<COMPONENT>).

	DEPENDS: This is list of other Python modules targets i.e. targets
generated from previous calls to vtk_module_wrap_python that this new
target depends on. This is used when BUILD_STATIC is true to ensure that
the void <TARGET>_load() is correctly called for each of the dependencies.

	UTILITY_TARGET: If specified, all libraries made by the Python wrapping
will link privately to this target. This may be used to add compile flags
to the Python libraries.

	MODULE_DESTINATION: Modules will be placed in this location in the
build tree. The install tree should remove $<CONFIGURATION> bits, but it
currently does not. See vtk_module_python_default_destination for the
default value.

	STATIC_MODULE_DESTINATION: Defaults to ${CMAKE_INSTALL_LIBDIR}. This
default may change in the future since the best location for these files is
not yet known. Static libraries containing Python code will be installed to
the install tree under this path.

	CMAKE_DESTINATION: (Required if INSTALL_HEADERS is ON) Where to
install Python-related module property CMake files.

	LIBRARY_DESTINATION (Recommended): If provided, dynamic loader
information will be added to modules for loading dependent libraries.

	HEADERS_DESTINATION: Defaults to (${CMAKE_INSTALL_INCLUDEDIR}.
Module loader headers will be installed to this directory.

	PYTHON_PACKAGE: (Recommended) All generated modules will be added to this
Python package. The format is in Python syntax (e.g.,
package.subpackage).

	SOABI: (Required for wheel support): If given, generate libraries with
the SOABI tag in the module filename.

	USE_DEBUG_SUFFIX (Defaults to OFF): If ON, Windows modules will have
a _d suffix appended to the module name. This is intended for use with
debug Python builds.

	REPLACE_DEBUG_SUFFIX (Defaults to OFF): If ON, any project-wide debug
suffix will be replaced with the local debug suffix (if enabled).

	INTERPRETER (Defaults to VTK::Python or Python3::Interpreter): If
provided, this interpreter will be used to run supplemental processes which
involve Python scripts including .pyi file generation. If a target name
is provided, its path will be used, otherwise a string which expands to the
path to an interpreter executable may be provided. If the string DISABLE
is given, any support using interpreters will be disabled.

	INSTALL_EXPORT: If provided, static installs will add the installed
libraries to the provided export set.

	COMPONENT: Defaults to python. All install rules created by this
function will use this installation component.

	WARNINGS: Warnings to enable. Supported warnings: empty.

	
vtk_module_add_python_package

	Install Python packages with a module module-wrapping-python.

Some modules may have associated Python code. This function should be used to
install them.

vtk_module_add_python_package(<module>
 PACKAGE <package>
 FILES <files>...
 [MODULE_DESTINATION <destination>]
 [COMPONENT <component>])

The <module> argument must match the associated VTK module that the package
is with. Each package is independent and should be installed separately. That
is, package and package.subpackage should each get their own call to this
function.

	PACKAGE: (Required) The package installed by this call. Currently,
subpackages must have their own call to this function.

	FILES: (Required) File paths should be relative to the source directory
of the calling CMakeLists.txt. Upward paths are not supported (nor are
checked for). Absolute paths are assumed to be in the build tree and their
relative path is computed relative to the current binary directory.

	MODULE_DESTINATION: Modules will be placed in this location in the
build tree. The install tree should remove $<CONFIGURATION> bits, but it
currently does not. See vtk_module_python_default_destination for the
default value.

	COMPONENT: Defaults to python. All install rules created by this
function will use this installation component.

A <module>-<package> target is created which ensures that all Python modules
have been copied to the correct location in the build tree.

Todo

Support freezing the Python package. This should create a header and the
associated target should provide an interface for including this header. The
target should then be exported and the header installed properly.

	
vtk_module_add_python_module

	Use a Python package as a module. module-wrapping-python

If a module is a Python package, this function should be used instead of
vtk_module_add_module().

vtk_module_add_python_module(<name>
 PACKAGES <packages>...)

	PACKAGES: (Required) The list of packages installed by this module.
These must have been created by the vtk_module_add_python_package()
function.

 vtkModuleWrapJava

vtkModuleWrapJava

APIs for wrapping modules for Java

	
_vtk_module_wrap_java_sources

	Generate sources for using a module’s classes from Java. module-impl

This function generates the wrapped sources for a module. It places the list of
generated source files and Java source files in variables named in the second
and third arguments, respectively.

_vtk_module_wrap_java_sources(<module> <sources> <classes>)

	
_vtk_module_wrap_java_library

	Generate a JNI library for a set of modules. module-impl

A single JNI library may consist of the Java wrappings of multiple modules.
This is useful for kit-based builds where the modules part of the same kit
belong to the same JNI library as well.

_vtk_module_wrap_java_library(<name> <module>...)

The first argument is the name of the JNI library. The remaining arguments are
modules to include in the JNI library.

The remaining information it uses is assumed to be provided by the
vtk_module_wrap_java() function.

	
vtk_module_wrap_java

	Wrap a set of modules for use in Java. module-wrapping-java

vtk_module_wrap_java(
 MODULES <module>...
 [WRAPPED_MODULES <varname>]

 [UTILITY_TARGET <target>]

 [JAVA_OUTPUT <destination>]

 [LIBRARY_DESTINATION <destination>]
 [JNILIB_DESTINATION <destination>]
 [JNILIB_COMPONENT <component>]

 [WARNINGS <warning>...])

	MODULES: (Required) The list of modules to wrap.

	WRAPPED_MODULES: (Recommended) Not all modules are wrappable. This
variable will be set to contain the list of modules which were wrapped.

	UTILITY_TARGET: If specified, all libraries made by the Java wrapping
will link privately to this target. This may be used to add compile flags
to the Java libraries.

	JAVA_OUTPUT: Defaults to
${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/vtkJava. Java source files are
written to this directory. After generation, the files may be compiled as
needed.

	LIBRARY_DESTINATION (Recommended): If provided, dynamic loader
information will be added to modules for loading dependent libraries.

	JNILIB_DESTINATION: Where to install JNI libraries.

	JNILIB_COMPONENT: Defaults to jni. The install component to use for JNI
libraries.

	WARNINGS: Warnings to enable. Supported warnings: empty.

For each wrapped module, a <module>Java target will be created. These targets
will have a _vtk_module_java_files property which is the list of generated
Java source files for that target.

For dependency purposes, the <module>Java-java-sources target may also be
used.

 vtkModuleJSON

vtkModuleJSON

	
_vtk_json_bool

	Output a boolean to JSON. module-impl

Appends a condition as a JSON boolean with the given dictionary key name to the
given string variable.

_vtk_json_bool(<output> <name> <cond>)

	
_vtk_json_string_list

	Output a string list to JSON. module-impl

Appends a variable as a JSON list of strings with the given dictionary key name
to the given string variable.

_vtk_json_string_list(<output> <name> <cond>)

	
vtk_module_json

	JSON metadata representation of modules. module-support

Information about the modules built and/or available may be dumped to a JSON
file.

vtk_module_json(
 MODULES <module>...
 OUTPUT <path>)

	MODULES: (Required) The modules to output information for.

	
	OUTPUT: (Required) A JSON file describing the modules built will
	be output to this path. Relative paths are rooted to CMAKE_BINARY_DIR.

Example output:

{
 "modules": [
 {
 "name": "...",
 "library_name": "...",
 "enabled": <bool>,
 "implementable": <bool>,
 "third_party": <bool>,
 "wrap_exclude": <bool>,
 "kit": "...",
 "depends": [
 "..."
],
 "optional_depends": [
 "..."
],
 "private_depends": [
 "..."
],
 "implements": [
 "..."
],
 "headers": [
 "..."
]
 }
],
 "kits": [
 {
 "name": "...",
 "enabled": <bool>,
 "modules": [
]
 }
]
}

 vtkModuleGraphviz

vtkModuleGraphviz

	
_vtk_module_graphviz_module_node

	Output a node in the graph module-impl

Queries the properties for modules and generates the node for it in the graph
and its outgoing dependency edges.

	
vtk_module_graphviz

	Generate graphviz output for a module dependency graph. module-support

Information about the modules built and/or available may be dumped to a
Graphviz .dot file.

vtk_module_graphviz(
 MODULES <module>...
 OUTPUT <path>

 [PRIVATE_DEPENDENCIES <ON|OFF>]
 [KIT_CLUSTERS <ON|OFF>])

	MODULES: (Required) The modules to output information for.

	OUTPUT: (Required) A Graphviz file describing the modules built will
be output to this path. Relative paths are rooted to CMAKE_BINARY_DIR.

	PRIVATE_DEPENDENCIES: (Default ON) Whether to draw private dependency
edges or not..

	KIT_CLUSTERS: (Default OFF) Whether to draw modules as part of a kit as
a cluster or not.

 Advanced Topics

Advanced Topics

Contents

	Additional Python Wheels

	SPDX & SBOM

	Building Python Wheels

	Building using emscripten for WebAssembly

	Cross-compiling for Mobile devices

	Building documentation

	Marshalling Hints

	Object manager

	Auto serialization

	Python Wrappers

	Wrapping Tools

	Migration Guides
	Module Migration from VTK 8.2 to 9+

 Additional Python Wheels

Additional Python Wheels

Python wheels for VTK are available in pypi

pip install vtk

More wheels can be accessed from the GitLab Package Registry [https://gitlab.kitware.com/vtk/vtk/-/packages].

To install the latest release wheel from the GitLab registry:

pip install --extra-index-url https://wheels.vtk.org vtk

To install the latest wheel from master:

pip install --extra-index-url https://wheels.vtk.org vtk --pre --no-cache

The wheels available at PyPi are built using the default rendering backend
which leverages any available hardware graphics for generating the scene. There is
also a OSMesa wheel variant that leverages offscreen rendering with OSMesa.
This wheel is being built for both Linux and Windows at this time and bundles
all of the necessary libraries into the wheel. These wheels are intended to be
used by downstream projects in headless, CI-like environments or cloud
application deployments, preventing the need to install any addition system
packages.

To install the OSMesa variant from the latest release

pip install --extra-index-url https://wheels.vtk.org vtk-osmesa

For more information see here [https://discourse.vtk.org/t/status-update-vtk-python-wheels/11212].

Note

conda-forge packages are also available [https://anaconda.org/conda-forge/vtk] and maintained by the community.

 SPDX & SBOM

SPDX & SBOM

Overview

Software Bill of Materials (SBOM) are becoming increasingly important for
software development, especially when it comes to supply chain security.
Software Package Data Exchange (SPDX) [https://spdx.dev/] is an open standard
for communicating SBOM information that supports accurate identification of
software components, explicit mapping of relationships between components,
and the association of security and licensing information with each component.

To support this, each VTK module may be described by a .spdx file. See examples.

Configuring VTK with the option VTK_GENERATE_SPDX set to ON enables the
SPDX files generation for each VTK module.

Caution

The generation of SPDX files is considered experimental and both the VTK Module system
API and the SPDXID used in the generated files may change.

Frequently Asked Questions

How to update your module to generate a valid SPDX file ?

In the vtk.module file, make sure to specify SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT
as follows:

SPDX_LICENSE_IDENTIFIER
 BSD-3-Clause
SPDX_COPYRIGHT_TEXT
 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen

Then add SPDX tags on top of all source files in the module, as follows:

// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: BSD-3-Clause

Tip

Refer to the limitations section for more
information on any potential issues that may arise when updating your module to generate
a valid SPDX file.

How to update a third party to generate a valid SPDX file ?

In the third party CMakeLists.txt, make sure to specify, in the vtk_module_third_party call,
SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT as follows:

 vtk_module_third_party(
 SPDX_LICENSE_IDENTIFIER
 "BSD-3-Clause"
 SPDX_COPYRIGHT_TEXT
 "Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen"
 SPDX_DOWNLOAD_LOCATION
 "git+https://gitlab.kitware.com/third-party/repo.git@hash_or_tag"
 [...]

Tip

Refer to the limitations section for more
information on any potential issues that may arise when updating your module to generate
a valid SPDX file.

How to correctly specify custom license for a module ?

In the module, provide a file containing the license.
Then in vtk.module file, make sure to specify SPDX_CUSTOM_LICENSE_FILE with the path of the license file,
SPDX_CUSTOM_LICENSE_NAME with the name of the license and SPDX_LICENSE_IDENTIFIER
with a valid SPDX LicenseRef, as follows:

SPDX_LICENSE_IDENTIFIER
 LicenseRef-CustomLicense
SPDX_CUSTOM_LICENSE_FILE
 LICENSE
SPDX_CUSTOM_LICENSE_NAME
 CustomLicense

If needed, you can add SPDX tags on top of all source file specifically concerned by this license

// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: LicenseRef-CustomLicense

Examples

This section lists examples of generated SPDX files for different type of VTK modules.

VTK Module

Example of generated SPDX files for a module in VTK (once the module have been ported to the system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: IOPLY
DocumentNamespace: https://vtk.org/vtkIOPly
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: IOPLY

PackageName: IOPLY
SPDXID: SPDXRef-Package-IOPLY
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/IO/PLY
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: BSD-3-Clause
PackageCopyrightText: <text>
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-IOPLY

Example of a SPDX file generated without any information for a module that have not been ported to the system:

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: vtkFiltersVerdict
DocumentNamespace: https://vtk.org/vtkFiltersVerdict
Creator: Tool: CMake
Created: 2023-05-25T15:16:20Z

Package: vtkFiltersVerdict

PackageName: vtkFiltersVerdict
SPDXID: SPDXRef-Package-vtkFiltersVerdict
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/Filters/Verdict
FilesAnalyzed: false
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageLicenseInfoFromFiles: NOASSERTION
PackageCopyrightText: <text>
NOASSERTION
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-vtkFiltersVerdict

VTK ThirdParty Module

Example of a complete SPDX file for a 3rd party in VTK (once the 3rd party have been ported to the system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: VTK::loguru
DocumentNamespace: https://vtk.org/vtkloguru
Creator: Tool: CMake
Created: 2023-05-22T15:56:52Z

Package: VTK::loguru

PackageName: VTK::loguru
SPDXID: SPDXRef-Package-VTK::loguru
PackageDownloadLocation: https://github.com/Delgan/loguru
FilesAnalyzed: no
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: NOASSERTION
PackageCopyrightText: <text>
LOGURU Team
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-VTK::loguru

VTK Remote Module

Example of a complete SPDX file for a VTK module from outside of VTK (once the module have been ported to the system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: MyModule
DocumentNamespace: https://my-website/MyModule
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: MyModule

PackageName: MyModule
SPDXID: SPDXRef-Package-MyModule
PackageDownloadLocation: https://github/myorg/mymodule
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause AND MIT
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: BSD-3-Clause AND MIT
PackageCopyrightText: <text>
Copyright (c) 2023 Popeye
Copyright (c) 2023 Wayne "The Dock" Sonjhon
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-MyModule

VTK Module with custom license

Example of a complete SPDX file for a VTK module with a custom license:

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: IOPLY
DocumentNamespace: https://vtk.org/vtkCustomModule
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: CustomModule

PackageName: CustomModule
SPDXID: SPDXRef-Package-CustomModule
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/Custom/Module
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause AND LicenseRef-CustomLicense
PackageLicenseInfoFromFiles: BSD-3-Clause
PackageCopyrightText: <text>
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
</text>

LicenseID: LicenseRef-CustomLicense
ExtractedText: <text>My License

This is a custom license that is not more restrictive
than BSD license.
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-IOPLY

Resources

	https://spdx.dev/

	https://en.wikipedia.org/wiki/Software_supply_chain

	https://www.linuxfoundation.org/blog/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security

	https://spdx.dev/specifications/

	https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf

	https://github.com/spdx/spdx-examples

	https://spdx.dev/wp-content/uploads/sites/41/2017/12/spdx_onepager.pdf

 Building Python Wheels

Building Python Wheels

Tip

For complete build instructions see here.

VTK also supports creating a Python wheel containing its Python wrappers for
Python3. This is supported by setting the VTK_WHEEL_BUILD flag. This changes
the build directory structure around to match that expected by wheels. Once
configured, the build tree may be built as it would be normally and then the
generated setup.py file used to create the wheel. Note that the bdist_wheel
command requires that the wheel package is available (pip install wheel).

cmake -GNinja -DVTK_WHEEL_BUILD=ON -DVTK_WRAP_PYTHON=ON path/to/vtk/source
ninja
python3 setup.py bdist_wheel

Any modules may be turned on or off as in a normal VTK build. Certain modules
add features to the generated wheel to indicate their availability. These flags
are not meant to be comprehensive, but any reasonable feature flags may be
added to CMake/vtkWheelFinalization.cmake as needed.

Note that the wheel will not include any external third party libraries in its
wheel (e.g., X11, OpenGL, etc.) to avoid conflicts with systems or other wheels
doing the same.

Modifying Version and/or Distribution Name

When generating a wheel, you can modify the distribution name and/or add a
suffix to the wheel version string.

By default, the distribution name is vtk though you can add a suffix via the
VTK_DIST_NAME_SUFFIX CMake variable (e.g., set VTK_DIST_NAME_SUFFIX to
'osmesa' to have the distribution name be vtk_osmesa). An underscore (_)
character is automatically placed between vtk and the value
of VTK_DIST_NAME_SUFFIX. Please use _ characters for further delimination in
the suffix value. Example setting:

set(VTK_DIST_NAME_SUFFIX "osmesa" CACHE STRING "")

By default (outside of a CI release build), dev0 is appended to the version of
the package (e.g., 9.2.2.dev0). This suffix can be controlled through the
VTK_VERSION_SUFFIX CMake variable and is useful if generating multiple
wheels and wanting to differentiate the build variants by the version string of
the package.

set(VTK_VERSION_SUFFIX "dev0" CACHE STRING "")

 Building using emscripten for WebAssembly

Building using emscripten for WebAssembly

Introduction

This page describes how to build and install VTK using emscripten [https://emscripten.org] on any platform.
These steps can be followed inside a docker container that comes with preinstalled emsdk such as
dockcross/web-wasm [https://hub.docker.com/r/dockcross/web-wasm]. In fact, the VTK CI stage webassembly-build
uses that container to configure and build VTK wasm.

Note

Guide created using

	VTK v9.2.6-2535-gc8cebe56fb

	dockcross/web-wasm:20230222-162287d

Prerequisites

For this guide, you will need the following:

	CMake: CMake [http://www.cmake.org/] version 3.12 or higher and a
working compiler. CMake is a tool that makes cross-platform building simple.
On several systems it will probably be already installed. If it is not,
please use the following instructions to install it. There are several
precompiled binaries available at the CMake download page [https://cmake.org/download/].
Add CMake to your PATH environment variable if you downloaded an archive and not an installer.

	Emscripten SDK: emsdk [https://github.com/emscripten-core/emsdk] and
any dependencies needed by emsdk. Emscripten is a complete compiler toolchain
to WebAssembly, using LLVM, with a special focus on speed, size, and the Web
platform. Please download the SDK from
github.com/emscripten-core/emsdk.git [https://github.com/emscripten-core/emsdk]. Then,

	Install latest toolchain with ./emsdk install latest

	Activate the toolchain ./emsdk activate latest

	Run emsdk_env.bat or emsdk_env.ps1 (Windows) or source ./emsdk_env.sh (Linux and OS X) to set up the environment for the calling terminal.

For more detailed instructions see emsdk/README.md [https://github.com/emscripten-core/emsdk#readme].

	VTK source-code: If you have these then you can skip the rest of this section and proceed to Build project.
Download VTK source for the version you want from
https://vtk.org/download/ (zip or tar.gz (Do
NOT download the exe - this is not the VTK library.)) You will probably
want the latest one (highest version number) unless you have a specific
reason to use an older one.

Alternatively the source-code can be obtained from the repository as well.
This is recommended only if you intent to make changes and contribute to
VTK. Please refer to git/develop.md for help with git.

Build project

These instructions use a specific convention for the source, build and install directories that is appropriate when building VTK for wasm inside
a docker container. Please replace these root-directory paths if VTK is being built outside a docker container.

Install emscripten ports (IMPORTANT!)

Emscripten relies on SDL2 to link user input events from the browser’s event subsystem to native C/C++ code. If this is your initial download of the EMSDK, you’ll need to build the SDL2 port. The “embuilder” script will be accessible on the path if you’ve successfully installed and activated the EMSDK, as outlined in the prerequisites.

$ embuilder build sdl2

Build VTK

	Configure the project with CMake. emcmake tells CMake to use the emscripten toolchain for cross compilation.

cd /work/src/build
$ emcmake cmake \
 -S .. \
 -B . \
 -G "Ninja" \
 -DCMAKE_BUILD_TYPE=Release \
 -DBUILD_SHARED_LIBS:BOOL=OFF \
 -DVTK_ENABLE_LOGGING:BOOL=OFF \
 -DVTK_ENABLE_WRAPPING:BOOL=OFF \
 -DVTK_MODULE_ENABLE_VTK_RenderingLICOpenGL2:STRING=DONT_WANT

	Compile.

$ cd /work/src/build
$ ninja

	Install the project.

$ cd /work/src/build
$ ninja install

The binaries are now installed and you may use -DVTK_DIR=/work/install/lib/cmake/vtk-9.2 to configure VTK wasm applications with CMake.

Verify installation

If everything went well then it should now be possible to compile and run the one of the C++ examples.
Head over to Examples/Emscripten/Cxx/Cone/README.md [https://gitlab.kitware.com/vtk/vtk/-/blob/master/Examples/Emscripten/Cxx/Cone/README.md]
and test the simple Cone example.

 Cross-compiling for Mobile devices

Cross-compiling for Mobile devices

Tip

For complete build instructions see here.

VTK supports mobile devices in its build. These are triggered by a top-level
flag which then exposes some settings for a cross-compiled VTK that is
controlled from the top-level build.

iOS builds may be enabled by setting the VTK_IOS_BUILD option. The following
settings than affect the iOS build:

	IOS_SIMULATOR_ARCHITECTURES

	IOS_DEVICE_ARCHITECTURES

	IOS_DEPLOYMENT_TARGET

	IOS_EMBED_BITCODE

Android builds may be enabled by setting the VTK_ANDROID_BUILD option. The
following settings affect the Android build:

	ANDROID_NDK

	ANDROID_NATIVE_API_LEVEL

	ANDROID_ARCH_ABI

 Building documentation

Building documentation

This section outlines how to locally build both the user and developer guides and the C++ API
documentation for VTK.

User and developer guides

VTK’s user and developer guides are automatically built and deployed to https://docs.vtk.org
every time the master branch is updated by leveraging the integration with the
Read the Docs service.

To locally build the documentation:

Without VTK build tree

	Download the VTK sources.

	Create and activate a virtual environment.

Linux/macOS
cd Documentation/docs

python3 -m venv .venv
source .venv/bin/activate

Windows
cd Documentation\docs

py -m venv .venv
.\.venv\Scripts\activate

py -m venv executes venv using the latest Python interpreter you have installed.
For more details, read the Python Windows launcher [https://docs.python.org/3/using/windows.html#launcher] docs.

	Install dependencies using pip.

Linux/macOS
python3 -m pip install -r requirements.txt

Windows
py -m pip install -r requirements.txt

	Build the documentation as web pages.

make html

	Open _build/html/index.html in a web browser.

Linux
xdg-open _build/html/index.html

macOS
open _build/html/index.html

Windows
start _build\html\index.html

With VTK build tree

Important

In order to successfully build the VTK documentation using the instructions below, you will
need to install the required Python packages.

To ensure that you have the correct dependencies installed in the Python environment associated
with the VTK build tree, please run pip install -r Documentation\docs\requirements.txt or
pip install --user -r Documentation\docs\requirements.txt.

If updating your system installation of Python is not feasible or you prefer not to do so,
we recommend following the Without VTK build tree approach instead.

	Download VTK sources.

	Configure VTK by setting the VTK_BUILD_SPHINX_DOCUMENTATION
option to ON.

	Build the SphinxDoc target.

Hint

Automatic build of preview documentation each time a merge request is submitted is not yet
supported due to limitation [https://docs.readthedocs.io/en/stable/guides/pull-requests.html#limitations]
of the Read The Docs service that does not yet support self-hosted GitLab deployment.

Solutions to address this are being discussed in https://github.com/readthedocs/readthedocs.org/issues/9464.

C++ API documentation

The C++ API documentation is built and uploaded to https://vtk.org/doc/nightly/html/index.html
when the master branch is updated.

To locally build the documentation:

	Install Doxygen

	Download the VTK sources.

	Configure VTK by setting the VTK_BUILD_DOCUMENTATION option to ON.

	Build the DoxygenDoc target.

Targets

After configuring the VTK using CMake, the following targets may be used to
build documentation for VTK:

	DoxygenDoc - build the doxygen documentation from VTK’s C++ source files
(VTK_BUILD_DOCUMENTATION needs to be ON for the target to exist).

	SphinxDoc - build the sphinx documentation for VTK.
(VTK_BUILD_SPHINX_DOCUMENTATION needs to be ON for the target to exist).

 Marshalling Hints

Marshalling Hints

Classes

VTK auto generates (de)serialization code in C++ for classes annotated by
the VTK_MARSHALAUTO wrapping hint.

On the other hand, the VTK_MARSHALMANUAL macro is used to indicate that a class
will take part in marshalling, but it cannot trivially (de)serialize it’s properties.
This is because one or more of the class’s properties may not have an appropriate
setter/getter function that is recognized by the VTK property parser.

For such classes, a developer is expected to provide the code to serialize and deserialize the class in vtkClassNameSerDes.cxx. This file must satisfy three conditions:

	It must live in the same module as vtkClassName.

	It must export a function int RegisterHandlers_vtkClassNameSerDesHelper(void*, void*) with C linkage.

	It must define and declare these three C++ functions:

	A serializer function

nlohmann:json Serialize_vtkClassName(vtkObjectBase*, vtkSerializer*)

	A deserializer function

void Deserialize_vtkClassName(const nlohmann::json&, vtkObjectBase*, vtkDeserializer*)

	A registrar function

int RegisterHandlers_vtkClassNameSerDesHelper(void* ser, void* deser)

that registers:

	a serializer function with a serializer instance

	a deserializer function with a deserializer instance

	a constructor of the VTK class with a deserializer instance

Properties

Excluding properties

You can exclude certain properties of a class by simply annotating the relevant setter/getter functions
with VTK_MARSHALEXCLUDE(reason), where reason is one of VTK_MARSHAL_EXCLUDE_REASON_IS_INTERNAL or
VTK_MARSHAL_EXCLUDE_REASON_NOT_SUPPORTED. This reason will be printed in the generated
C++ source code explaining why the property was not serialized.

Custom get/set functions

Some properties may not be correctly recognized by the property parser because
they have different names for their get and set functions. You can override this
by annotating the get function with the VTK_MARSHALGETTER(property) macro. Doing
so will ensure that the function gets recognized as a getter for property.
VTK_MARSHALSETTER(property) serves a similar purpose.

 Object manager

Object manager

Serialization

You can register objects with a vtkObjectManager instance and call
UpdateStatesFromObjects, GetState(identifier) to obtain a serialized state of
the registered objects and all their dependency objects that are
serializable.

Deserialization

You can register a json state (stringified) with a vtkObjectManager instance
and call UpdateObjectsFromStates, GetObjectAtId(identifier) to deserialize and
retrieve the objects.

Blobs

All vtkDataArray are hashed and stored as unique blobs to prevent
multiple copies of the same data within the state. The contents of a data array
within a state are represented with a hash string. You can fetch and register
blobs using GetBlob and RegisterBlob.

Dependencies

You can retrieve all dependent object identifiers using
vtkObjectManager::GetAllDependencies(identifier)

 Auto serialization

Auto serialization

Modules which have INCLUDE_MARSHAL in their vtk.module will opt their headers into the automated code generation of (de)serializers. Only classes which are annotated by the VTK_MARSHALAUTO wrapping hint will have generated serialization code.

Automated code generation

The vtkWrapSerDes executable makes use of the WrappingTools package to automatically generate

	A serializer function with signature
nlohmann:json Serialize_vtkClassName(vtkObjectBase*, vtkSerializer*)

	A deserializer function with signature
void(const nlohmann::json&, vtkObjectBase*, vtkDeserializer*)

	A registrar function that registers

	the serializer function with a serializer instance

	the deserializer function with a deserializer instance

	the constructor of the VTK class with a deserializer instance

	It’s signature is
int RegisterHandlers_vtkClassNameSerDes(void* ser, void* deser)

	It more or less looks like:

int RegisterHandlers_vtkObjectSerDes(void* ser, void* deser)
{
 int success = 0;
 if (auto* asObjectBase = static_cast<vtkObjectBase*>(ser))
 {
 if (auto* serializer = vtkSerializer::SafeDownCast(asObjectBase))
 {
 serializer->RegisterHandler(typeid(vtkObject), Serialize_vtkObject);
 success = 1;
 }
 }
 if (auto* asObjectBase = static_cast<vtkObjectBase*>(deser))
 {
 if (auto* deserializer = vtkDeserializer::SafeDownCast(asObjectBase))
 {
 deserializer->RegisterHandler(typeid(vtkObject), Deserialize_vtkObject);
 deserializer->RegisterConstructor("vtkObject", []() { return vtkObject::New(); });
 success = 1;
 }
 }
 return success;
}

Marshal hint macro

	Classes which are annotated with VTK_MARSHALAUTO are considered by the vtkWrapSerDes executable.

	Classes annotated with VTK_MARSHALMANUAL are hand coded in the same module. Here are some examples:

	Common/Core/vtkCollectionSerDesHelper.cxx for Common/Core/vtkCollection.h

	Common/DataModel/vtkCellArraySerDesHelper.cxx for Common/DataModel/vtkCellArray.h

Convenient script to annotate headers and module

	The Utilities/Marshalling/marshal_macro_annotate_headers.py script annotates headers for automatic or manual serialization. It is fed and driven by the accompanying Utilities/Marshalling/VTK_MARSHALAUTO.txt, Utilities/Marshalling/VTK_MARSHALMANUAL.txt and Utilities/Marshalling/ignore.txt.

	When the -u, --update argument is used, headers are in-place edited to use the VTK_MARSHAL(AUTO|MANUAL) wrapping hint. Files that already have this hint are untouched.

	When the -t, --test argument is used, the source tree is checked for inconsistent use of marshal macros.

 Python Wrappers

Python Wrappers

Introduction

This document is a reference for using VTK from Python. It is not a tutorial
and provides very little information about VTK itself, but instead describes
in detail the features of the Python wrappers and how using VTK from Python
differs from using VTK from C++. It assumes that the reader is already
somewhat familiar with both Python and VTK.

Background

The Python wrappers are automatically generated from the VTK source code,
and for the most part, there is a one-to-one mapping between the VTK classes
and methods that you can use from Python and the ones that you can use from
C++. More specifically, the wrappers are a package of Python extension modules
that interface directly to the VTK C++ libraries. When you use VTK through
the wrappers, you are actually executing compiled C++ code, and there is
very little performance difference between VTK/C++ and VTK/Python.

Installation

VTK for Python can be installed via either conda or pip, where the conda
packages is maintained on conda-forge, while the pip packages are maintained
by the VTK developers themselves. If you are first getting started, then pip
is probably the most convenient way to install VTK for Python:

pip install vtk

This will provide a basic installation of VTK that includes all core
functionality, but which will not include some of the specialized VTK
modules that rely on external libraries. Binary packages for VTK can
also be downloaded directly from https://www.vtk.org/download/.

Instructions for building VTK from source code are given in the file
Documentation/dev/build.md [https://gitlab.kitware.com/vtk/vtk/-/blob/release/Documentation/dev/build.md] within the source repository.

Importing

VTK is comprised of over one hundred individual modules. Programs can import
just the modules that are needed, in order to reduce load time.

from vtkmodules.vtkCommonCore import vtkObject
from vtkmodules.vtkFiltersSources import vtkConeSource, vtkSphereSource
from vtkmodules.vtkRenderingCore import (
 vtkActor,
 vtkDataSetMapper,
 vtkRenderer,
 vtkRenderWindow
)
import vtkmodules.vtkRenderingOpenGL2

When getting started, however, it is hard to know what modules you will need.
So if you are experimenting with VTK in a Python console, or writing a quick
and dirty Python script, it is easiest to simply import everything. There
is a special module called ‘all’ that allows this to be done:

from vtkmodules.all import *

After importing the VTK classes, you can check to see which module each of the
classes comes from:

for c in vtkObject, vtkConeSource, vtkRenderWindow:
 print(f"from {c.__module__} import {c.__name__}")

The output is as follows:

from vtkmodules.vtkCommonCore import vtkObject
from vtkmodules.vtkFiltersSources import vtkConeSource
from vtkmodules.vtkRenderingCore import vtkRenderWindow

Factories and Implementation Modules

In the first ‘import’ example above, you might be wondering about this line:

import vtkmodules.vtkRenderingOpenGL2

This import is needed because vtkRenderingOpenGL2 provides the OpenGL
implementations of the classes in vtkRenderingCore. To see this in action,
open a new Python console and do the following:

>>> from vtkmodules.vtkRenderingCore import vtkRenderWindow
>>> renwin = vtkRenderWindow()
>>> type(renwin)
<class 'vtkmodules.vtkRenderingCore.vtkRenderWindow'>
>>>
>>> import vtkmodules.vtkRenderingOpenGL2
>>> renwin2 = vtkRenderWindow()
>>> type(renwin2)
<class 'vtkmodules.vtkRenderingOpenGL2.vtkXOpenGLRenderWindow'>

After vtkRenderingOpenGL2 has been imported, the vtkRenderWindow()
constructor magically starts returning a different type of object.
This occurs because vtkRenderWindow is a factory class, which means that
the kind of object it produces can be overridden by an implementation
class. In order for the implementation class to do the override, all that
is necessary is that its module is imported. To make things even more
confusing, vtkRenderingOpenGL2 is not the only module that contains
implementations for the factory classes in vtkRenderingCore. The following
modules are often needed, as well:

import vtkmodules.vtkInteractionStyle
import vtkmodules.vtkRenderingFreeType

Although you only need implementations for the factory classes that you use,
it can be hard to know which classes are factory classes, or what modules
contain implementations for them. Also, it can be difficult to even know
what classes you are using, since many VTK classes make use of other VTK
classes. An example of this is vtkDataSetMapper, which internally uses
vtkPolyDataMapper to do the rendering. So even though vtkDataSetMapper is
not a factory class, it needs an OpenGL implementation for vtkPolyDataMapper.

The simplest approach is to import all the important implementation modules
into your program, even if you are not certain that you need them.

	For vtkRenderingCore, import vtkRenderingOpenGL2, vtkRenderingFreeType, vtkInteractionStyle

	For vtkRenderingVolume, import vtkRenderingVolumeOpenGL2

	For vtkCharts, import vtkContextOpenGL2

Classic VTK Import

There are many VTK programs that still import the ‘vtk’ module, which
has been available since VTK 4.0, rather than using the ‘vtkmodules’
package that was introduced in VTK 8.2:

import vtk

The advantage (and disadvantage) of this is that it imports everything. It
requires just one import statement for all of VTK, but it can be slow because
VTK has grown to be very large over the years.

Also note that, between VTK 8.2 and VTK 9.2.5, the use of the vtk module
would confuse the auto-completion features of IDEs such as PyCharm. This
was fixed in VTK 9.2.6. For 9.2.5 and earlier, the following can be used:

import vtkmodules.all as vtk

From the programmer’s perspective, this is equivalent to ‘import vtk’.

VTK Classes and Objects

Classes Derived from vtkObjectBase

In C++, classes derived from vtkObjectBase are instantiated by calling
New(). In Python, these classes are instantiated by simply calling the
constructor:

o = vtkObject()

For factory classes, the returned object’s type might be a subtype of the
class. This occurs because the Python wrappers are actually calling New()
for you, which allows the VTK factory overrides to occur:

>>> a = vtkActor()
>>> type(a)
<class 'vtkmodules.vtkRenderingOpenGL2.vtkOpenGLActor'>

When you create a VTK object in Python, you are in fact creating two
objects: a C++ object, and a Python object that holds a pointer to the C++
object. The repr() of the object shows the memory address of the C++
object (in parentheses) and of the Python object (after the ‘at’):

>>> a = vtkFloatArray()
>>> a
<vtkmodules.vtkCommonCore.vtkFloatArray(0x5653a6a6f700) at 0x7f0e7aecf5e0>

If you call str() or print() on these objects, the wrappers will call the
C++ PrintSelf() method. The printed information can be useful for debugging:

>>> o = vtkObject()
>>> print(o)
vtkObject (0x55858308a210)
 Debug: Off
 Modified Time: 85
 Reference Count: 1
 Registered Events: (none)

Other Classes (Special Types)

VTK also uses several classes that aren’t derived from vtkObjectBase. The
most important of these is vtkVariant, which can hold any type of object:

>>> v1 = vtkVariant('hello')
>>> v1
vtkmodules.vtkCommonCore.vtkVariant('hello')
>>> v2 = vtkVariant(3.14)
>>> v2
vtkmodules.vtkCommonCore.vtkVariant(3.14)

The wrapping of these classes is fully automatic, but is done in a slightly
different manner than vtkObjectBase-derived classes. First, these classes
have no New() method, and instead the public C++ constructors are wrapped
to create an equivalent Python constructor. Second, the Python object
contains its own copy of the C++ object, rather than containing just a
pointer to the C++ object. The vast majority of these classes are lightweight
containers and numerical types. For example, vtkQuaterniond, vtkRectf,
vtkColor4ub, etc. Many of them are actually class templates, which are
discussed below.

When you apply print() or str() to these objects, the operator<< of the
underlying C++ object is used to print them. For repr(), the name of the
type name is printed, followed by the str() output in prentheses. The
result looks similar to a constructor, though it might look strange depending
on what operator<< produces.

>> v = vtkVariant()
>> print(repr(v))
vtkmodules.vtkCommonCore.vtkVariant((invalid))

Class Templates

There are several C++ templates in VTK, which can be tricky to use from the
wrappers since the Python language has no real concept of templates. The
wrappers wrap templates as dictionary-like objects that map the template
parameters to template instantiations:

>>> vtkSOADataArrayTemplate
<template vtkCommonCorePython.vtkSOADataArrayTemplate>
>>> vtkSOADataArrayTemplate.keys()
['char', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int',
'uint', 'int64', 'uint64', 'float32', 'float64']
>>> c = vtkSOADataArrayTemplate['float64']
>>> c
<class 'vtkmodules.vtkCommonCore.vtkSOADataArrayTemplate_IdE'>

The wrappers instantiate the C++ template for a few useful types, as
indicated by the keys() of the template. The Python type name also has a
suffix (the ‘IdE’) that indicates the template parameters in a compressed
form according to IA64 C++ ABI name mangling rules, even when VTK is built
with a compiler that does not use the IA64 ABI natively.

Objects are created by first instantiating the template, and then
instantiating the class:

>>> a = vtkSOADataArrayTemplate['float32']()
>>> a.SetNumberOfComponents(3)

In the case of multiple template parameters, the syntax can look rather
complicated, but really it isn’t all that bad. For example, constructing
a vtkTuple<double,4> in Python looks like this, with the template
args in square brackets and the constructor args in parentheses:

>>> vtkTuple['float64',4]([1.0, 2.0, 3.0, 4.0])
vtkmodules.vtkCommonMath.vtkTuple_IdLi4EE([1.0, 2.0, 3.0, 4.0])

The type names are the same as numpy’s dtypes: bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, and
float64. Since int64 is ‘long long’, int is used for long. Also
see Template Keys in Advanced Topics.

Method Calls

When VTK methods are called from Python, conversion of all parameters from
Python to C++ occurs automatically. That is, if the C++ method signature
expects an integral type, you can pass a Python int, and if C++ expects a
floating-point type, you can pass a Python float (or any type that allows
implicit conversion to float).

For C++ ‘char’ parameters, which are rarely used in VTK, you must pass a
string with a length of 1 or 0 bytes. For unicode, the code must fit into
eight bits (either ASCII, or within the Latin-1 Supplement block). An empty
string signifies a null byte, and ‘\0’ can also be used.

A Python tuple, list, or any other Python sequence can be passed to a VTK
method that requires an array or std::vector in C++:

>>> a = vtkActor()
>>> p = (100.0, 200.0, 100.0)
>>> a.SetPosition(p)

If the method is going to modify the array that you pass as a parameter,
then you must pass a Python list that has the correct number of slots to
accept the returned values. If you try this with a tuple, you will get a
TypeError because tuple is immutable.

>>> z = [0.0, 0.0, 0.0]
>>> vtkMath.Cross((1,0,0),(0,1,0),z)
>>> print(z)
[0.0, 0.0, 1.0]

For multi-dimensional array parameters, you can either use a nested list,
or you can use numpy array with the correct shape.

If the C++ method returns a pointer to an array, then in Python the method
will return a tuple if the wrappers know the size of the array. In most
cases, the size is hinted in the header file.

>>> a = vtkActor()
>>> print(a.GetPosition())
(0.0, 0.0, 0.0)

Finally, Python None is treated the same as C++ nullptr, which allows
you to pass null objects and null strings:

>>> a = vtkActor()
>>> a.SetMapper(None)
>>> print(a.GetMapper())
None

Wrappable and Unwrappable Methods

A method cannot be used from Python if its C++ parameters or return type
cannot be converted to or from Python by the wrappers, or if the method is
templated. Common non-convertible types include std::ostream, std::istream,
and all STL container types except for std::vector (see below),
and any non-trivial pointer type or any pointer to an object whose class is
not derived from vtkObjectBase.

The wrappable parameter types are:

	char, wrapped as a single ASCII character in a Python str

	signed char and unsigned char, wrapped as Python int

	short, int, long and long long, wrapped as Python int

	unsigned short to unsigned long long, wrapped as Python int

	float and double, wrapped as Python float

	size_t and ssize_t, wrapped as Python int

	std::string, wrapped as Python str via utf-8 encoding/decoding

	typedefs of all the above, for any typedef defined in a VTK header file

	std::vector<T> where T is one of the above, as Python tuple or list

	const T& where T is any of the above, wrapped as described above

	T[N] where T is a fundamental type, as Python tuple or list

	T[N][M] where T is a fundamental type, as nested tuple or list

	T* where T is a fundamental type, as tuple or list

	vtkObjectBase* and derived types, as their respective Python type

	vtkSmartPointer<T> as the Python vtkObjectBase-derived type T

	std::vector<vtkSmartPointer<T>> as a sequence of objects of type T

	const std::vector<vtkSmartPointer<T>> as a sequence of objects of type T

	other wrapped classes (like vtkVariant), but not pointers to these types

	char*, as Python str via utf-8 encoding/decoding

	void*, as Python buffer (e.g. bytes or bytearray)

	the parameter list (void (*f)(void*), void*) as a Python callable type

References like int& and std::string& are wrapped via a reference proxy
type as described in the Pass by Reference section
below. Non-const references to std::vector<T> and other mutable types
do not use a proxy, but instead require that a mutable Python object is
passed, for example a list rather than a tuple.

A void* parameter can accept a pointer in two different ways: either from
any Python object that supports the Python buffer protocol (this includes
all numpy arrays along with the Python bytes and bytearray types), or from a
string that contains a mangled pointer of the form ‘_hhhhhhhhhhhh_p_void’
where ‘hhhhhhhhhhhh’ is the hexadecimal address. Return-value void* will
always be a string containing the mangled pointer.

Also, a T* parameter for fundamental type T can accept a buffer object,
if and only if it is annotated with the VTK_ZEROCOPY hint in the header file.
With this hint, a numpy array of T can be passed to a T* parameter and
the VTK method will directly access the memory buffer of the array. Hence the
name ‘zerocopy’, which indicates no copying is done, and that direct memory
access is used.

The vtkObject::AddObserver() method has a special wrapping, as discussed
in the Observer Callbacks section below.

Conversion Constructors

If a wrapped type has constructor that takes one parameter, and if that
constructor is not declared ‘explicit’, then the wrappers will automatically
use that constructor for type conversion to the parameter type. The
wrappers ensure that this conversion occurs in Python in the same manner
that it is expected to occur in C++.

For example, vtkVariantArray has a method InsertNextItem(v:vtkVariant),
and vtkVariant has a constructor vtkVariant(x:int). So, you can do this:

>>> variantArray.InsertNextItem(1)

The wrappers will automatically construct a vtkVariant from ‘1’, and
will then pass it as a parameter to InsertNextItem(). This is a feature
that most C++ programmers will take for granted, but Python users might
find it surprising.

Overloaded Methods

If you call a VTK method that is overloaded, the Python wrappers will choose
the overload that best matches the supplied arguments. This matching takes
into account all allowed implicit conversions, such as int to float or any
conversion constructors that are defined for wrapped objects.

Some overloads will be unavailable (not wrapped) either because they are
unwrappable as per the criteria described above, or because they are shadowed
by another overload that is always preferable. A simple example of this is
any methods that is overloaded on C++ float and double. The Python
float type is a perfect match C++ double, therefore the float overload
is not wrapped.

Static Methods

A static method can be called without an instance. For example,

vtkObject.SetGlobalWarningDisplay(1)

Some VTK classes, like vtkMath, consist solely of static methods. For others,
like vtkMatrix4x4, most of the non-static methods have static overloads.
Within Python, the only way to tell if a VTK method is static (other than
trying it) is to look at its docstring.

Unbound Methods

When a non-static method is called on the class, rather than on an instance,
it is called an unbound method call. An unbound method call must provide
‘self’ as the first argument, where ‘self’ is an instance of either the class
or a subclass.

w = vtkRenderWindow()
vtkWindow.Render(w)

In other words, the wrappers translate Python unbound method calls into
C++ unbound method calls. These are useful when deriving a Python class
from a wrapped VTK class, since they allow you to call any base class
methods that have been overridden in the subclass.

Operator Methods

For special classes (the ones not derived from vtkObjectBase), some useful
C++ operators are wrapped in python. The ‘[]’ operator is wrapped for
indexing and item assignment, but because it relies on hints to guess which
indices are out-of-bounds, it is only wrapped for vtkVector and related
classes.

The comparison operators ‘<’ ‘<=’ ‘==’ ‘>=’ ‘>’ are wrapped for all
classes that have these operators in C++. These operators allow sorting
of vtkVariant objects with Python.

The ‘<<’ operator for printing is wrapped and is used by the python
print() and str() commands.

Strings and Bytes

VTK uses both char* and std::string for strings. As far as the wrappers
are concerned, these are equivalent except that the former can be nullptr
(None in Python). For both, the expected encoding is ASCII or utf-8.

In Python, either str or bytes can be used to store strings, and both
of these can be passed to VTK methods that require char* or std::string
(or the legacy vtkStdString). A str object is passed to VTK as utf-8,
while a bytes object is passed as-is.

When a VTK method returns a string, it is received in Python as a str object
if it is valid utf-8, or as a bytes object if not. The caller should check
the type of the returned object (str, bytes, or perhaps None) if there
is any reason to suspect that non-utf-8 text might be present.

STL Containers

VTK provides conversion between std::vector and Python sequences
such as tuple and list. If the C++ method returns a vector,
the Python method will return a tuple:

C++: const std::vector<std::string>& GetPaths()
C++: std::vector<std::string> GetPaths()
Python: GetPaths() -> Tuple[str]

If the C++ method accepts a vector, then the Python method can be
passed any sequence with compatible values:

C++: void SetPaths(const std::vector<std::string>& paths)
C++: void SetPaths(std::vector<std::string> paths)
Python: SetPaths(paths: Sequence[str]) -> None

Furthermore, if the C++ method accepts a non-const vector reference,
then the Python method can be passed a mutable sequence (e.g. list):

C++: void GetPaths(std::vector<std::string>& paths)
Python: GetPaths(paths: MutableSequence[str]) -> None

The value type of the std::vector<T> must be std::string or a
fundamental numeric type such as double or int (including
signed char and unsigned char but excluding char).

Smart pointers

The wrappers will automatically convert between C++ vtkSmartPointer<T>
and objects of type T (or None, if the smart pointer is empty):

C++: vtkSmartPointer<vtkObject> TakeObject()
Python: TakeObject() -> vtkObject

In other words, in Python the smart pointer doesn’t look any different
from the object it points to. Under the hood, however, the wrappers
understand that the smart pointer carries a reference to the object and
will take responsibility for deleting that reference.

A C++ method can return a vector of smart pointers, which will be seen in
Python as a tuple of objects:

C++: std::vector<vtkSmartPointer<vtkObject>> GetObjects()
Python: GetObject() -> Tuple[vtkObject]

If a C++ method expects std::vector<vtkSmartPointer<T>> as a parameter,
the wrappers will automatically construct the vector from any sequence that
is passed from Python. The objects in the sequence must be of type T (or
a subclass of T, or None). If not, a TypeError will be raised.

Pass by Reference

Many VTK methods use pass-by-reference to return values back to the caller.
Calling these methods from Python requires special consideration, since
Python’s str, tuple, int, and float types are immutable. The wrappers
provide a ‘reference’ type, which is a simple container that allows
pass-by-reference.

For example, consider the following C++ method that uses pass-by-reference:

void GetCellAtId(vtkIdType cellId, vtkIdType& cellSize, vtkIdType const*& cellPoints)

It requires a reference to vtkIdType (a Python int), and to
vtkIdType const* (a tuple of ints). So we can call this method as
follows:

>>> from vtkmodules.vtkCommonCore import reference
>>> from vtkmodules.vtkCommonDataModel import vtkCellArray
>>>
>>> # Build a cell array
>>> a = vtkCellArray()
>>> a.InsertNextCell(3, (1, 3, 0))
>>>
>>> # Create the reference objects
>>> n = reference(0)
>>> t = reference((0,))
>>>
>>> # Call the pass-by-reference method
>>> a.GetCellAtId(0, n, t)
>>>
>>> n.get()
3
>>> t.get()
(1, 3, 0)

Some important notes when using pass-by-reference:

	The reference constructor must be given a value of the desired type.
The method might use this value or might ignore it.

	Calling the get() method of the reference is usually unnecessary,
because the reference already supports the interface protocols of the
object that it contains.

Preconditions

One very real concern when using VTK from Python is that the parameters that
you pass to a method might cause the program to crash. In particular, it is
very easy to pass an index that causes an out-of-bounds memory access, since
the C++ methods don’t do bounds checking. As a safety precaution, the
wrappers perform the bounds check before the C++ method is called:

>>> a = vtkFloatArray()
>>> a.GetValue(10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: expects 0 <= id && id < GetNumberOfValues()

All precondition checks raise a ValueError if they fail, since they are
checks on the values of the parameters. The wrappers don’t know if C++ is
using the parameter as an index, so IndexError is not used.

Currently the only way to find out if a method has preconditions is to look
at the declaration of the method in the C++ header file to see if it has a
VTK_EXPECTS hint.

Observer Callbacks

Similar to what can be done in C++, a Python function can be called
each time a VTK event is invoked on a given object. In general, the
callback function should have the signature func(obj:vtkObject, event:str),
or func(self, obj:vtkObject, event:str) if it is a method of a class.

>>> def onObjectModified(object, event):
>>> print('object: %s - event: %s' % (object.GetClassName(), event))
>>>
>>> o = vtkObject()
>>> o.AddObserver(vtkCommand.ModifiedEvent, onObjectModified)
1
>>> o.Modified()
object: vtkObject - event: ModifiedEvent

Call Data

In case there is a ‘CallData’ value associated with an event, in C++, you
have to cast it from void* to the expected type using reinterpret_cast.
The equivalent in python is to add a CallDataType attribute to the
associated python callback method. The supported CallDataType values are
VTK_STRING, VTK_OBJECT, VTK_INT, VTK_LONG, VTK_DOUBLE, and
VTK_FLOAT.

The following example uses a function as a callback, but a method or any
callable object can be used:

>>> from vtkmodules.vtkCommonCore import vtkCommand, VTK_INT
>>>
>>> def onError(object, event, calldata):
>>> print('object: %s - event: %s - msg: %s' % (object.GetClassName(), event, calldata))
>>>
>>> onError.CallDataType = VTK_INT
>>>
>>> lt = vtkLookupTable()
>>> lt.AddObserver(vtkCommand.ErrorEvent, onError)
1
>>> lt.SetTableRange(2,1)
object: vtkLookupTable - event: ErrorEvent - msg: ERROR:
In /home/user/VTK/Common/Core/vtkLookupTable.cxx, line 122
vtkLookupTable (0x6b40b30): Bad table range: [2, 1]

For convenience, the CallDataType can also be specified where the function
is first declared with the help of the @calldata_type decorator:

>>> from vtkmodules.util.misc import calldata_type
>>>
>>> @calldata_type(VTK_INT)
>>> def onError(object, event, calldata):
>>> print('object: %s - event: %s - msg: %s' % (object.GetClassName(),
 event, calldata))

Other Wrapped Entities

Constants

Most of the constants defined in the VTK header files are available in Python,
and they can be accessed from the module in which they are defined. Many of
these are found in the vtkCommonCore module, where they were defined as
preprocessor macros.

>>> from vtkmodules.vtkCommonCore import VTK_DOUBLE_MAX
>>> VTK_DOUBLE_MAX
1.0000000000000001e+299

Others are defined as enums, often within a class namespace. If the enum
is anonymous, then its values are int.

>>> vtkCommand.ErrorEvent
39

Constants in the header files are wrapped if they are enums, or if they are
const variables of a wrappable scalar type, or if they are preprocessor
symbols that evaluate to integer, floating-point, or string literal types.

Enum Types

Each named enum type is wrapped as a new Python type, and members of the enum
are instances of that type. This allows type checking for enum types:

>>> from vtkmodules.vtkCommonColor import vtkColorSeries
>>> vtkColorSeries.COOL
2
>>> isinstance(vtkColorSeries.ColorSchemes, vtkColorSeries.COOL)
>>> cs = vtkColorSeries()
>>> cs.SetColorScheme(vtkColorSeries.COOL)

Enum classes are wrapped in a manner similar to named enums, except that
the enum values are placed within the enum class namespace. For example,
vtkEventDataAction is an enum class, with ‘Press’ as a member:

>>> from vtkmodules.vtkCommonCore import vtkEventDataAction
>>> vtkEventDataAction.Press
1
>>> isinstance(vtkEventDataAction.Press, vtkEventDataAction)
True

In the first example, the ColorSchemes enum type and the COOL enum value
were both defined in the vtkColorSeries namespace. In the second example,
the vtkEventDataAction enum class was defined in the module namespace,
and the Press value was defined in the enum class namespace.

Note that the VTK enum types behave like C++ enums, and not like the Python
enums types provided by the Python ‘enum’ module. In particular, all VTK
enum values can be used anywhere that an int can be used.

Namespaces

Namespaces are currently wrapped in a very limited manner. The only
namespace members that are wrapped are enum constants and enum types.
There is no wrapping of namespaced classes or functions, or of nested
namespaces. Currently, the wrappers implement namespaces as Python
module objects.

Docstrings

The wrappers automatically generate docstrings from the doxygen comments in
the header files. The Python help() command can be used to print the
documentation to the screen, or the __doc__ attributes of the classes
and methods can be accessed directly.

Method Docstrings

The method docstrings are formatted with the method signatures first,
followed by doxygen comments. The Python method signatures have type
annotations, and are followed by the C++ method signatures for
completeness.

 InvokeEvent(self, event:int, callData:Any) -> int
 C++: int InvokeEvent(unsigned long event, void* callData)
 InvokeEvent(self, event:str, callData:Any) -> int
 C++: int InvokeEvent(const char* event, void* callData)
 InvokeEvent(self, event:int) -> int
 C++: int InvokeEvent(unsigned long event)
 InvokeEvent(self, event:str) -> int
 C++: int InvokeEvent(const char* event)

 This method invokes an event and returns whether the event was
 aborted or not. If the event was aborted, the return value is 1,
 otherwise it is 0.

Some Python IDEs will automatically show the docstring as soon as you type
the name of the method.

Class Docstrings

The class docstrings include a brief description of the class, followed
by the name of the superclass, and then the full doxygen documentation,
including doxygen markup:

 vtkMatrix4x4 - represent and manipulate 4x4 transformation matrices

 Superclass: vtkObject

 vtkMatrix4x4 is a class to represent and manipulate 4x4 matrices.
 Specifically, it is designed to work on 4x4 transformation matrices
 found in 3D rendering using homogeneous coordinates [x y z w]. Many
 of the methods take an array of 16 doubles in row-major format. Note
 that OpenGL stores matrices in column-major format, so the matrix
 contents must be transposed when they are moved between OpenGL and
 VTK.
 @sa
 vtkTransform

If the class is not derived from vtkObjectBase, then it will have one or
more public constructors, and these will be included before the comments:

 vtkSimpleCriticalSection() -> vtkSimpleCriticalSection
 C++: vtkSimpleCriticalSection()
 vtkSimpleCriticalSection(isLocked:int) -> vtkSimpleCriticalSection
 C++: vtkSimpleCriticalSection(int isLocked)

 vtkSimpleCriticalSection - Critical section locking class

 vtkCriticalSection allows the locking of variables which are accessed
 through different threads.

Template Docstrings

Class templates are documented similar to classes, except that they include
a ‘Provided Types’ section that lists the available template instantiations
and the C++ template arguments that they correspond to.

 vtkSOADataArrayTemplate - Struct-Of-Arrays implementation of
 vtkGenericDataArray.

 Superclass: vtkGenericDataArray[vtkSOADataArrayTemplate[ValueTypeT],ValueTypeT]

 vtkSOADataArrayTemplate is the counterpart of vtkAOSDataArrayTemplate.
 Each component is stored in a separate array.

 @sa
 vtkGenericDataArray vtkAOSDataArrayTemplate

 Provided Types:

 vtkSOADataArrayTemplate[char] => vtkSOADataArrayTemplate<char>
 vtkSOADataArrayTemplate[int8] => vtkSOADataArrayTemplate<signed char>
 vtkSOADataArrayTemplate[uint8] => vtkSOADataArrayTemplate<unsigned char>
 vtkSOADataArrayTemplate[int16] => vtkSOADataArrayTemplate<short>
 vtkSOADataArrayTemplate[uint16] => vtkSOADataArrayTemplate<unsigned short>
 vtkSOADataArrayTemplate[int32] => vtkSOADataArrayTemplate<int>
 vtkSOADataArrayTemplate[uint32] => vtkSOADataArrayTemplate<unsigned int>
 vtkSOADataArrayTemplate[int] => vtkSOADataArrayTemplate<long>
 vtkSOADataArrayTemplate[uint] => vtkSOADataArrayTemplate<unsigned long>
 vtkSOADataArrayTemplate[int64] => vtkSOADataArrayTemplate<long long>
 vtkSOADataArrayTemplate[uint64] => vtkSOADataArrayTemplate<unsigned long long>
 vtkSOADataArrayTemplate[float32] => vtkSOADataArrayTemplate<float>
 vtkSOADataArrayTemplate[float64] => vtkSOADataArrayTemplate<double>

Unlike classes, the template documentation is formatted similarly regardless
of whether the the class template derives from vtkObjectBase or not:

 vtkVector - templated base type for storage of vectors.

 Superclass: vtkTuple[T,Size]

 This class is a templated data type for storing and manipulating fixed
 size vectors, which can be used to represent two and three dimensional
 points. The memory layout is a contiguous array of the specified type,
 such that a float[2] can be cast to a vtkVector2f and manipulated. Also
 a float[6] could be cast and used as a vtkVector2f[3].

 Provided Types:

 vtkVector[float64,4] => vtkVector<double, 4>
 vtkVector[float32,4] => vtkVector<float, 4>
 vtkVector[int32,4] => vtkVector<int, 4>
 vtkVector[float64,2] => vtkVector<double, 2>
 vtkVector[float32,2] => vtkVector<float, 2>
 vtkVector[int32,2] => vtkVector<int, 2>
 vtkVector[float64,3] => vtkVector<double, 3>
 vtkVector[float32,3] => vtkVector<float, 3>
 vtkVector[int32,3] => vtkVector<int, 3>

Internals and Advanced Topics

Special Attributes

Classes and objects derived from vtkObjectBase have special attributes, which
are only used in very special circumstances.

The __vtkname__ attribute of the class provides the same string that the
GetClassName() method returns. With the exception of classes that are
template instantiations, it is identical to the __name__ attribute.
For template instantiations, however, GetClassName() and __vtkname__
return the result of calling typeid(cls).name() from C++, which provides
a platform specific result:

>>> vtkSOADataArrayTemplate['float32'].__vtkname__
'23vtkSOADataArrayTemplateIfE'

This can be used to get the VTK ClassName when you don’t have an
instantiation to call GetClassName() on. It is useful for checking the
type of a C++ VTK object against a Python VTK class.

The __this__ attribute of the objects is a bit less esoteric, it provides a
pointer to the C++ object as a mangled string:

>>> a = vtkFloatArray()
>>> a.__this__
'_00005653a6a6f700_p_vtkFloatArray'

The string provides the hexadecimal address of ‘this’, followed by ‘p’
(shorthand for pointer), and the type of the pointer. You can also
construct a Python object directly from the C++ address, if the address is
formatted as described above:

>>> a = vtkFloatArray('_00005653a6a6f700_p_vtkFloatArray')
>>> a
<vtkmodules.vtkCommonCore.vtkFloatArray(0x5653a6a6f700) at 0x7f0e7aecf5e0>

If you call the constructor on the string provided by __this__, you will
get exactly the same Python object back again, rather than a new object.
But this constructor can be useful if you have some VTK code that has been
wrapped with a different wrapper tool, for example with SWIG. If you can
get the VTK pointer from SWIG, you can use it to construct Python object
that can be used with the native VTK wrappers.

Wrapper Hints

A wrapper hint is an attribute that can be added to a class, method, or
parameter declaration in a C++ header file to give extra information to
the wrappers. These hints are defined in the vtkWrappingHints.h header
file.

The following hints can appear before a method declaration:

	VTK_WRAPEXCLUDE excludes a method from the wrappers

	VTK_NEWINSTANCE passes ownership of a method’s return value to the caller

For convenience, VTK_WRAPEXCLUDE can also be used to exclude a whole class.
The VTK_NEWINSTANCE hint is used when the return value is a vtkObjectBase*
and the caller must not increment the reference count upon acceptance of the
object (but must still decrement the reference count when finished with the
object).

The following hints can appear after a method declaration:

	VTK_EXPECTS(cond) provides preconditions for the method call

	VTK_SIZEHINT(expr) marks the array size of a return value

	VTK_SIZEHINT(name, expr) marks the array size of a parameter

For VTK_EXPECTS(cond), the precondition must be valid C++ code, and can
use any of the parameter names or this. Even without this, any public
names in the class namespace (including method names) will be resolved.
See the Preconditions section for additional information.

VTK_SIZEHINT(expr) is used for methods that return an array as type T*,
where T is a numeric data type. The hint allows the wrappers to convert the
array to a tuple of the correct size. Without the size hint, the wrappers
will return the pointer as a string that provides a mangled memory address
of the form ‘_hhhhhhhhhhhh_p_void’ where ‘hhhhhhhhhhhh’ is address
expressed in hexadecimal.

VTK_SIZEHINT(parameter_name, expr) is used to hint parameters of type
T* or T&* (with T as a numeric data type) so that the wrappers know
the size of the array that the pointer is pointing to. The expr can be
any expression that evaluates to an integer, and it can include parameter
names, public class members and method calls, or the special name _
(underscore) which indicates the method’s return value. In the absence
of a size hint, the wrappers cannot check that the length of the sequence
passed from Python matches the size of the array required by the method.
If the method requires a larger array than it receives, a buffer overrun
will occur.

The following hints can appear before a parameter declaration:

	VTK_FILEPATH marks a parameter that accepts a pathlib.Path object

	VTK_ZEROCOPY marks a parameter that accepts a buffer object

More specifically, VTK_FILEPATH is used with char* and std::string
parameters to indicate that the method also accepts any object with a
__fspath__() method that returns a path string. And VTK_ZEROCOPY is
used with T* parameters, for basic integer or float type T, to indicate
that the Python buffer protocol will be used to access the values, rather
than the Python sequence protocol that is used by default.

Deprecation Warnings

In addition to the wrapping hints, the Python wrappers are also aware of the
deprecation attributes that have been applied to classes and methods. When
a deprecated method is called, a DeprecationWarning is generated and
information about the deprecation is printed, including the VTK version
for the deprecation.

To ignore these warnings, use the following code:

import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)

To see each deprecation warning just once per session,

warnings.filterwarnings('once', category=DeprecationWarning)

Template Keys

The following is a table of common template key names, which are the same as
the numpy dtype names. Note that you can actually use numpy dtypes as keys,
as well as the native Python types bool, int, and float. There is
some danger in using int, however, because it maps to C++ long which has
a platform-dependent size (either 32 bits or 64 bits). Finally, the char
codes from the Python array module can be used as keys, but they should
be avoided since more programmers are familiar with numpy than with the
much older array module.

	C++ Type

	Template Key

	Type Key

	Char Key

	IA64 ABI Code

	bool

	‘bool’

	bool

	‘?’

	IbE

	char

	‘char’

	

	‘c’

	IcE

	signed char

	‘int8’

	

	‘b’

	IaE

	unsigned char

	‘uint8’

	

	‘B’

	IhE

	short

	‘int16’

	

	‘h’

	IsE

	unsigned short

	‘uint16’

	

	‘H’

	ItE

	int

	‘int32’

	

	‘i’

	IiE

	unsigned int

	‘uint32’

	

	‘I’

	IjE

	long

	‘int’

	int

	‘l’

	IlE

	unsigned long

	‘uint’

	

	‘L’

	ImE

	long long

	‘int64’

	

	‘q’

	IxE

	unsigned long long

	‘uint64’

	

	‘Q’

	IyE

	float

	‘float32’

	

	‘f’

	IfE

	double

	‘float64’

	float

	‘d’

	IdE

Since the size of ‘long’ and ‘unsigned long’ is platform-dependent, these
types should generally be avoided.

Exception Handling

There are times when an observer might generate a Python exception. Since
the observers are called from C++, there is no good way to catch these
exceptions from within Python. So, instead, the wrappers simply print a
traceback to stderr and then clear the error indicator. The Python program
will continue running unless the exception was a KeyboardInterrupt (Ctrl-C),
in which case the program will exit with an error code of 1.

Deleting a vtkObject

There is no direct equivalent of VTK’s Delete() method, since Python does
garbage collection automatically. The Python object will be deleted
when there are no references to it within Python, and the C++ object will
be deleted when there are no references to it from within either Python
or C++. Note that references can hide in unexpected places, for example if
a method of an object is used as an observer callback, the object will not
be deleted until the observer is disconnected.

The DeleteEvent can be used to detect object deletion, but note that the
observer will receive a None for the object, since the observer is called
after (not before) the deletion occurs:

>>> o = vtkObject()
>>> o.AddObserver('DeleteEvent', lambda o,e: print(e, o))
1
>>> del o
DeleteEvent None

If you need to know what object is deleted, the identifying information must
be extracted before the deletion occurs:

>>> o = vtkObject()
>>> o.AddObserver('DeleteEvent',lambda x,e,r=repr(o): print(e, r))
1
>>> del o
DeleteEvent <vtkmodules.vtkCommonCore.vtkObject(0x55783870f970) at 0x7f1e61678be0>

In cases where you need to track down tricky memory issues, you might find
it useful to call the GetReferenceCount() method of the object directly.

Ghosts

A wrapped VTK object (derived from vtkObjectBase) is a Python object that
holds a pointer to a C++ object (specifically, a vtkObjectBase*). The
Python object can have attributes that the C++ object knows nothing about.
So, what happens to these attributes if the Python object is deleted, but
the C++ object lives on? Consider this simple example of storing the C++
object in an array and then deleting the Python object:

obj = vtkObject()
obj.tag = 'FirstObject'
va = vtkVariantArray()
va.InsertNextValue(obj)
del obj

When we retrieve the object from the array, we want it to have the ‘tag’
attributes that it had we stored it. But you might wonder, aren’t all
Python-specific attributes deleted along with the Python object? The
answer is, no they aren’t, they’re saved until until the C++ object itself
is deleted.

The wrappers have a special place, which we will call the graveyard, where
‘ghosts’ of objects are stored when the objects are deleted. The ghost is not
an object, but rather a container for the Python attributes of a deceased
object. If the object ever reappears within Python, usually as a return
value from a C++ method call, then the ghost is resurrected as a new Python
object that has all the attributes of the original Python object.

The graveyard is only used for objects that have unfinished business. If a
Python object has an empty dict and no other special attributes, then it will
not go to the graveyard. Also, if the C++ object is deleted at the same time
as the Python object, then the graveyard will not be used. Each ghost in the
graveyard holds a weak pointer to its C++ object and will vanish when the C++
object is deleted (not immediately, but the next time the graveyard garbage
collector runs).

Subclassing a VTK Class

It is possible to subclass a VTK class from within Python, but this is of
limited use because the C++ virtual methods are not hooked to the Python
methods. In other words, if you make a subclass of vtkPolyDataAlgorithm
and override override the Execute() method, it will not be automatically
called by the VTK pipeline. Your Execute() method will only be called if
the call is made from Python.

The addition of virtual method hooks to the wrappers has been proposed,
but currently the only way for Python methods to be called from C++ code
is via callbacks. The vtkProgrammableSource and vtkProgrammableFilter are
examples of VTK algorithm classes that use callbacks for execution, while
vtkInteractionStyleUser can use observer callbacks for event handling.

Wrapping External VTK Modules

If you have your own C++ classes that are based on VTK, and if they are
placed with a VTK module with a vtk.module file, then they can be wrapped
as shown in the Module Wrapping Example [https://gitlab.kitware.com/vtk/vtk/-/blob/release/Examples/Modules/Wrapping]. You will
also find the cmake documentation on VTK modules to be useful.

Experimental Features

Python Class Overrides

VTK now supports overriding wrapped classes with Python subclasses. This
enables developers to provide more Python friendly interfaces for certain
classes. Here is a trivial example of an override:

from vtkmodules.vtkCommonCore import vtkPoints
@vtkPoints.override
class CustomPoints(vtkPoints):
 pass

Once the override is in place, any future vtkPoints Python object instances
will be instances of the override class. This behavior is global.

points = vtk.vtkPoints() # returns an instance of CustomPoints

The override can be reversed by setting an override of None, but this will
not impact instantiations that have already occurred.

vtkPoints.override(None)

If the class has already been overridden in C++ via VTK’s object factory
mechanism, then directly applying a Python override to that class will not
work. Instead, the Python override must be applied to the C++ factory
override. For example, on Windows,

@vtkWin32OpenGLRenderWindow.override
class CustomRenderWindow(vtkWin32OpenGLRenderWindow):
 ...
window = vtkRenderWindow() # creates a CustomRenderWindow

Please see Subclassing a VTK Class for restrictions on
subclassing VTK classes through Python.

Stub Files for Type Hinting

VTK includes a script called generate_pyi.py [https://gitlab.kitware.com/vtk/vtk/-/blob/release/Wrapping/Python/vtkmodules/generate_pyi.py] that
will generate pyi stub files for each wrapped VTK module. The purpose of
these files, as explained in PEP 484 [https://www.python.org/dev/peps/pep-0484/#stub-files], is to provide type
information for all constants, classes, and methods in the modules.
Each of these files contain blocks like this:

VTK_DOUBLE:int
VTK_DOUBLE_MAX:float
VTK_DOUBLE_MIN:float
...

class vtkObject(vtkObjectBase):
 def AddObserver(self, event:int, command:Callback, priority:float=0.0) -> int: ...
 def GetMTime(self) -> int: ...
 @staticmethod
 def GetNumberOfGenerationsFromBaseType(type:str) -> int: ...
 @overload
 def HasObserver(self, event:int, __b:'vtkCommand') -> int: ...
 @overload
 def HasObserver(self, event:str, __b:'vtkCommand') -> int: ...

class vtkAbstractArray(vtkObject):
 class DeleteMethod(int): ...
 VTK_DATA_ARRAY_ALIGNED_FREE:'DeleteMethod'
 VTK_DATA_ARRAY_DELETE:'DeleteMethod'
 VTK_DATA_ARRAY_FREE:'DeleteMethod'
 VTK_DATA_ARRAY_USER_DEFINED:'DeleteMethod'
 def Allocate(self, numValues:int, ext:int=1000) -> int: ...

Python consoles like ipython and IDEs like PyCharm can use the information in
these files to provide hints while you edit the code. These files are
included in the Python packages for VTK, but they can also be built by
executing the generate_pyi.py script. To do so, execute the script
with the vtkpython executable (or with the regular python executable,
if its paths are set for VTK):

vtkpython -m vtkmodules.generate_pyi

This will place build the pyi files and place them inside the vtkmodules
package, where ipython and PyCharm should automatically find them. The
help for this script is as follows:

usage: python generate_pyi.py [-p package] [-o output_dir] [module ...]
options:
 -p NAME Package name [vtkmodules by default].
 -o OUTPUT Output directory [package directory by default].
 -e EXT Output file suffix [.pyi by default].
 module Module or modules to process [all by default].

The pyi files are syntactically correct python files, so it is possible to
load them as such in order to test them and inspect them.

 Wrapping Tools

Wrapping Tools

The wrapping tools consist of executables that pull information from C++
header files, and produce wrapper code that allows the C++ interfaces to
be used from other programming languages (Python and Java). One can think
of the wrappers as having a front-end that parses C++ header files, and a
back-end that produces language-specific glue code.

All of the code in this directory is C, rather than C++. One might think
this is silly, since the front-end parses C++ .h files and the back-end
generates .cxx files. The original reason for this is that the parser
uses lex and yacc, which are written in C and previously could not easily
be linked into C++ programs.

The C++ Parser

vtkParse

The header vtkParse.h provides a C API for the C++ parser that wrappers use
to read the VTK header files. The parser consists of three critical pieces:
a preprocessor (see below), a lex-based lexical analyzer (lex.yy.c, generated
from vtkParse.l) and a bison-based glr parser (vtkParse.tab.c, generated from
vtkParse.y). Instructions on rebuilding the parser are provided at the end
of this document.

vtkParsePreprocess

This is a preprocessor that can run independently of the parser. In general,
the parser does not recursively parse #include files, but it does
recursively preprocess them in order to gather all of the macro definitions
within them.

vtkParseString

This provides low-level string handling routines that are used by the parser
and the preprocessor. Most importantly, it contains a C++ tokenizer. It also
contains a cache for storing strings (type names, etc.) that are
encountered during the parse.

vtkParseSystem

This contains utilities for file system access. One of its functionalities
is to manage a cache of where header files are located on the file system, so
that header file lookups can be done inexpensively even on slow file systems.

vtkParseType

This is a header file that defines numerical constants that we use to identify
C++ types, type qualifiers, and specifiers. These constants are used in the
vtkParseData data structures described below.

vtkParseAttributes

This is a header file that defines numerical constants for wrapper-specific
attributes that can be added to declarations in the VTK header files. For
example, [[vtk::wrapexclude]] and [[vtk::deprecated]]. These attribute
constants are stored in the vtkParseData data structures.

vtkParseData

The data structures defined in vtkParseData.h are used for the output of the
parser. This header provides data structures for namespaces, classes, methods,
typedefs, and for other entities that can be declared in a C++ file. The
wrappers convert this data into wrapper code.

Parser Utilities

vtkParseExtras

This file provides routines for managing certain abstractions of the data that
is produced by the parser. Most specifically, it provides facilities for
expanding typedefs and for instantiating templates. Its code is not pretty.

vtkParseMerge

This provides methods for dealing with method resolution order. It defines
a data structure for managing a class along with all the classes it derives
from. It is needed for managing tricky details relating to inheritance,
such as “using” declarations, overrides, virtual methods, etc.

vtkParseMangle

The Python wrappers rely on name-mangling routines to convert C++ names into
names that can be used in Python. The mangling is done according to the
rules of the IA64 ABI (this same mangling is used to convert C++ APIs into
C APIs)

vtkParseHierarchy

A hierarchy file is a text file that lists information about all the types
defined in a VTK module. The wrappers use these files to look up types from
names. Through the use of vtkParseHierarchy, the wrappers can get detailed
information about a type even if the header file only contains a forward
reference, as long as the type is defined somewhere in another header.

vtkParseMain

A common main() function for use by wrapper tool executables. It provides a
standard set of command-line options as well as response-file handling. It
also invokes the parser.

Wrapper Utilities

vtkWrap

This has functions that are common to the wrapper tools for all the wrapper
languages. Unlikely vtkParse, it deals with the generation of code, rather
than the parsing of code.

vtkWrapText

This has functions for automatically generating documentation from the
header files that are parsed. It produces the Python docstrings.

Python-Specific Utilities

These are named according to the pieces of wrapper code they produce.

	vtkWrapPythonClass creates type objects for vtkObjectBase classes

	vtkWrapPythonType creates type objects for other wrapped classes

	vtkWrapPythonMethod for calling C++ methods from Python

	vtkWrapPythonOverload maps a Python method to multiple C++ overloads

	vtkWrapPythonMethodDef generates the method tables for wrapped classes

	vtkWrapPythonTemplate for wrapping of C++ class templates

	vtkWrapPythonNamespace for wrapping namespaces

	vtkWrapPythonEnum creates type objects for enum types

	vtkWrapPythonConstant adds C++ constants to Python classes, namespaces

Python Wrapper Executables

vtkWrapPython

This executable will parse the C++ declarations from a header file and
produce wrapper code that can be linked into a Python extension module.

vtkWrapPythonInit

This will produce the PyInit entry point for a Python extension module,
as well as code for loading all the dependent modules. The .cxx file
produced by vtkWrapPythonInit is linked together to the .cxx files that
are produced by vtkWrapPython to create the module.

Java Wrapper Executables

	vtkWrapJava produces C++ wrapper code that uses the JNI

	vtkParseJava produces Java code that sits on top of the C++ code

Other Executables

vtkWrapHierarchy

This will slurp up all the header files in a VTK module and produce a
“hierarchy.txt” file that provides information about all of the types that
are defined in that module. In other words, it provides a summary of the
module’s contents. The Python and Java wrapper executables rely on these
“hierarchy.txt” files in order to look up types by name.

vtkWrapSerDes

This generates C++ code to serialize a VTK object into json and deserialize
the object back from json. This relies upon the property parser from
vtkParseProperties

Rebuilding the Parser

The code for the C++ parser is generated from the files vtkParse.l and
vtkParse.y with the classic compiler-generator tools lex and yacc (or,
more specifically, with their modern incarnations flex and bison). These
tools are readily available on macOS and Linux systems, and they can be
installed (with some difficulty) on Windows systems.

The C code that flex and bison generate is not styled according to VTK
standards, and must be cleaned up in order to compile without warnings and
in order to satisfy VTK’s git hooks and style checks.

vtkParse.l

The file vtkParse.l contains regular expressions for tokenizing a C++
header file. It is used to generate the file lex.yy.c, which is directly
included (i.e. as a C file) by the main parser file, vtkParse.tab.c.

To generate lex.yy.c from vtkParse.l, use the following steps.

	Get a copy of flex, version 2.6.4 or later

	Run flex --nodefault --noline -olex.yy.c vtkParse.l

	In an editor, remove blank lines from the top and bottom of lex.yy.c

	Replace all tabs with two spaces (e.g. :%s/\t/ /g in vi)

	Remove spaces from the ends of lines (e.g. :%s/ *$// in vi)

	Remove struct yy_trans_info, which is used nowhere in the code

	Add the following code at line 23 (after “end standard C headers”)

#ifndef __cplusplus
extern int isatty(int);
#endif /* __cplusplus */

Finally, if you have clang-format installed, you can use it to re-style
the code.

vtkParse.y

The file vtkParse.y contains the rules for parsing a C++ header file.
Many of the rules in this file have the same names as in the description
of the grammar in the official ISO standard. The file vtkParse.y is
used to generate the file vtkParse.tab.c, which contains the parser.

	Get a copy of bison 3.2.3 or later, it has a yacc-compatible front end.

	Run bison --no-lines -b vtkParse vtkParse.y, to generate vtkParse.tab.c

	In an editor, replace every static inline in vtkParse.tab.c with static

	Replace #if ! defined lint || defined __GNUC__ with #if 1

	remove YY_ATTRIBUTE_UNUSED from yyfillin, yyfill, and yynormal

	comment out the break; after return yyreportAmbiguity

	replace (1-yyrhslen) with (1-(int)yyrhslen)

	replace sizeof yynewStates[0] and sizeof yyset->yystates[0] with sizeof (yyGLRState*)

	replace sizeof yynewLookaheadNeeds[0] and sizeof yyset->yylookaheadNeeds[0] with sizeof (yybool)

	replace sizeof yynewItems[0] and sizeof yystackp->yynextFree[0] with sizeof (yyGLRStackItem)

If you are familiar with “diff” and “patch” and if you have clang-format,
you can automate these code changes as follows. For this, you must use
exactly version 3.2.3 of bison to ensure that the code that is produced
is as similar as possible to what is currently in the VTK repository.

	Run bison (as above) on the vtkParse.y from the master branch

	Use clang-format-8 to re-style vtkParse.tab.c to match VTK code style

	Use “git diff -R vtkParse.tab.c” to produce a patch file

If done correctly, this will produce a patch file that contains all the
changes above (steps 3 through 9 in the original list). Load the patch
file into a text editor to verify that this is so, and remove any superfluous
changes from the patch file.

Then, switch to your new vtkParse.y (the one you have modified). Repeat
steps 1 and 2 (generate vtkParse.tab.c and reformat it with clang-format).
Now you can apply the patch file to automate the original steps 3 through 9.
Note that as you continue to edit vtkParse.y and regenerate vtkParse.tab.c,
you can continue to use the same patch. Just remember to run clang-format
every time that you run bison.

Debugging the Parser

When bison is run, it should not report any shift/reduce or reduce/reduce
warnings. If modifications to the rules cause these warnings to occur,
you can run bison with the --debug and --verbose options:

bison --debug --verbose -b vtkParse vtkParse.y

This will cause bison to produce a file called “vtkParse.output” that
will show which rules conflict with other rules.

 Migration Guides

Migration Guides

Contents

	Module Migration from VTK 8.2 to 9+

 Module Migration from VTK 8.2 to 9+

Module Migration from VTK 8.2 to 9+

VTK 8.2 and older contained a module system which was based on variables and
informed CMake’s migration to target-based properties and interactions. This
was incompatible with the way VTK ended up doing it. With VTK 9, its module
system has been reworked to use CMake’s targets.

This document may be used as a guide to updating code using old VTK modules into
code using new VTK modules.

Using modules

If your project is just using VTK’s modules and not declaring any of your own
modules, porting involves a few changes to the way VTK is found and used.

The old module system made variables available for using VTK.

find_package(VTK
 REQUIRED
 COMPONENTS
 vtkCommonCore
 vtkRenderingOpenGL2)
include(${VTK_USE_FILE})

add_library(usesvtk ...)
target_link_libraries(usesvtk ${visibility} ${VTK_LIBRARIES})
target_include_directories(usesvtk ${visibility} ${VTK_INCLUDE_DIRS})

Pass any VTK autoinit defines to the target.
target_compile_definitions(usesvtk PRIVATE ${VTK_DEFINITIONS})

This causes problems if VTK is found multiple times within a source tree with
different components. The new pattern is:

find_package(VTK
 #9.0 # Compatibility support is not provided if 9.0 is requested.
 REQUIRED
 COMPONENTS
 # Old component names are OK, but deprecated.
 #vtkCommonCore
 #vtkRenderingOpenGL2
 # New names reflect the target names in use.
 CommonCore
 RenderingOpenGL2)
No longer needed; warns or errors depending on the version requested when
finding VTK.
#include(${VTK_USE_FILE})

add_library(usesvtk ...)
VTK_LIBRARIES is provided for compatibility, but not recommended.
#target_link_libraries(usesvtk ${visibility} ${VTK_LIBRARIES})
target_link_libraries(usesvtk ${visibility} VTK::CommonCore VTK::RenderingOpenGL2)

Rather than defining a single `VTK_DEFINITIONS` for use by all relevant
targets, the definitions are made as needed with the exact set needed for the
listed modules.
vtk_module_autoinit(
 TARGETS usesvtk
 #MODULES ${VTK_LIBRARIES} # Again, works, but is not recommended.
 MODULES VTK::CommonCore VTK::RenderingOpenGL2)

Module declaration

The old module system had CMake code declare modules in module.cmake files.
This allowed logic and other things to happen within them which could cause
module dependencies to be hard to follow. The new module system now provides
facilities for disabling modules in certain configurations (using CONDITION)
and for optionally depending on modules (using OPTIONAL_DEPENDS).

if (NOT SOME_OPTION)
 set(depends)
 if (SOME_OTHER_OPTION)
 list(APPEND depends vtkSomeDep)
 endif ()
 vtk_module(vtkModuleName
 GROUPS
 # groups the module belongs to
 KIT
 # the kit the module belongs to
 IMPLEMENTS
 # modules containing vtkObjectFactory instances that are implemented here
 DEPENDS
 # public dependencies
 #${depends} # no analogy in the new system
 PRIVATE_DEPENDS
 # private dependencies
 ${depends}
 COMPILE_DEPENDS
 # modules which must be built before this one but which are not actually
 # linked.
 TEST_DEPENDS
 # test dependencies
 TEST_OPTIONAL_DEPENDS
 # optional test dependencies
 ${depends}
 #EXCLUDE_FROM_WRAPPING
 # present for modules which cannot be wrapped
)
endif ()

This is now replaced with a declarative file named vtk.module. This file is
not CMake code and is instead parsed as an argument list in CMake (variable
expansions are also not allowed). The above example would translate into:

MODULE
 vtkModuleName
CONDITION
 SOME_OPTION
GROUPS
 # groups the module belongs to
KIT
 # the kit the module belongs to
#IMPLEMENTABLE # Implicit in the old build system. Now explicit.
IMPLEMENTS
 # modules containing vtkObjectFactory instances that are implemented here
DEPENDS
 # public dependencies
PRIVATE_DEPENDS
 # private dependencies
OPTIONAL_DEPENDS
 vtkSomeDep
ORDER_DEPENDS
 # modules which must be built before this one but which are not actually
 # linked.
TEST_DEPENDS
 # test dependencies
TEST_OPTIONAL_DEPENDS
 # optional test dependencies
 vtkSomeDep
#EXCLUDE_WRAP
 # present for modules which cannot be wrapped

Modules may also now be provided by the current project or by an external
project found by find_package as well.

Declaring sources

Sources used to be listed just as .cxx files. The module system would then
search for a corresponding .h file, then add it to the list. Some source file
properties could be used to control header-only or private headers.

In this example, we have a module with the following sources:

	vtkPublicClass.cxx and vtkPublicClass.h: Public VTK class meant to be
wrapped and its header installed.

	vtkPrivateClass.cxx and vtkPrivateClass.h: Private VTK class not meant
for use outside of the module.

	helper.cpp and helper.h: Private API, but not following VTK’s naming
conventions.

	public_helper.cpp and public_helper.h: Public API, but not following
VTK’s naming conventions.

	vtkImplSource.cxx: A source file without a header.

	public_header.h: A public header without a source file.

	template.tcc and template.h: Public API, but not following VTK’s naming
conventions.

	private_template.tcc and private_template.h: Private API, but not
following VTK’s naming conventions.

	vtkPublicTemplate.txx and vtkPublicTemplate.h: Public template sources.
Wrapped and installed.

	vtkPrivateTemplate.txx and vtkPrivateTemplate.h: Private template
sources.

	vtkOptional.cxx and vtkOptional.h: Private API which requires an
optional dependency.

The old module’s way of building these sources is:

set(Module_SRCS
 vtkPublicClass.cxx
 vtkPrivateClass.cxx
 helper.cpp
 helper.h
 public_helper.cpp
 public_helper.h
 public_header.h
 vtkImplSource.cxx
 vtkPublicTemplate.txx
 vtkPrivateTemplate.txx
 template.tcc # Not detected as a template, so not installed.
 template.h
 private_template.tcc
 private_template.h
)

Mark some files as only being header files.
set_source_files_properties(
 public_header.h
 HEADER_FILE_ONLY
)

Mark some headers as being private.
set_source_files_properties(
 helper.h
 private_template.h
 public_header.h
 template.h
 vtkImplSource.cxx # no header
 vtkPrivateTemplate.h
 PROPERTIES SKIP_HEADER_INSTALL 1
)

set(${vtk-module}_HDRS # Magic variable
 public_helper.h
 template.h
 #helper.h # private headers just go ignored.
)

Optional dependencies are detected through variables.
if (Module_vtkSomeDep)
 list(APPEND Module_SRCS
 # Some optional file.
 vtkOptional.cxx)
endif ()

vtk_module_library(vtkModuleName ${Module_SRCS})

While with the new system, source files are explicitly declared using argument
parsing.

set(classes
 vtkPublicClass)
set(private_classes
 vtkPrivateClass)
set(sources
 helper.cpp
 public_helper.cpp
 vtkImplSource.cxx)
set(headers
 public_header.h
 public_helper.h
 template.h)
set(private_headers
 helper.h
 private_template.h)

set(template_classes
 vtkPublicTemplate)
set(private_template_classes
 vtkPrivateTemplate)
set(templates
 template.tcc)
set(private_templates
 private_template.tcc)

Optional dependencies are detected as targets.
if (TARGET vtkSomeDep)
 # Optional classes may not be public (though there's no way to actually
 # enforce it, optional dependencies are always treated as private.
 list(APPEND private_classes
 vtkOptional)
endif ()

vtk_module_add_module(vtkModuleName
 # File pairs which follow VTK's conventions. The headers will be wrapped and
 # installed.
 CLASSES ${classes}
 # File pairs which follow VTK's conventions, but are not for use outside the
 # module.
 PRIVATE_CLASSES ${private_classes}
 # Standalone sources (those without headers or which do not follow VTK's
 # conventions).
 SOURCES ${sources}
 # Standalone headers (those without sources or which do not follow VTK's
 # conventions). These will be installed.
 HEADERS ${public_headers}
 # Standalone headers (those without sources or which do not follow VTK's
 # conventions), but are not for use outside the module.
 PRIVATE_HEADERS ${private_headers}

 # Templates are also supported.

 # Template file pairs which follow VTK's conventions. Both files will be
 # installed (only the headers will be wrapped).
 TEMPLATE_CLASSES ${template_classes}
 # Template file pairs which follow VTK's conventions, but are not for use
 # outside the module.
 PRIVATE_TEMPLATE_CLASSES ${private_template_classes}
 # Standalone template files (those without headers or which do not follow
 # VTK's conventions). These will be installed.
 TEMPLATES ${templates}
 # Standalone template files (those without headers or which do not follow
 # VTK's conventions), but are not for use outside the module.
 PRIVATE_TEMPLATES ${private_templates}
)

Note that the arguments with CLASSES in their name expand to pairs of files
with the .h and either .cxx or .txx extension based on whether it is a
template or not. Projects not using this convention may use the HEADERS,
SOURCES, and TEMPLATES arguments instead.

Object Factories

Previously, object factories were made using implicit variable declaration magic
behind the scenes. This is no longer the case and proper CMake APIs for them are
available.

set(sources
 vtkObjectFactoryImpl.cxx
 # This path is made by `vtk_object_factory_configure` later.
 "${CMAKE_CURRENT_BINARY_DIR}/${vtk-module}ObjectFactory.cxx")

Make a list of base classes we will be overriding.
set(overrides vtkObjectFactoryBase)
Make a variable declaring what the override for the class is.
set(vtk_module_vtkObjectFactoryBase_override "vtkObjectFactoryImpl")
Generate a source using the list of base classes overridden.
vtk_object_factory_configure("${overrides}")

vtk_module_library("${vtk-module}" "${sources}")

This is now handled using proper APIs instead of variable lookups.

set(classes
 vtkObjectFactoryImpl)

Explicitly declare the override relationship.
vtk_object_factory_declare(
 BASE vtkObjectFactoryBase
 OVERRIDE vtkObjectFactoryImpl)
Collects the set of declared overrides and writes out a source file.
vtk_object_factory_declare(
 # The path to the source is returned as a variable.
 SOURCE_FILE factory_source
 # As is its header file.
 HEADER_FILE factory_header
 # The export macro is now explicitly passed (instead of assumed based on the
 # current module context).
 EXPORT_MACRO MODULE_EXPORT)

vtk_module_add_module(vtkModuleName
 CLASSES ${classes}
 SOURCES "${factory_source}"
 PRIVATE_HEADERS "${factory_header}")

Building a group of modules

This was not well supported in the old module system. Basically, it involved
setting up the source tree like VTK expects and then including the
vtkModuleTop file. This is best just rewritten using the following CMake APIs:

	vtk_module_find_modules()

	vtk_module_find_kits()

	vtk_module_scan()

	vtk_module_build()

 Design Documents

Design Documents

Contents

	VTK File Formats

	Parallel Processing with VTK’s SMP Framework

	vtkArrayDispatch and Related Tools

	Data Assembly

	VTK Legacy Reader/Writer Information Format

	VTK XML Reader/Writer Information Format

	Field Data as Time Meta-Data in VTK XML File Formats

	MomentInvariants Architecture

 VTK File Formats

VTK File Formats

A lot of this material is taken from The VTK User’s Guide [https://www.kitware.com/products/books/VTKUsersGuide.pdf].

The Visualization Toolkit provides a number of source and writer objects to read and write popular data file formats. The Visualization Toolkit also provides some of its own file formats. The main reason for creating yet another data file format is to offer a consistent data representation scheme for a variety of dataset types, and to provide a simple method to communicate data between software. Whenever possible, we recommend that you use formats that are more widely used. But if this is not possible, the Visualization Toolkit formats described here can be used instead. Note that these formats may not be supported by many other tools.

There are three different styles of file formats available in VTK:

	Legacy

It’s a serial formats that are easy to read and write either by hand or programmatically.

	XML

More flexible but more complex than the legacy file format, it supports random access, parallel I/O, and portable data compression and are preferred to the serial VTK file formats whenever possible.

	VTKHDF

This is a file format using the same concepts as the XML formats described above but relying on HDF5 for actual storage. It is simpler than the XML. It provides good I/O performance as well as robust and flexible parallel I/O capabilities and may to replace others file formats once it will be complete. It can be read/written using either hdf5 directly or the vtkhdf implementation in VTK.

Simple Legacy Formats

The legacy VTK file formats consist of five basic parts.

	The first part is the file version and identifier. This part contains the single line: vtk DataFile Version x.x. This line must be exactly as shown with the exception of the version number x.x, which will vary with different releases of VTK. (Note: the current version number is 3.0. Version 1.0 and 2.0 files are compatible with version 3.0 files.)

	The second part is the header. The header consists of a character string terminated by end-of-line character \n. The header is 256 characters maximum. The header can be used to describe the data and include any other pertinent information.

	The next part is the file format. The file format describes the type of file, either ASCII or binary. On this line the single word ASCII or BINARY must appear.

	The fourth part is the dataset structure. The geometry part describes the geometry and topology of the dataset. This part begins with a line containing the keyword DATASET followed by a keyword describing the type of dataset.Then, depending upon the type of dataset, other keyword/data combinations define the actual data.

	The final part describes the dataset attributes. This part begins with the keywords POINT_DATA or CELL_DATA, followed by an integer number specifying the number of points or cells, respectively. (It doesn’t matter whether POINT_DATA or CELL_DATA comes first.) Other keyword/data combinations then define the actual dataset attribute values (i.e., scalars, vectors, tensors, normals, texture coordinates, or field data).

An overview of the file format is shown in Figure 1:

 	#

 Parallel Processing with VTK’s SMP Framework

Parallel Processing with VTK’s SMP Framework

August 2022

Contributors

Berk Geveci wrote the initial version of this document in 2013. The design and implementation of vtkSMPTools was strongly influenced by the KAAPI thread scheduling system [https://www.researchgate.net/publication/221564735_KAAPI_A_thread_scheduling_runtime_system_for_data_flow_computations_on_cluster_of_multi-processors] and an associated Inria research report: VtkSMP: Task-based Parallel Operators for Accelerating VTK Filters [https://hal.inria.fr/hal-00789814]. Later contributors to this document include:

	Timothee Couble

	Charles Gueunet

	Will Schroeder

	Spiros Tsalikis

Also note that several blog posts have been written about vtkSMPTools:

	Simple, Parallel Computing with vtkSMPTools [https://www.kitware.com/simple-parallel-computing-with-vtksmptools/]

	VTK Shared Memory Parallelism Tools, 2021 updates [https://www.kitware.com/vtk-shared-memory-parallelism-tools-2021-updates/]

	Ongoing VTK / ParaView Performance Improvements [https://www.kitware.com/ongoing-vtk-paraview-performance-improvements/]

	VTK/ParaView Filters: Performance Improvements [https://www.kitware.com/vtk-paraview-filters-performance-improvements/]

Introduction

The overarching objective of vtkSMPTools, the SMP (symmetric multiprocessing) framework, is to provide an infrastructure to simplify the development of shared memory parallel algorithms in VTK. In addition, vtkSMPTools defines a simple, abstract API that drives several threading backends such as std::thread, TBB (i.e., Intel’s Threading Building Blocks template library); and OpenMP; as well as supporting a sequential backend for testing and debugging. To achieve these objectives, we have developed three simple constructs to support basic SMP functionality:

	Parallel building blocks / functions

	Thread local storage

	Atomic integers and associated operations. (Note, since C++11 this has been superseded by std::atomic<>. Also, std::mutex and vtkAtomicMutex are options.)

vtkSMPTools is extremely easy to use, ensuring that the major challenge of creating parallel algorithms is not one of implementation, but rather the design of good, threaded algorithms. In the next sections we describe the basic concepts used in vtkSMPTools, and then demonstrate these concepts through example code. Of course, there are hundreds of vtkSMPTools implementations found in VTK which provide an excellent source of more complex examples. In the final section of this document we provide tips on how to design and implement vtkSMPTools-based algorithms.

Concepts

The following are several high-level concepts that will help you understand and use vtkSMPTools.

The Age of Abundant Computing Cores

Many early computational algorithms were designed and implemented in an era of limited computing resources: typically a single CPU was available with rudimentary memory models. Such limitations typically led to a frugal approach to writing algorithms, in particular approaches that minimized CPU utilization. However modern computing architectures commonly have many cores with multiple execution threads per core, and memory models have expanded to include a hierarchy of data caches to retrieve frequently used data more quickly. Also, many developers are inclined to think in terms of sequential algorithmic operations, partly due to the way in which we were trained but also because managing multiple simultaneous processes can take a lot of work and programmers are often pressed for time. But with growing data sizes, increasing computational demands, and the abundance of computing threads; it’s clear that parallel approaches are essential to creating responsive and impactful software tools. It’s important that VTK developers conceive and implement performant parallel algorithms to ensure that the system remain vital into the future.

There are a variety of approaches to parallel computing, but two approaches - distributed computing and shared memory computing - are particularly relevant to VTK. In distributed computing, computational tasks are carried out in separate memory space and exchange information through message passing communication. In shared memory computing, information is exchanged through variables in shared memory space. Typically a flavor of MPI is used by VTK for distributed computing, plus VTK provides a variety of software constructs to support distributed computing. vtkSMPTools is used to implement shared memory computing with symmetric multiprocessing (SMP) approaches; i.e., where multiple processors are connected to a single, shared memory space. Distributed computing is more complex and scales best for extremely large data, while shared memory computing is simpler and works cell on single computers (desktop, laptop, mobile). Note that it is possible to combine distributed and shared computing in a VTK application.

Besides MPI (for distributed computing) and vtkSMPTools (shared memory parallelism, typically on CPUs), be aware that VTK leverages another parallel processing toolkit for computing accelerators (e.g., GPUs). vtk-m [https://m.vtk.org/] is a toolkit of scientific visualization algorithms for emerging processor architectures, supporting fine-grained concurrency for data analysis and visualization algorithms. Depending on the application, vtk-m may be a preferred solution for extreme scale computing. It is possible to mix all three forms of parallel computing frameworks into a single VTK application.

Fine- and Coarse-Grained Parallelism

When parallelizing an algorithm, it is important to first consider the “dimension” (i.e., the way in which data is accessed via threads) over which to parallelize it. For example, VTK’s Imaging modules parallelize many algorithms by assigning subsets of the input image (VOIs) to a thread safe function which processes them in parallel. Another example is parallelizing over blocks of a composite dataset (such as an AMR dataset). We refer to these examples as coarse-grained parallelism. On the other hand, we can choose points or cells as a dimension over which to parallelize access to a VTK dataset. Many algorithms simply loop over cells or points and are relatively trivial to parallelize this way. Here we refer to this approach as fine-grained parallelism. Note that some algorithms fall into a gray area. For example, if we parallelize streamline generation over seeds, is it fine- or coarse-grained parallelism?

Backends

The SMP framework provides a thin abstraction over a number of threading backends. Currently, we support four backends: Sequential (serial execution); C++ std::thread referred to as STDThread; TBB (based on Intel’s TBB); and OpenMP. Note that the Sequential backend is useful for debugging but is typically not used unless no other backend can be made to work on the target platform. As discussed in the following, it’s possible to build VTK with multiple backends, and switch between them at run-time.

Backends are configured via CMake during the build process. Setting the CMake variables VTK_SMP_ENABLE_OPENMP, VTK_SMP_ENABLE_SEQUENTIAL, VTK_SMP_ENABLE_STDTHREAD, and VTK_SMP_ENABLE_TBB enables the inclusion of the appropriate SMP backend(s), and VTK_SMP_IMPLEMENTATION_TYPE can be used to select one of Sequential, OpenMP, TBB, and STDThread (this selects the default backend when VTK runs). Once VTK is built, setting the environment variable VTK_SMP_BACKEND_IN_USE can be used to select from multiple backends. (Note: vtkSMPTools::SetBackend() can be used from within a C++ application to select the backend as well – for example vtkSMPTools::SetBackend("TBB") will select TBB.)

Thread Safety in VTK

Probably the most important thing in parallelizing shared-memory algorithms is to make sure that all operations that occur in a parallel region are performed in a thread-safe way (i.e., avoid race conditions). Note that there is much in the VTK core functionality that is not thread-safe. The VTK community has an ongoing effort of cleaning this up and marking APIs that are thread-safe to use. At this point, probably the best approach is to double check by looking at the implementation. Also, we highly recommend using analysis tools such as ThreadSanitizer or Valgrind (with the Helgrind tool) to look for race conditions in problematic code.

When coding parallel algorithms, be especially wary of insidious execution side effects. Such side effects typically result in simultaneous execution of code. For example, invoking Update() on a filter shared by multiple threads is a bad idea since simultaneous updates to that filter is likely doomed to fail. Also, some methods like vtkPolyData::GetCellNeighbors() internally invoke the one-time operation BuildLinks() in order to generate topological information. Similarly, the BuildLocator() method found in point and cell locators may be called as a side effect of a geoemtric query such as vtkDataSet::FindCell(). In such cases, prior to threaded execution, affected classes should be “primed” by explicitly invoking methods that produce side effects (e.g., call BuildLinks() directly on the vtkPolyData; or manually call BuildLocator() prior to using methods that require a locator).

Results Invariance

A significant challenge to writing good threaded algorithms is to insure that they produce the same output each time they execute. For example, a threaded sort operation may order identical set elements differently each time the sort is run depending on the order in which data is processed by different computing threads. (This is related to the C++ standard providing the std::stable_sort algorithm.) Even simple threaded operation such as summing a list of numbers can produce different results, since the order and partitioning of data during threading may result in round off effects. Since sequential algorithms implicitly order their operations, and threading typically does not do so (unless extensive use of locks, barriers, etc. are used), a sequential algorithm may produce different results than a threaded algorithm, and even across multiple runs threaded algorithms may produce results that vary across each run. Such behaviors are disturbing to users, and make testing difficult. In VTK, we aim to write algorithms that are results invariant.

Show Me the Code

The vtkSMPTools class defined in VTK\Common\Core\vtkSMPTools.h provides detailed documentation and further implementation details. To find examples of vtkSMPTools in use, simply search for VTK C++ classes that include this header file.

Implementation Overview

As mentioned previously, vtkSMPTools provides a few, simple programmatic building blocks; support for thread-local storage; and support for atomics. In this section we provide high-level descriptions of these building blocks. Then in the following section we provide implementation details.

Functional Building Blocks

The core, functional building blocks of vtkSMPTools are as follows. See vtkSMPTools.h for details.

	For(begin, end, functor) - a for loop over the range [begin,end) executing the functor each time.

	Fill(begin, end, value) - assign the given value to the elements in range [begin,end) (a drop in replacement for std::fill()).

	Sort(begin,end) and Sort(begin,end,compare) - sort the elements in range [begin,end) using the optional comparison function (a drop in replacement for std::sort()).

	Transform() - a drop in replacement for std::transform().

Note that the ranges [begin,end) may be expressed via integral (vtkIdType) types for example point or cell ids, or C++ iterators.

Of special interest is the functor invoked in the For() loop. The functor is a class/struct which requires defining the void operator()(begin,end) method. Given a range defined by [begin, end) and the functor, For() will call the functor’s operator(), usually in parallel, over a number of subranges of [begin, end). The functor may also implement methods to initialize data associated with each thread (void Initialize()), and to composite the results of executing the For() loop into a final result (i.e., void Reduce()).

With these few building blocks, powerful threaded algorithms can easily be written. In many cases, the For() loop is all that is needed.

Thread Local Storage

Often times parallel algorithms produce intermediate results that are combined to produce a final result. For example, to sum a long list of numbers, each thread may sum just a subset of the numbers, and when completed the intermediate sums from each thread can be combined to produce a final summation. So the ability to maintain intermediate data associated with each thread is valuable. This is the purpose of thread local storage.

Thread local storage is generally referred to memory that is accessed by one thread only. In the SMP framework, vtkSMPThreadLocal and vtkSMPThreadLocalObject enable the creation of objects local to executing threads. The main difference between the two is that vtkSMPThreadLocalObject makes it easy to manage vtkObject and subclasses by allocating and deleting them appropriately. Thread local storage almost always requires definition of the Initialize() and Reduce() methods to initialize local storage, and then combine it once the For() loop completes.

One important performance trick with thread local storage, is that temporary variables may be defined and then used in the execution of operator(). For example, instantiating temporary objects such as vtkGenericCell, vtkIdList, and other C++ containers or classes can be relatively slow. Sometimes it’s much faster to create and initialize them once (when the thread is created), and then “reset” them in each invocation of operator().

Atomics

Another very useful tool when developing shared memory parallel algorithms is atomic integers. Atomic integers provide the ability to manipulate integer values in a way that can’t be interrupted by other threads. A very common use case for atomic integers is implementing global counters. For example, in VTK, the modified time (MTime) global counter and vtkObject’s reference count are implemented as atomic integers.

Prior to C++11, vtkSMPTools had an internal implementation for atomic integers. However, this implementation is now obsolete in favor of std::atomic<>. C++ also provides std::mutex' and 'std::lock_guard<>; and VTK provides a lightweight spinlock vtkAtomicMutex which may be faster than using mutexes.

Implementation Examples

In the subsections below, we describe the SMP framework in more detail and provide examples of how it can be used.

Functors and Parallel For

The vtkSMPTools::For() parallel for is the core computational construct of vtkSMPTools. It’s use is as shown in the following example which evaluates points against a set of planes, and adjusts the planes to “bound” the points (see vtkHull.cxx and VTK/Common/DataModel/Testing/Cxx/TestSMPFeatures.cxx).

 vtkNew<vtkPoints> pts;
 pts->SetDataTypeToFloat();
 pts->SetNumberOfPoints(numPts);
 for (auto i=0; i < numPts; ++i)
 {
 pts->SetPoint(i, vtkMath::Random(-1,1), vtkMath::Random(-1,1), vtkMath::Random(-1,1));
 }

Now define the functor:

struct HullFunctor
{
 vtkPoints *InPts;
 std::vector<double>& Planes;

 HullFunctor(vtkPoints *inPts, std::vector<double>& planes) : InPts(inPts), Planes(planes) {}

 void operator()(vtkIdType ptId, vtkIdType endPtId)
 {
 vtkPoints *inPts = this->InPts;
 std::vector<double>& planes = this->Planes;
 auto numPlanes = planes.size() / 4;

 for (; ptId < endPtId; ++ptId)
 {
 double v, coord[3];
 inPts->GetPoint(ptId, coord);
 for (size_t j = 0; j < numPlanes; j++)
 {
 v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
 planes[j * 4 + 2] * coord[2]);
 // negative means further in + direction of plane
 if (v < planes[j * 4 + 3])
 {
 planes[j * 4 + 3] = v;
 }
 }
 }
 }
}; //HullFunctor

To use the functor and invoke vtkSMPTools::For():

 HullFunctor hull(pts,planes);
 vtkSMPTools::For(0,numPts, hull);

Note that same code can be conveniently and compactly defined inline via a C++ lambda function. Lambdas are particularly useful when thread local storage and/or local variable are not required.

 vtkSMPTools::For(0, numPts, [&](vtkIdType ptId, vtkIdType endPtId) {
 for (; ptId < endPtId; ++ptId)
 {
 double v, coord[3];
 pts->GetPoint(ptId, coord);
 for (auto j = 0; j < numPlanes; j++)
 {
 v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
 planes[j * 4 + 2] * coord[2]);
 // negative means further in + direction of plane
 if (v < planes[j * 4 + 3])
 {
 planes[j * 4 + 3] = v;
 }
 }
 }
 }); // end lambda

With alternative signatures for For() it is possible to provide a grain parameter. Grain is a hint to the underlying backend about the coarseness of the typical range when parallelizing a for loop. If you don’t know what grain will work best for a particular problem, omit the grain specification and let the backend find a suitable grain. TBB in particular does a good job with this. Sometimes, you can eek out a little bit more performance by setting the grain just right. Too small, the task queuing overhead will be too much. Too little, load balancing will suffer.

Thread Local Storage

Thread local storage is generally referred to memory that is accessed by one thread only. In the SMP framework, vtkSMPThreadLocal and vtkSMPThreadLocalObject enable the creation objects local to executing threads. The main difference between the two is that vtkSMPThreadLocalObject makes it easy to manage vtkObject and subclasses by allocating and deleting them appropriately.

Below is an example of thread local objects in use. This example computes the bounds of a set of points represented by a vtkFloatArray. Note in particular the introduction of the Initialize() and Reduce() methods:

using BoundsArray = std::array<double,6>;
using TLS = vtkSMPThreadLocal<BoundsArray>;

struct BoundsFunctor
{
 vtkFloatArray* Pts;
 BoundsArray Bounds;
 TLS LocalBounds;

 BoundsFunctor(vtkFloatArray *pts) : Pts(pts) {}

 // Initialize thread local storage
 void Initialize()
 {
 // The first call to .Local() will create the array,
 // all others will return the same.
 std::array<double,6>& bds = this->LocalBounds.Local();
 bds[0] = VTK_DOUBLE_MAX;
 bds[1] = -VTK_DOUBLE_MAX;
 bds[2] = VTK_DOUBLE_MAX;
 bds[3] = -VTK_DOUBLE_MAX;
 bds[4] = VTK_DOUBLE_MAX;
 bds[5] = -VTK_DOUBLE_MAX;
 }

 // Process the range of points [begin,end)
 void operator()(vtkIdType begin, vtkIdType end)
 {
 BoundsArray& lbounds = this->LocalBounds.Local();
 float* x = this->Pts->GetPointer(3*begin);
 for (vtkIdType i=begin; i<end; i++)
 {
 lbounds[0] = (x[0] < lbounds[0] ? x[0] : lbounds[0]);
 lbounds[1] = (x[0] > lbounds[1] ? x[0] : lbounds[1]);
 lbounds[2] = (x[1] < lbounds[2] ? x[1] : lbounds[2]);
 lbounds[3] = (x[1] > lbounds[3] ? x[1] : lbounds[3]);
 lbounds[4] = (x[2] < lbounds[4] ? x[2] : lbounds[4]);
 lbounds[5] = (x[2] > lbounds[5] ? x[2] : lbounds[5]);

 x += 3;
 }
 }

 // Composite / combine the thread local storage into a global result.
 void Reduce()
 {
 this->Bounds[0] = VTK_DOUBLE_MAX;
 this->Bounds[1] = -VTK_DOUBLE_MAX;
 this->Bounds[2] = VTK_DOUBLE_MAX;
 this->Bounds[3] = -VTK_DOUBLE_MAX;
 this->Bounds[4] = VTK_DOUBLE_MAX;
 this->Bounds[5] = -VTK_DOUBLE_MAX;

 using TLSIter = TLS::iterator;
 TLSIter end = this->LocalBounds.end();
 for (TLSIter itr = this->LocalBounds.begin(); itr != end; ++itr)
 {
 BoundsArray& lBounds = *itr;
 this->Bounds[0] = (this->Bounds[0] < lBounds[0] ? this->Bounds[0] : lBounds[0]);
 this->Bounds[1] = (this->Bounds[1] > lBounds[1] ? this->Bounds[1] : lBounds[1]);
 this->Bounds[2] = (this->Bounds[2] < lBounds[2] ? this->Bounds[2] : lBounds[2]);
 this->Bounds[3] = (this->Bounds[3] > lBounds[3] ? this->Bounds[3] : lBounds[3]);
 this->Bounds[4] = (this->Bounds[4] < lBounds[4] ? this->Bounds[4] : lBounds[4]);
 this->Bounds[5] = (this->Bounds[5] > lBounds[5] ? this->Bounds[5] : lBounds[5]);
 }
 }
}; // BoundsFunctor

Then to use the functor:

 vtkFloatArray* ptsArray = vtkFloatArray::SafeDownCast(pts->GetData());
 BoundsFunctor calcBounds(ptsArray);
 vtkSMPTools::For(0, numPts, calcBounds);
 std::array<double,6>& bds = calcBounds.Bounds;

A few things to note here:

	LocalBounds.Local() will return a new instance of a std::vector<std::vector<double>> per thread the first time it is called by that thread. All calls afterwards will return the same instance for that thread. Therefore, threads can safely access the local object over and over again without worrying about race conditions.

	The Initialize() method initializes the new instance of the thread local vector with invalid bound values.

So at the end of the threaded computation, the LocalBounds will contain a number of arrays, each that was populated by one thread during the parallel execution. These still need to be composited to produce the global bounds. This can be achieved by iterating over all thread local values and combining them in the Reduce() method as shown previously. Consequently the user can simply retrieve the final bounds by accessing calcBounds.Bounds once vtkSMPTools::For() completes execution. Note that, if the methods exist, Initialize() and Reduce() are invoked automatically by vtkSMPTools::For().

Very important note: if you use more than one thread local storage object, don’t assume that the iterators will traverse them in the same order. The iterator for one may return the value from thread i with begin() whereas the other may return the value form thread j. If you need to store and access values together, make sure to use a struct or class to group them.

Thread local objects are immensely useful. Often, visualization algorithms want to accumulate their output by appending to a data structure. For example, the contour filter iterates over cells and produces polygons that it adds to an output vtkPolyData. This is usually not a thread safe operation. One way to address this is to use locks that serialize writing to the output data structure.

However, mutexes have a major impact on the scalability of parallel operations. Another solution is to produce a different vtkPolyData for each execution of the functor. However, this can lead to hundreds if not thousands of outputs that need to be merged, which is a difficult operation to scale. The best option is to use one vtkPolyData per thread using thread local objects. Since it is guaranteed that thread local objects are accessed by one thread at a time (but possibly in many consecutive functor invocations), it is thread safe for functors to keep adding polygons to these objects. The result is that the parallel section will produce only a few vtkPolyData, usually the same as the number of threads in the pool. It is much easier to efficiently merge these vtkPolyData.

Atomic Integers

As mentioned previously, atomics should be represented by the C++ std::atomic<>. However, to provide a brief explanation of the importance of atomics we provide the following simple example.

int Total = 0;
std::atomic<vtkTypeInt32> TotalAtomic(0);
constexpr int Target = 1000000;
constexpr int NumThreads = 2;

VTK_THREAD_RETURN_TYPE MyFunction(void *)
{
 for (int i=0; i<Target/NumThreads; i++)
 {
 ++Total;
 ++TotalAtomic;
 }
 return VTK_THREAD_RETURN_VALUE;
}

// Now exercise atomics
vtkNew<vtkMultiThreader> mt;
mt->SetSingleMethod(MyFunction, NULL);
mt->SetNumberOfThreads(NumThreads);
mt->SingleMethodExecute();
std::cout << Total << " " << TotalAtomic.load() << endl;

When this program is executed, most of the time Total will be different (smaller) than Target whereas TotalAtomic will be exactly the same as Target. For example, a test run on a Mac prints: 999982 1000000. This is because when the integer is not atomic, both threads can read the same value of Total, increment and write out the same value, which leads to losing one increment operation. Whereas, when ++ happens atomically, it is guaranteed that it will read, increment and write out Total all in one uninterruptible operation. When atomic operations are supported at hardware level, they are very fast.

Tips

In this section, we provide some tips that we hope will be useful to those that want to develop shared memory parallel algorithms.

Think about Thread Safety

First things first, it is essential to keep thread safety in mind. If the parallel section does not produce correct results consistently, there is not a lot of point in the performance improvement it produces. To create thread-safe algorithms, consider using common parallel design patterns. Also verify that the API you are using is thread safe under your particular application. While VTK continues to add additional thread-safe capabilities, there are still many booby traps to avoid.

Analysis Tools Are Your Friend

The LLVM/Clang-based ThreadSanitizer is widely used to detect data races. Valgrind’s Helgrind is also a wonderful tool. Use these tools often. We developed the original backends mainly using Helgrind. Note that backends like TBB can produce many false positives; you may want to try different backends to reduce these. There are commercial tools with similar functionality, e.g., Intel’s Parallel Studio has static and dynamic checking.

Debugging Tricks

Beyond using the analysis tools mentioned previously (e.g., ThreadSanitizer), there are some simple tricks that can be used to resolve programming issues relatively quickly. Firstly, switch between different backends. For example, if a program runs correctly when the backend is set to Sequential, but incorrectly when the backend is other than Sequential, it’s likely that there is a race condition. Such broken code, when run repeatedly, while not always failing at the same point due to the variability of thread execution, will often fail at or near the same function, providing clues as to the location of the race. Also, empirically the STDThread backend seems to be most sensitive to race conditions. So make sure to test with more than one backend especially STDThread.

Avoid Locks

Mutexes are expensive. Avoid them as much as possible. Mutexes are usually implemented as a table of locks by the kernel. They take a lot of CPU cycles to acquire. Specially, if multiple threads want to acquire them in the same parallel section. Use atomic integers if necessary. Try your best to design your algorithm without modifying the same data concurrently.

Use Atomics Sparingly

Atomics are very useful and much more efficient that mutexes. However, overusing them may lead to performance issues. Try to design your algorithm in a way that you avoid locks and atomics. This also applies to using VTK classes that manipulate atomic integers such as MTime and reference count. Try to minimize operations that cause MTime or shared reference counts to change in parallel sections.

Grain Can Be Important

In some situation, setting the right value for grain may be important. TBB does a decent job with this but there are situations where it can’t do the optimal thing. There are a number of documents on setting the grain size with TBB on the Web. If you are interested in tuning your code further, we recommend taking a look at some of them.

Minimize Data Movement

This is true for serial parts of your code too but it is specially important when there are bunch of threads all accessing main memory. This can really push the limits of the memory bus. Code that is not very intensive computationally compared to how much memory it consumes is unlikely to scale well. Good cache use helps of course but may not be always sufficient. Try to group work together in tighter loops.

Choose Computation over Memory

As mentioned earlier in this document, typically computation is much cheaper than data movement. As a result, it’s a good idea to create compact data structures with minimal representational fat. Such data structures may require computation to extract important information: for example, a data structure that contains a vector 3-tuple need not represent the vector magnitude since this can be quickly computed. Depending on the number of times vector magnitude is needed, the cost of computing it is usually less than the cost of placing vector magnitude into memory. Of course, effects like this are a function of scale / data size and must be considered when designing applications.

Multi-Pass Implementations

Parallel algorithms often require significant bookkeeping to properly partition and transform input data to output data. Trivial algorithms, such as mapping an input vector array of 3-tuples to an output scalar array of vector magnitudes, are easy to partition and map: for each vector tuple, a single scalar is produced; and if there are N tuples, there are N scalars. However, more complex algorithms such as building cell links (creating lists of cells connected to a point) or smoothing stencils (identifying points connected to each other via a cell edge) require an initial pass to determine the size of output arrays (and then to allocate the output), followed by another pass to actually populate the output arrays. While at first counterintuitive, it turns out that allocating a small number of large memory blocks is much, much faster than many dynamic allocations of small amounts of memory. This is one reason that a common implementation pattern for parallel algorithms is to use multiple data processing passes consisting of simple computing operations. Such an approach is quite different than many serial algorithms that often perform multiple, complex algorithmic steps for each input data item to be processed.

A variation of this approach is to use thread local storage to perform computation on a local range of input, store the result in thread local, and then reduce/composite the local storage into the global output. While this is problematic for many reasons (especially since data movement is needed to composite the output data), it still can be used to effectively partition and transform input data to the output, especially if the thread local storage is relatively small in size.

Whatever approach is used, parallel algorithms are often implemented using multiple passes. When designing parallel algorithms, it is important to think in terms of passes, and implement algorithms accordingly.

Use Parallel Design Patterns

There are many parallel operations that are used repeatedly. Of course for loops and fill() are two obvious operations, but the sort() operation is more widely used than might be expected. Another is the prefix sum (or inclusive scan, or simply scan) typically used to build indices into data arrays. Become familiar with these and other parallel operations and the task of designing and implementing algorithms will be much easier.

Parallel Is Not Always Faster

Threading introduces overhead into computation. As a result, threaded computation is not always faster than an equivalent serial operation. For example, for loops across a small number of data items can easily slow down computation due to thread creation overhead. A simple addition on each entry of an array may become a bottleneck if done using a too fine grain, due to false sharing (threads continuously invalidating other thread’s cache). Even complex operations such as prefix sums across large amounts of data may be slower than serial implementations because of synchronization issues. For this reason, use threading sparingly to address data or computation of large scale. In VTK it is not uncommon to see code that switches between serial and parallel implementations based on input data size. For that reason, vtkSMPTools has an empirically determined THRESHOLD value that can be used by a developer to switch between serial and parallel implementations.

Different backends may have significantly performance characteristics as well. TBB for example uses a thread pool combined with task stealing to address load balancing challenges. Empirically at the time of writing, in some situations TBB can significantly outperform the STDThread backend especially in situations where task loads are highly variable. Of course this may change as std::thread implementations mature and evolve.

 vtkArrayDispatch and Related Tools

vtkArrayDispatch and Related Tools

Background

VTK datasets store most of their important information in subclasses of
vtkDataArray. Vertex locations (vtkPoints::Data), cell topology
(vtkCellArray::Ia), and numeric point, cell, and generic attributes
(vtkFieldData::Data) are the dataset features accessed most frequently by VTK
algorithms, and these all rely on the vtkDataArray API.

Terminology

This page uses the following terms:

A ValueType is the element type of an array. For instance, vtkFloatArray
has a ValueType of float.

An ArrayType is a subclass of vtkDataArray. It specifies not only a
ValueType, but an array implementation as well. This becomes important as
vtkDataArray subclasses will begin to stray from the typical
“array-of-structs” ordering that has been exclusively used in the past.

A dispatch is a runtime-resolution of a vtkDataArray’s ArrayType, and is
used to call a section of executable code that has been tailored for that
ArrayType. Dispatching has compile-time and run-time components. At
compile-time, the possible ArrayTypes to be used are determined and a worker
code template is generated for each type. At run-time, the type of a specific
array is determined and the proper worker instantiation is called.

Template explosion refers to a sharp increase in the size of a compiled
binary that results from instantiating a template function or class on many
different types.

vtkDataArray

The data array type hierarchy in VTK has a unique feature when compared to
typical C++ containers: a non-templated base class. All arrays containing
numeric data inherit vtkDataArray, a common interface that sports a very
useful API. Without knowing the underlying ValueType stored in data array, an
algorithm or user may still work with any vtkDataArray in meaningful ways:
The array can be resized, reshaped, read, and rewritten easily using a generic
API that substitutes double-precision floating point numbers for the array’s
actual ValueType. For instance, we can write a simple function that computes
the magnitudes for a set of vectors in one array and store the results in
another using nothing but the typeless vtkDataArray API:

// 3 component magnitude calculation using the vtkDataArray API.
// Inefficient, but easy to write:
void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
 vtkIdType numVectors = vectors->GetNumberOfTuples();
 for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
 {
 // What data types are magnitude and vectors using?
 // We don't care! These methods all use double.
 magnitude->SetComponent(tupleIdx, 0,
 std::sqrt(vectors->GetComponent(tupleIdx, 0) *
 vectors->GetComponent(tupleIdx, 0) +
 vectors->GetComponent(tupleIdx, 1) *
 vectors->GetComponent(tupleIdx, 1) +
 vectors->GetComponent(tupleIdx, 2) *
 vectors->GetComponent(tupleIdx, 2));
 }
}

The Costs of Flexibility

However, this flexibility comes at a cost. Passing data through a generic API
has a number of issues:

Accuracy

Not all ValueTypes are fully expressible as a double. The truncation of
integers with > 52 bits of precision can be a particularly nasty issue.

Performance

Virtual overhead: The only way to implement such a system is to route the
vtkDataArray calls through a run-time resolution of ValueTypes. This is
implemented through the virtual override mechanism of C++, which adds a small
overhead to each API call.

Missed optimization: The virtual indirection described above also prevents
the compiler from being able to make assumptions about the layout of the data
in-memory. This information could be used to perform advanced optimizations,
such as vectorization.

So what can one do if they want fast, optimized, type-safe access to the data
stored in a vtkDataArray? What options are available?

The Old Solution: vtkTemplateMacro

The vtkTemplateMacro is described in this section. While it is no longer
considered a best practice to use this construct in new code, it is still
usable and likely to be encountered when reading the VTK source code. Newer
code should use the vtkArrayDispatch mechanism, which is detailed later. The
discussion of vtkTemplateMacro will help illustrate some of the practical
issues with array dispatching.

With a few minor exceptions that we won’t consider here, prior to VTK 7.1 it
was safe to assume that all numeric vtkDataArray objects were also subclasses
of vtkDataArrayTemplate. This template class provided the implementation of
all documented numeric data arrays such as vtkDoubleArray, vtkIdTypeArray,
etc, and stores the tuples in memory as a contiguous array-of-structs (AOS).
For example, if we had an array that stored 3-component tuples as floating
point numbers, we could define a tuple as:

struct Tuple { float x; float y; float z; };

An array-of-structs, or AOS, memory buffer containing this data could be
described as:

Tuple ArrayOfStructsBuffer[NumTuples];

As a result, ArrayOfStructsBuffer will have the following memory layout:

{ x1, y1, z1, x2, y2, z2, x3, y3, z3, ...}

That is, the components of each tuple are stored in adjacent memory locations,
one tuple after another. While this is not exactly how vtkDataArrayTemplate
implemented its memory buffers, it accurately describes the resulting memory
layout.

vtkDataArray also defines a GetDataType method, which returns an enumerated
value describing a type. We can used to discover the ValueType stored in the
array.

Combine the AOS memory convention and GetDataType() with a horrific little
method on the data arrays named GetVoidPointer(), and a path to efficient,
type-safe access was available. GetVoidPointer() does what it says on the
tin: it returns the memory address for the array data’s base location as a
void*. While this breaks encapsulation and sets off warning bells for the
more pedantic among us, the following technique was safe and efficient when
used correctly:

// 3-component magnitude calculation using GetVoidPointer.
// Efficient and fast, but assumes AOS memory layout
template <typename ValueType>
void calcMagnitudeWorker(ValueType *vectors, ValueType *magnitude,
 vtkIdType numVectors)
{
 for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
 {
 // We now have access to the raw memory buffers, and assuming
 // AOS memory layout, we know how to access them.
 magnitude[tupleIdx] =
 std::sqrt(vectors[3 * tupleIdx + 0] *
 vectors[3 * tupleIdx + 0] +
 vectors[3 * tupleIdx + 1] *
 vectors[3 * tupleIdx + 1] +
 vectors[3 * tupleIdx + 2] *
 vectors[3 * tupleIdx + 2]);
 }
}

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
 assert("Arrays must have same datatype!" &&
 vtkDataTypesCompare(vectors->GetDataType(),
 magnitude->GetDataType()));
 switch (vectors->GetDataType())
 {
 vtkTemplateMacro(calcMagnitudeWorker<VTK_TT*>(
 static_cast<VTK_TT*>(vectors->GetVoidPointer(0)),
 static_cast<VTK_TT*>(magnitude->GetVoidPointer(0)),
 vectors->GetNumberOfTuples());
 }
}

The vtkTemplateMacro, as you may have guessed, expands into a series of case
statements that determine an array’s ValueType from the int GetDataType()
return value. The ValueType is then typedef’d to VTK_TT, and the macro’s
argument is called for each numeric type returned from GetDataType. In this
case, the call to calcMagnitudeWorker is made by the macro, with VTK_TT
typedef’d to the array’s ValueType.

This is the typical usage pattern for vtkTemplateMacro. The calcMagnitude
function calls a templated worker implementation that uses efficient, raw
memory access to a typesafe memory buffer so that the worker’s code can be as
efficient as possible. But this assumes AOS memory ordering, and as we’ll
mention, this assumption may no longer be valid as VTK moves further into the
field of in-situ analysis.

But first, you may have noticed that the above example using vtkTemplateMacro
has introduced a step backwards in terms of functionality. In the
vtkDataArray implementation, we didn’t care if both arrays were the same
ValueType, but now we have to ensure this, since we cast both arrays’ void
pointers to VTK_TT*. What if vectors is an array of integers, but we want to
calculate floating point magnitudes?

vtkTemplateMacro with Multiple Arrays

The best solution prior to VTK 7.1 was to use two worker functions. The first
is templated on vector’s ValueType, and the second is templated on both array
ValueTypes:

// 3-component magnitude calculation using GetVoidPointer and a
// double-dispatch to resolve ValueTypes of both arrays.
// Efficient and fast, but assumes AOS memory layout, lots of boilerplate
// code, and the sensitivity to template explosion issues increases.
template <typename VectorType, typename MagnitudeType>
void calcMagnitudeWorker2(VectorType *vectors, MagnitudeType *magnitude,
 vtkIdType numVectors)
{
 for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
 {
 // We now have access to the raw memory buffers, and assuming
 // AOS memory layout, we know how to access them.
 magnitude[tupleIdx] =
 std::sqrt(vectors[3 * tupleIdx + 0] *
 vectors[3 * tupleIdx + 0] +
 vectors[3 * tupleIdx + 1] *
 vectors[3 * tupleIdx + 1] +
 vectors[3 * tupleIdx + 2] *
 vectors[3 * tupleIdx + 2]);
 }
}

// Vector ValueType is known (VectorType), now use vtkTemplateMacro on
// magnitude:
template <typename VectorType>
void calcMagnitudeWorker1(VectorType *vectors, vtkDataArray *magnitude,
 vtkIdType numVectors)
{
 switch (magnitude->GetDataType())
 {
 vtkTemplateMacro(calcMagnitudeWorker2(vectors,
 static_cast<VTK_TT*>(magnitude->GetVoidPointer(0)), numVectors);
 }
}

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
 // Dispatch vectors first:
 switch (vectors->GetDataType())
 {
 vtkTemplateMacro(calcMagnitudeWorker1<VTK_TT*>(
 static_cast<VTK_TT*>(vectors->GetVoidPointer(0)),
 magnitude, vectors->GetNumberOfTuples());
 }
}

This works well, but it’s a bit ugly and has the same issue as before regarding
memory layout. Double dispatches using this method will also see more problems
regarding binary size. The number of template instantiations that the compiler
needs to generate is determined by I = T^D, where I is the number of
template instantiations, T is the number of types considered, and D is the
number of dispatches. As of VTK 7.1, vtkTemplateMacro considers 14 data
types, so this double-dispatch will produce 14 instantiations of
calcMagnitudeWorker1 and 196 instantiations of calcMagnitudeWorker2. If we
tried to resolve 3 vtkDataArrays into raw C arrays, 2744 instantiations of
the final worker function would be generated. As more arrays are considered,
the need for some form of restricted dispatch becomes very important to keep
this template explosion in check.

Data Array Changes in VTK 7.1

Starting with VTK 7.1, the Array-Of-Structs (AOS) memory layout is no longer
the only vtkDataArray implementation provided by the library. The
Struct-Of-Arrays (SOA) memory layout is now available through the
vtkSOADataArrayTemplate class. The SOA layout assumes that the components of
an array are stored separately, as in:

struct StructOfArraysBuffer
{
 float *x; // Pointer to array containing x components
 float *y; // Same for y
 float *z; // Same for z
};

The new SOA arrays were added to improve interoperability between VTK and
simulation packages for live visualization of in-situ results. Many simulations
use the SOA layout for their data, and natively supporting these arrays in VTK
will allow analysis of live data without the need to explicitly copy it into a
VTK data structure.

As a result of this change, a new mechanism is needed to efficiently access
array data. vtkTemplateMacro and GetVoidPointer are no longer an acceptable
solution – implementing GetVoidPointer for SOA arrays requires creating a
deep copy of the data into a new AOS buffer, a waste of both processor time and
memory.

So we need a replacement for vtkTemplateMacro that can abstract away things
like storage details while providing performance that is on-par with raw memory
buffer operations. And while we’re at it, let’s look at removing the tedium of
multi-array dispatch and reducing the problem of ‘template explosion’. The
remainder of this page details such a system.

Best Practices for vtkDataArray Post-7.1

We’ll describe a new set of tools that make managing template instantiations
for efficient array access both easy and extensible. As an overview, the
following new features will be discussed:

	vtkGenericDataArray: The new templated base interface for all numeric
vtkDataArray subclasses.

	vtkArrayDispatch: Collection of code generation tools that allow concise
and precise specification of restrictable dispatch for up to 3 arrays
simultaneously.

	vtkArrayDownCast: Access to specialized downcast implementations from code
templates.

	vtkDataArrayAccessor: Provides Get and Set methods for
accessing/modifying array data as efficiently as possible. Allows a single
worker implementation to work efficiently with vtkGenericDataArray
subclasses, or fallback to use the vtkDataArray API if needed.

	VTK_ASSUME: New abstraction for the compiler __assume directive to
provide optimization hints.

These will be discussed more fully, but as a preview, here’s our familiar
calcMagnitude example implemented using these new tools:

// Modern implementation of calcMagnitude using new concepts in VTK 7.1:
// A worker functor. The calculation is implemented in the function template
// for operator().
struct CalcMagnitudeWorker
{
 // The worker accepts VTK array objects now, not raw memory buffers.
 template <typename VectorArray, typename MagnitudeArray>
 void operator()(VectorArray *vectors, MagnitudeArray *magnitude)
 {
 // This allows the compiler to optimize for the AOS array stride.
 VTK_ASSUME(vectors->GetNumberOfComponents() == 3);
 VTK_ASSUME(magnitude->GetNumberOfComponents() == 1);

 // These allow this single worker function to be used with both
 // the vtkDataArray 'double' API and the more efficient
 // vtkGenericDataArray APIs, depending on the template parameters:
 vtkDataArrayAccessor<VectorArray> v(vectors);
 vtkDataArrayAccessor<MagnitudeArray> m(magnitude);

 vtkIdType numVectors = vectors->GetNumberOfTuples();
 for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
 {
 // Set and Get compile to inlined optimizable raw memory accesses for
 // vtkGenericDataArray subclasses.
 m.Set(tupleIdx, 0, std::sqrt(v.Get(tupleIdx, 0) * v.Get(tupleIdx, 0) +
 v.Get(tupleIdx, 1) * v.Get(tupleIdx, 1) +
 v.Get(tupleIdx, 2) * v.Get(tupleIdx, 2)));
 }
 }
};

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
 // Create our worker functor:
 CalcMagnitudeWorker worker;

 // Define our dispatcher. We'll let vectors have any ValueType, but only
 // consider float/double arrays for magnitudes. These combinations will
 // use a 'fast-path' implementation generated by the dispatcher:
 typedef vtkArrayDispatch::Dispatch2ByValueType
 <
 vtkArrayDispatch::AllTypes, // ValueTypes allowed by first array
 vtkArrayDispatch::Reals // ValueTypes allowed by second array
 > Dispatcher;

 // Execute the dispatcher:
 if (!Dispatcher::Execute(vectors, magnitude, worker))
 {
 // If Execute() fails, it means the dispatch failed due to an
 // unsupported array type. In this case, it's likely that the magnitude
 // array is using an integral type. This is an uncommon case, so we won't
 // generate a fast path for these, but instead call an instantiation of
 // CalcMagnitudeWorker::operator()<vtkDataArray, vtkDataArray>.
 // Through the use of vtkDataArrayAccessor, this falls back to using the
 // vtkDataArray double API:
 worker(vectors, magnitude);
 }
}

vtkGenericDataArray

The vtkGenericDataArray class template drives the new vtkDataArray class
hierarchy. The ValueType is introduced here, both as a template parameter and a
class-scope typedef. This allows a typed API to be written that doesn’t
require conversion to/from a common type (as vtkDataArray does with double).
It does not implement any storage details, however. Instead, it uses the CRTP
idiom to forward key method calls to a derived class without using a virtual
function call. By eliminating this indirection, vtkGenericDataArray defines
an interface that can be used to implement highly efficient code, because the
compiler is able to see past the method calls and optimize the underlying
memory accesses instead.

There are two main subclasses of vtkGenericDataArray:
vtkAOSDataArrayTemplate and vtkSOADataArrayTemplate. These implement
array-of-structs and struct-of-arrays storage, respectively.

vtkTypeList

Type lists are a metaprogramming construct used to generate a list of C++
types. They are used in VTK to implement restricted array dispatching. As we’ll
see, vtkArrayDispatch offers ways to reduce the number of generated template
instantiations by enforcing constraints on the arrays used to dispatch. For
instance, if one wanted to only generate templated worker implementations for
vtkFloatArray and vtkIntArray, a typelist is used to specify this:

// Create a typelist of 2 types, vtkFloatArray and vtkIntArray:
typedef vtkTypeList::Create<vtkFloatArray, vtkIntArray> MyArrays;

Worker someWorker = ...;
vtkDataArray *someArray = ...;

// Use vtkArrayDispatch to generate code paths for these arrays:
vtkArrayDispatch::DispatchByArray<MyArrays>(someArray, someWorker);

There’s not much to know about type lists as a user, other than how to create
them. As seen above, there is a set of macros named vtkTypeList::Create<...>,
where X is the number of types in the created list, and the arguments are the
types to place in the list. In the example above, the new type list is
typically bound to a friendlier name using a local typedef, which is a common
practice.

The vtkTypeList.h header defines some additional type list operations that
may be useful, such as deleting and appending types, looking up indices, etc.
vtkArrayDispatch::FilterArraysByValueType may come in handy, too. But for
working with array dispatches, most users will only need to create new ones, or
use one of the following predefined vtkTypeLists:

	vtkArrayDispatch::Reals: All floating point ValueTypes.

	vtkArrayDispatch::Integrals: All integral ValueTypes.

	vtkArrayDispatch::AllTypes: Union of Reals and Integrals.

	vtkArrayDispatch::Arrays: Default list of ArrayTypes to use in dispatches.

The last one is special – vtkArrayDispatch::Arrays is a typelist of
ArrayTypes set application-wide when VTK is built. This vtkTypeList of
vtkDataArray subclasses is used for unrestricted dispatches, and is the list
that gets filtered when restricting a dispatch to specific ValueTypes.

Refining this list allows the user building VTK to have some control over the
dispatch process. If SOA arrays are never going to be used, they can be removed
from dispatch calls, reducing compile times and binary size. On the other hand,
a user applying in-situ techniques may want them available, because they’ll be
used to import views of intermediate results.

By default, vtkArrayDispatch::Arrays contains all AOS arrays. The CMake
option VTK_DISPATCH_SOA_ARRAYS will enable SOA array dispatch as well. More
advanced possibilities exist and are described in
VTK/Common/Core/vtkCreateArrayDispatchArrayList.cmake.

vtkArrayDownCast

In VTK, all subclasses of vtkObject (including the data arrays) support a
downcast method called SafeDownCast. It is used similarly to the C++
dynamic_cast – given an object, try to cast it to a more derived type or
return NULL if the object is not the requested type. Say we have a
vtkDataArray and want to test if it is actually a vtkFloatArray. We can do
this:

void DoSomeAction(vtkDataArray *dataArray)
{
 vtkFloatArray *floatArray = vtkFloatArray::SafeDownCast(dataArray);
 if (floatArray)
 {
 // ... (do work with float array)
 }
}

This works, but it can pose a serious problem if DoSomeAction is called
repeatedly. SafeDownCast works by performing a series of virtual calls and
string comparisons to determine if an object falls into a particular class
hierarchy. These string comparisons add up and can actually dominate
computational resources if an algorithm implementation calls SafeDownCast in
a tight loop.

In such situations, it’s ideal to restructure the algorithm so that the
downcast only happens once and the same result is used repeatedly, but
sometimes this is not possible. To lessen the cost of downcasting arrays, a
FastDownCast method exists for common subclasses of vtkAbstractArray. This
replaces the string comparisons with a single virtual call and a few integer
comparisons and is far cheaper than the more general SafeDownCast. However, not
all array implementations support the FastDownCast method.

This creates a headache for templated code. Take the following example:

template <typename ArrayType>
void DoSomeAction(vtkAbstractArray *array)
{
 ArrayType *myArray = ArrayType::SafeDownCast(array);
 if (myArray)
 {
 // ... (do work with myArray)
 }
}

We cannot use FastDownCast here since not all possible ArrayTypes support it.
But we really want that performance increase for the ones that do –
SafeDownCasts are really slow! vtkArrayDownCast fixes this issue:

template <typename ArrayType>
void DoSomeAction(vtkAbstractArray *array)
{
 ArrayType *myArray = vtkArrayDownCast<ArrayType>(array);
 if (myArray)
 {
 // ... (do work with myArray)
 }
}

vtkArrayDownCast automatically selects FastDownCast when it is defined for
the ArrayType, and otherwise falls back to SafeDownCast. This is the
preferred array downcast method for performance, uniformity, and reliability.

vtkDataArrayAccessor

Array dispatching relies on having templated worker code carry out some
operation. For instance, take this vtkArrayDispatch code that locates the
maximum value in an array:

// Stores the tuple/component coordinates of the maximum value:
struct FindMax
{
 vtkIdType Tuple; // Result
 int Component; // Result

 FindMax() : Tuple(-1), Component(-1) {}

 template <typename ArrayT>
 void operator()(ArrayT *array)
 {
 // The type to use for temporaries, and a temporary to store
 // the current maximum value:
 typedef typename ArrayT::ValueType ValueType;
 ValueType max = std::numeric_limits<ValueType>::min();

 // Iterate through all tuples and components, noting the location
 // of the largest element found.
 vtkIdType numTuples = array->GetNumberOfTuples();
 int numComps = array->GetNumberOfComponents();
 for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
 {
 for (int compIdx = 0; compIdx < numComps; ++compIdx)
 {
 if (max < array->GetTypedComponent(tupleIdx, compIdx))
 {
 max = array->GetTypedComponent(tupleIdx, compIdx);
 this->Tuple = tupleIdx;
 this->Component = compIdx;
 }
 }
 }
 }
};

void someFunction(vtkDataArray *array)
{
 FindMax maxWorker;
 vtkArrayDispatch::Dispatch::Execute(array, maxWorker);
 // Do work using maxWorker.Tuple and maxWorker.Component...
}

There’s a problem, though. Recall that only the arrays in
vtkArrayDispatch::Arrays are tested for dispatching. What happens if the
array passed into someFunction wasn’t on that list?

The dispatch will fail, and maxWorker.Tuple and maxWorker.Component will be
left to their initial values of -1. That’s no good. What if someFunction is a
critical path where we want to use a fast dispatched worker if possible, but
still have valid results to use if dispatching fails? Well, we can fall back on
the vtkDataArray API and do things the slow way in that case. When a
dispatcher is given an unsupported array, Execute() returns false, so let’s
just add a backup implementation:

// Stores the tuple/component coordinates of the maximum value:
struct FindMax
{ /* As before... */ };

void someFunction(vtkDataArray *array)
{
 FindMax maxWorker;
 if (!vtkArrayDispatch::Dispatch::Execute(array, maxWorker))
 {
 // Reimplement FindMax::operator(), but use the vtkDataArray API's
 // "virtual double GetComponent()" instead of the more efficient
 // "ValueType GetTypedComponent()" from vtkGenericDataArray.
 }
}

Ok, that works. But ugh…why write the same algorithm twice? That’s extra
debugging, extra testing, extra maintenance burden, and just plain not fun.

Enter vtkDataArrayAccessor. This utility template does a very simple, yet
useful, job. It provides component and tuple based Get and Set methods that
will call the corresponding method on the array using either the vtkDataArray
or vtkGenericDataArray API, depending on the class’s template parameter. It
also defines an APIType, which can be used to allocate temporaries, etc. This
type is double for vtkDataArrays and vtkGenericDataArray::ValueType for
vtkGenericDataArrays.

Another nice benefit is that vtkDataArrayAccessor has a more compact API. The
only defined methods are Get and Set, and they’re overloaded to work on either
tuples or components (though component access is encouraged as it is much, much
more efficient). Note that all non-element access operations (such as
GetNumberOfTuples) should still be called on the array pointer using
vtkDataArray API.

Using vtkDataArrayAccessor, we can write a single worker template that works
for both vtkDataArray and vtkGenericDataArray, without a loss of
performance in the latter case. That worker looks like this:

// Better, uses vtkDataArrayAccessor:
struct FindMax
{
 vtkIdType Tuple; // Result
 int Component; // Result

 FindMax() : Tuple(-1), Component(-1) {}

 template <typename ArrayT>
 void operator()(ArrayT *array)
 {
 // Create the accessor:
 vtkDataArrayAccessor<ArrayT> access(array);

 // Prepare the temporary. We'll use the accessor's APIType instead of
 // ArrayT::ValueType, since that is appropriate for the vtkDataArray
 // fallback:
 typedef typename vtkDataArrayAccessor<ArrayT>::APIType ValueType;
 ValueType max = std::numeric_limits<ValueType>::min();

 // Iterate as before, but use access.Get instead of
 // array->GetTypedComponent. GetTypedComponent is still used
 // when ArrayT is a vtkGenericDataArray, but
 // vtkDataArray::GetComponent is now used as a fallback when ArrayT
 // is vtkDataArray.
 vtkIdType numTuples = array->GetNumberOfTuples();
 int numComps = array->GetNumberOfComponents();
 for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
 {
 for (int compIdx = 0; compIdx < numComps; ++compIdx)
 {
 if (max < access.Get(tupleIdx, compIdx))
 {
 max = access.Get(tupleIdx, compIdx);
 this->Tuple = tupleIdx;
 this->Component = compIdx;
 }
 }
 }
 }
};

Now when we call operator() with say, ArrayT=vtkFloatArray, we’ll get an
optimized, efficient code path. But we can also call this same implementation
with ArrayT=vtkDataArray and still get a correct result (assuming that the
vtkDataArray’s double API represents the data well enough).

Using the vtkDataArray fallback path is straightforward. At the call site:

void someFunction(vtkDataArray *array)
{
 FindMax maxWorker;
 if (!vtkArrayDispatch::Dispatch::Execute(array, maxWorker))
 {
 maxWorker(array); // Dispatch failed, call vtkDataArray fallback
 }
 // Do work using maxWorker.Tuple and maxWorker.Component -- now we know
 // for sure that they're initialized!
}

Using the above pattern for calling a worker and always going through
vtkDataArrayAccessor to Get/Set array elements ensures that any worker
implementation can be its own fallback path.

VTK_ASSUME

While performance testing the new array classes, we compared the performance of
a dispatched worker using the vtkDataArrayAccessor class to the same
algorithm using raw memory buffers. We managed to achieve the same performance
out of the box for most cases, using both AOS and SOA array implementations. In
fact, with --ffast-math optimizations on GCC 4.9, the optimizer is able to
remove all function calls and apply SIMD vectorized instructions in the
dispatched worker, showing that the new array API is thin enough that the
compiler can see the algorithm in terms of memory access.

But there was one case where performance suffered. If iterating through an AOS
data array with a known number of components using GetTypedComponent, the raw
pointer implementation initially outperformed the dispatched array. To
understand why, note that the AOS implementation of GetTypedComponent is along
the lines of:

ValueType vtkAOSDataArrayTemplate::GetTypedComponent(vtkIdType tuple,
 int comp) const
{
 // AOSData is a ValueType* pointing at the base of the array data.
 return this->AOSData[tuple * this->NumberOfComponents + comp];
}

Because NumberOfComponents is unknown at compile time, the optimizer cannot
assume anything about the stride of the components in the array. This leads to
missed optimizations for vectorized read/writes and increased complexity in the
instructions used to iterate through the data.

For such cases where the number of components is, in fact, known at compile
time (due to a calling function performing some validation, for instance), it
is possible to tell the compiler about this fact using VTK_ASSUME.

VTK_ASSUME wraps a compiler-specific __assume statement, which is used to
pass such optimization hints. Its argument is an expression of some condition
that is guaranteed to always be true. This allows more aggressive optimizations
when used correctly, but be forewarned that if the condition is not met at
runtime, the results are unpredictable and likely catastrophic.

But if we’re writing a filter that only operates on 3D point sets, we know the
number of components in the point array will always be 3. In this case we can
write:

VTK_ASSUME(pointsArray->GetNumberOfComponents() == 3);

in the worker function and this instructs the compiler that the array’s
internal NumberOfComponents variable will always be 3, and thus the stride of
the array is known. Of course, the caller of this worker function should ensure
that this is a 3-component array and fail gracefully if it is not.

There are many scenarios where VTK_ASSUME can offer a serious performance
boost, the case of known tuple size is a common one that’s really worth
remembering.

vtkArrayDispatch

The dispatchers implemented in the vtkArrayDispatch namespace provide array
dispatching with customizable restrictions on code generation and a simple
syntax that hides the messy details of type resolution and multi-array
dispatch. There are several “flavors” of dispatch available that operate on up
to three arrays simultaneously.

Components Of A Dispatch

Using the vtkArrayDispatch system requires three elements: the array(s), the
worker, and the dispatcher.

The Arrays

All dispatched arrays must be subclasses of vtkDataArray. It is important to
identify as many restrictions as possible. Must every ArrayType be considered
during dispatch, or is the array’s ValueType (or even the ArrayType itself)
restricted? If dispatching multiple arrays at once, are they expected to have
the same ValueType? These scenarios are common, and these conditions can be
used to reduce the number of instantiations of the worker template.

The Worker

The worker is some generic callable. In C++98, a templated functor is a good
choice. In C++14, a generic lambda is a usable option as well. For our
purposes, we’ll only consider the functor approach, as C++14 is a long ways off
for core VTK code.

At a minimum, the worker functor should define operator() to make it
callable. This should be a function template with a template parameter for each
array it should handle. For a three array dispatch, it should look something
like this:

struct ThreeArrayWorker
{
 template <typename Array1T, typename Array2T, typename Array3T>
 void operator()(Array1T *array1, Array2T *array2, Array3T *array3)
 {
 /* Do stuff... */
 }
};

At runtime, the dispatcher will call ThreeWayWorker::operator() with a set of
Array1T, Array2T, and Array3T that satisfy any dispatch restrictions.

Workers can be stateful, too, as seen in the FindMax worker earlier where the
worker simply identified the component and tuple id of the largest value in the
array. The functor stored them for the caller to use in further analysis:

// Example of a stateful dispatch functor:
struct FindMax
{
 // Functor state, holds results that are accessible to the caller:
 vtkIdType Tuple;
 int Component;

 // Set initial values:
 FindMax() : Tuple(-1), Component(-1) {}

 // Template method to set Tuple and Component ivars:
 template <typename ArrayT>
 void operator()(ArrayT *array)
 {
 /* Do stuff... */
 }
};

The Dispatcher

The dispatcher is the workhorse of the system. It is responsible for applying
restrictions, resolving array types, and generating the requested template
instantiations. It has responsibilities both at run-time and compile-time.

During compilation, the dispatcher will identify the valid combinations of
arrays that can be used according to the restrictions. This is done by starting
with a typelist of arrays, either supplied as a template parameter or by
defaulting to vtkArrayDispatch::Arrays, and filtering them by ValueType if
needed. For multi-array dispatches, additional restrictions may apply, such as
forcing the second and third arrays to have the same ValueType as the first. It
must then generate the required code for the dispatch – that is, the templated
worker implementation must be instantiated for each valid combination of
arrays.

At runtime, it tests each of the dispatched arrays to see if they match one of
the generated code paths. Runtime type resolution is carried out using
vtkArrayDownCast to get the best performance available for the arrays of
interest. If it finds a match, it calls the worker’s operator() method with
the properly typed arrays. If no match is found, it returns false without
executing the worker.

Restrictions: Why They Matter

We’ve made several mentions of using restrictions to reduce the number of
template instantiations during a dispatch operation. You may be wondering if it
really matters so much. Let’s consider some numbers.

VTK is configured to use 13 ValueTypes for numeric data. These are the standard
numeric types float, int, unsigned char, etc. By default, VTK will define
vtkArrayDispatch::Arrays to use all 13 types with vtkAOSDataArrayTemplate
for the standard set of dispatchable arrays. If enabled during compilation, the
SOA data arrays are added to this list for a total of 26 arrays.

Using these 26 arrays in a single, unrestricted dispatch will result in 26
instantiations of the worker template. A double dispatch will generate 676
workers. A triple dispatch with no restrictions creates a whopping 17,576
functions to handle the possible combinations of arrays. That’s a lot of
instructions to pack into the final binary object.

Applying some simple restrictions can reduce this immensely. Say we know that
the arrays will only contain floats or doubles. This would reduce the
single dispatch to 4 instantiations, the double dispatch to 16, and the triple
to 64. We’ve just reduced the generated code size significantly. We could even
apply such a restriction to just create some ‘fast-paths’ and let the integral
types fallback to using the vtkDataArray API by using
vtkDataArrayAccessors. Dispatch restriction is a powerful tool for reducing
the compiled size of a binary object.

Another common restriction is that all arrays in a multi-array dispatch have
the same ValueType, even if that ValueType is not known at compile time. By
specifying this restriction, a double dispatch on all 26 AOS/SOA arrays will
only produce 52 worker instantiations, down from 676. The triple dispatch drops
to 104 instantiations from 17,576.

Always apply restrictions when they are known, especially for multi-array
dispatches. The savings are worth it.

Types of Dispatchers

Now that we’ve discussed the components of a dispatch operation, what the
dispatchers do, and the importance of restricting dispatches, let’s take a look
at the types of dispatchers available.

vtkArrayDispatch::Dispatch

This family of dispatchers take no parameters and perform an unrestricted
dispatch over all arrays in vtkArrayDispatch::Arrays.

Variations:

	vtkArrayDispatch::Dispatch: Single dispatch.

	vtkArrayDispatch::Dispatch2: Double dispatch.

	vtkArrayDispatch::Dispatch3: Triple dispatch.

Arrays considered: All arrays in vtkArrayDispatch::Arrays.

Restrictions: None.

Usecase: Used when no useful information exists that can be used to apply
restrictions.

Example Usage:

vtkArrayDispatch::Dispatch::Execute(array, worker);

vtkArrayDispatch::DispatchByArray

This family of dispatchers takes a vtkTypeList of explicit array types to use
during dispatching. They should only be used when an array’s exact type is
restricted. If dispatching multiple arrays and only one has such type
restrictions, use vtkArrayDispatch::Arrays (or a filtered version) for the
unrestricted arrays.

Variations:

	vtkArrayDispatch::DispatchByArray: Single dispatch.

	vtkArrayDispatch::Dispatch2ByArray: Double dispatch.

	vtkArrayDispatch::Dispatch3ByArray: Triple dispatch.

Arrays considered: All arrays explicitly listed in the parameter lists.

Restrictions: Array must be explicitly listed in the dispatcher’s type.

Usecase: Used when one or more arrays have known implementations.

Example Usage:

An example here would be a filter that processes an input array of some
integral type and produces either a vtkDoubleArray or a vtkFloatArray,
depending on some condition. Since the input array’s implementation is unknown
(it comes from outside the filter), we’ll rely on a ValueType-filtered version
of vtkArrayDispatch::Arrays for its type. However, we know the output array
is either vtkDoubleArray or vtkFloatArray, so we’ll want to be sure to
apply that restriction:

// input has an unknown implementation, but an integral ValueType.
vtkDataArray *input = ...;

// Output is always either vtkFloatArray or vtkDoubleArray:
vtkDataArray *output = someCondition ? vtkFloatArray::New()
 : vtkDoubleArray::New();

// Define the valid ArrayTypes for input by filtering
// vtkArrayDispatch::Arrays to remove non-integral types:
typedef typename vtkArrayDispatch::FilterArraysByValueType
 <
 vtkArrayDispatch::Arrays,
 vtkArrayDispatch::Integrals
 >::Result InputTypes;

// For output, create a new vtkTypeList with the only two possibilities:
typedef vtkTypeList::Create<vtkFloatArray, vtkDoubleArray> OutputTypes;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2ByArray
 <
 InputTypes,
 OutputTypes
 > MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(input, output, someWorker);

vtkArrayDispatch::DispatchByValueType

This family of dispatchers takes a vtkTypeList of ValueTypes for each array and
restricts dispatch to only arrays in vtkArrayDispatch::Arrays that have one of
the specified value types.

Variations:

	vtkArrayDispatch::DispatchByValueType: Single dispatch.

	vtkArrayDispatch::Dispatch2ByValueType: Double dispatch.

	vtkArrayDispatch::Dispatch3ByValueType: Triple dispatch.

Arrays considered: All arrays in vtkArrayDispatch::Arrays that meet the
ValueType requirements.

Restrictions: Arrays that do not satisfy the ValueType requirements are
eliminated.

Usecase: Used when one or more of the dispatched arrays has an unknown
implementation, but a known (or restricted) ValueType.

Example Usage:

Here we’ll consider a filter that processes three arrays. The first is a
complete unknown. The second is known to hold unsigned char, but we don’t
know the implementation. The third holds either doubles or floats, but its
implementation is also unknown.

// Complete unknown:
vtkDataArray *array1 = ...;
// Some array holding unsigned chars:
vtkDataArray *array2 = ...;
// Some array holding either floats or doubles:
vtkDataArray *array3 = ...;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch3ByValueType
 <
 vtkArrayDispatch::AllTypes,
 vtkTypeList::Create<unsigned char>,
 vtkArrayDispatch::Reals
 > MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, array3, someWorker);

vtkArrayDispatch::DispatchByArrayWithSameValueType

This family of dispatchers takes a vtkTypeList of ArrayTypes for each array
and restricts dispatch to only consider arrays from those typelists, with the
added requirement that all dispatched arrays share a ValueType.

Variations:

	vtkArrayDispatch::Dispatch2ByArrayWithSameValueType: Double dispatch.

	vtkArrayDispatch::Dispatch3ByArrayWithSameValueType: Triple dispatch.

Arrays considered: All arrays in the explicit typelists that meet the
ValueType requirements.

Restrictions: Combinations of arrays with differing ValueTypes are
eliminated.

Usecase: When one or more arrays are known to belong to a restricted set of
ArrayTypes, and all arrays are known to share the same ValueType, regardless of
implementation.

Example Usage:

Let’s consider a double array dispatch, with array1 known to be one of four
common array types (AOS float, double, int, and vtkIdType arrays), and
the other is a complete unknown, although we know that it holds the same
ValueType as array1.

// AOS float, double, int, or vtkIdType array:
vtkDataArray *array1 = ...;
// Unknown implementation, but the ValueType matches array1:
vtkDataArray *array2 = ...;

// array1's possible types:
typedef vtkTypeList;:Create<vtkFloatArray, vtkDoubleArray,
 vtkIntArray, vtkIdTypeArray> Array1Types;

// array2's possible types:
typedef typename vtkArrayDispatch::FilterArraysByValueType
 <
 vtkArrayDispatch::Arrays,
 vtkTypeList::Create<float, double, int, vtkIdType>
 > Array2Types;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2ByArrayWithSameValueType
 <
 Array1Types,
 Array2Types
 > MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, someWorker);

vtkArrayDispatch::DispatchBySameValueType

This family of dispatchers takes a single vtkTypeList of ValueType and
restricts dispatch to only consider arrays from vtkArrayDispatch::Arrays with
those ValueTypes, with the added requirement that all dispatched arrays share a
ValueType.

Variations:

	vtkArrayDispatch::Dispatch2BySameValueType: Double dispatch.

	vtkArrayDispatch::Dispatch3BySameValueType: Triple dispatch.

	vtkArrayDispatch::Dispatch2SameValueType: Double dispatch using
vtkArrayDispatch::AllTypes.

	vtkArrayDispatch::Dispatch3SameValueType: Triple dispatch using
vtkArrayDispatch::AllTypes.

Arrays considered: All arrays in vtkArrayDispatch::Arrays that meet the
ValueType requirements.

Restrictions: Combinations of arrays with differing ValueTypes are
eliminated.

Usecase: When one or more arrays are known to belong to a restricted set of
ValueTypes, and all arrays are known to share the same ValueType, regardless of
implementation.

Example Usage:

Let’s consider a double array dispatch, with array1 known to be one of four
common ValueTypes (float, double, int, and vtkIdType arrays), and
array2 known to have the same ValueType as array1.

// Some float, double, int, or vtkIdType array:
vtkDataArray *array1 = ...;
// Unknown, but the ValueType matches array1:
vtkDataArray *array2 = ...;

// The allowed ValueTypes:
typedef vtkTypeList::Create<float, double, int, vtkIdType> ValidValueTypes;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2BySameValueType
 <
 ValidValueTypes
 > MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, someWorker);

Advanced Usage

Accessing Memory Buffers

Despite the thin vtkGenericDataArray API’s nice feature that compilers can
optimize memory accesses, sometimes there are still legitimate reasons to
access the underlying memory buffer. This can still be done safely by providing
overloads to your worker’s operator() method. For instance,
vtkDataArray::DeepCopy uses a generic implementation when mixed array
implementations are used, but has optimized overloads for copying between
arrays with the same ValueType and implementation. The worker for this dispatch
is shown below as an example:

// Copy tuples from src to dest:
struct DeepCopyWorker
{
 // AoS --> AoS same-type specialization:
 template <typename ValueType>
 void operator()(vtkAOSDataArrayTemplate<ValueType> *src,
 vtkAOSDataArrayTemplate<ValueType> *dst)
 {
 std::copy(src->Begin(), src->End(), dst->Begin());
 }

 // SoA --> SoA same-type specialization:
 template <typename ValueType>
 void operator()(vtkSOADataArrayTemplate<ValueType> *src,
 vtkSOADataArrayTemplate<ValueType> *dst)
 {
 vtkIdType numTuples = src->GetNumberOfTuples();
 for (int comp; comp < src->GetNumberOfComponents(); ++comp)
 {
 ValueType *srcBegin = src->GetComponentArrayPointer(comp);
 ValueType *srcEnd = srcBegin + numTuples;
 ValueType *dstBegin = dst->GetComponentArrayPointer(comp);

 std::copy(srcBegin, srcEnd, dstBegin);
 }
 }

 // Generic implementation:
 template <typename Array1T, typename Array2T>
 void operator()(Array1T *src, Array2T *dst)
 {
 vtkDataArrayAccessor<Array1T> s(src);
 vtkDataArrayAccessor<Array2T> d(dst);

 typedef typename vtkDataArrayAccessor<Array2T>::APIType DestType;

 vtkIdType tuples = src->GetNumberOfTuples();
 int comps = src->GetNumberOfComponents();

 for (vtkIdType t = 0; t < tuples; ++t)
 {
 for (int c = 0; c < comps; ++c)
 {
 d.Set(t, c, static_cast<DestType>(s.Get(t, c)));
 }
 }
 }
};

Putting It All Together

Now that we’ve explored the new tools introduced with VTK 7.1 that allow
efficient, implementation agnostic array access, let’s take another look at the
calcMagnitude example from before and identify the key features of the
implementation:

// Modern implementation of calcMagnitude using new concepts in VTK 7.1:
struct CalcMagnitudeWorker
{
 template <typename VectorArray, typename MagnitudeArray>
 void operator()(VectorArray *vectors, MagnitudeArray *magnitude)
 {
 VTK_ASSUME(vectors->GetNumberOfComponents() == 3);
 VTK_ASSUME(magnitude->GetNumberOfComponents() == 1);

 vtkDataArrayAccessor<VectorArray> v(vectors);
 vtkDataArrayAccessor<MagnitudeArray> m(magnitude);

 vtkIdType numVectors = vectors->GetNumberOfTuples();
 for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
 {
 m.Set(tupleIdx, 0, std::sqrt(v.Get(tupleIdx, 0) * v.Get(tupleIdx, 0) +
 v.Get(tupleIdx, 1) * v.Get(tupleIdx, 1) +
 v.Get(tupleIdx, 2) * v.Get(tupleIdx, 2)));
 }
 }
};

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
 CalcMagnitudeWorker worker;
 typedef vtkArrayDispatch::Dispatch2ByValueType
 <
 vtkArrayDispatch::AllTypes,
 vtkArrayDispatch::Reals
 > Dispatcher;

 if (!Dispatcher::Execute(vectors, magnitude, worker))
 {
 worker(vectors, magnitude); // vtkDataArray fallback
 }
}

This implementation:

	Uses dispatch restrictions to reduce the number of instantiated templated
worker functions.

	Assuming 26 types are in vtkArrayDispatch::Arrays (13 AOS + 13 SOA).

	The first array is unrestricted. All 26 array types are considered.

	The second array is restricted to float or double ValueTypes, which
translates to 4 array types (one each, SOA and AOS).

	26 * 4 = 104 possible combinations exist. We’ve eliminated 26 * 22 = 572
combinations that an unrestricted double-dispatch would have generated (it
would create 676 instantiations).

	The calculation is still carried out at double precision when the ValueType
restrictions are not met.

	Just because we don’t want those other 572 cases to have special code
generated doesn’t necessarily mean that we wouldn’t want them to run.

	Thanks to vtkDataArrayAccessor, we have a fallback implementation that
reuses our templated worker code.

	In this case, the dispatch is really just a fast-path implementation for
floating point output types.

	The performance should be identical to iterating through raw memory buffers.

	The vtkGenericDataArray API is transparent to the compiler. The
specialized instantiations of operator() can be heavily optimized since the
memory access patterns are known and well-defined.

	Using VTK_ASSUME tells the compiler that the arrays have known strides,
allowing further compile-time optimizations.

Hopefully this has convinced you that the vtkArrayDispatch and related tools
are worth using to create flexible, efficient, typesafe implementations for
your work with VTK. Please direct any questions you may have on the subject to
the VTK Discourse [https://discourse.vtk.org] forum.

 Data Assembly

Data Assembly

VTK 10.0 introduces a new mechanism for representing data hierarchies
using vtkPartitionedDataSetCollection and vtkDataAssembly. This document
describes the design details.

Data Model

The design is based on three classes:

	vtkPartitionedDataSet is a collection of datasets (not to be confused with
vtkDataSet).

	vtkPartitionedDataSetCollection is a collection of vtkPartitionedDataSets.

	vtkDataAssembly defines the hierarchical relationships between items in a
vtkPartitionedDataSetCollection.

Partitioned Dataset

vtkPartitionedDataSet is simply a collection of datasets that are to be
treated as a logical whole. In data-parallel applications, each dataset may
represent a partition of the complete dataset on the current worker process,
rank, or thread. Each dataset in a vtkPartitionedDataSet is called a
partition, implying it is only a part of a whole.

All non-null partitions have similar field and attribute arrays. For example, if
a vtkPartitionedDataSet comprises of vtkDataSet subclasses, all will have
exactly the same number of point data/cell data arrays, with same names, same
number of components, and same data types.

Partitioned Dataset Collection

vtkPartitionedDataSetCollection is a collection of vtkPartitionedDataSet.
Thus, it is simply a mechanism to group multiple vtkPartitionedDataSet
instances together. Since each vtkPartitionedDataSet represents a whole dataset
(not be confused with vtkDataSet), we can refer to each item in a
vtkPartitionedDataSetCollection as a partitioned-dataset.

Unlike items in the vtkPartitionedDataSet, there are no restrictions of consistency
between each items, partitioned-datasets, in the vtkPartitionedDataSetCollection.
Thus, in the multiblock-dataset parlance, each item in this collection can be thought
of as a block.

Data Assembly

vtkDataAssembly is a means to define an hierarchical organization of items in a
vtkPartitionedDataSetCollection. This is literally a tree made up of named nodes.
Each node in the tree can have associated dataset-indices. For a vtkDataAssembly is
associated with a vtkPartitionedDataSetCollection, each of the
dataset-indices is simply the index of a partitioned-dataset in the
vtkPartitionedDataSetCollection. A dataset-index can be associated with multiple nodes in
the assembly, however, a dataset-index cannot be associated with the same node more than once.

An assembly provides an ability to define a more complex view of the raw data blocks in
a more application-specific form. This is not much different than what could be achieved using simply
a vtkMultiBlockDataSet. However, there are several advantages to this separation of storage
(vtkPartitionedDataSetCollection) and organization (vtkDataAssembly). These will become clear as
we cover different use-cases.

While nodes in the data-assembly have unique ids, public facing algorithm APIs should not use them. For example
an extract-block filter that allows users to choose which blocks (rather partitioned-datasets)
to extract from vtkPartitionedDataSetCollection can expose an API that lets users provide
path-expression to identify nodes in the associated data-assembly using their names.

Besides accessing nodes by querying using their names, vtkDataAssembly also
supports a mechanism to iterate over all nodes in depth-first or breadth-first
order using a visitor. vtkDataAssemblyVisitor defines a API that can be
implemented to do custom action as each node in the tree is visited.

Design Implications

	Since vtkPartitionedDataSet is simply parts of a whole, there is no specific significance
to the number of partitions. In distributed pipelines, for example, a vtkPartitionedDataSet
on each rank can have arbitrarily many partitions. Furthermore, filters can add/remove
partitions as needed. Since the vtkDataAssembly never refers to individual partitions, this has no
implication to filters that use the hierarchical relationships.

	When constructing vtkPartitionedDataSetCollection in distributed data-parallel cases,
each rank should have exactly the same number of partitioned-datasets.
In this case, each vtkPartitionedDataSet at a specific index across all ranks together is
treated as a whole dataset. Similarly, the vtkDataAssembly on each should be identical.

	When developing filters, it is worth considering whether the filter really is a
vtkPartitionedDataSetCollection filter or simply a vtkPartitionedDataSet-aware
filter that needs to operate on each vtkPartitionedDataSet individually. For example,
typical multiblock-aware filters like ghost-cell-generation, data-redistribution, etc.,
are simply vtkPartitionedDataSet filters. For vtkPartitionedDataSet-only filters,
when the input is a vtkPartitionedDataSetCollection, the executive takes care of looping
over each of the partitioned-dataset in the collection, thus simplifying the filter development.

	Filters that don’t change the number of partitioned-datasets in a
vtkPartitionedDataSetCollection don’t generally affect the relationships
between the partitioned-datasets and hence can largely pass through the
vtkDataAssembly. Only filter like extract-block that remove
partitioned-datasets need to update the vtkDataAssembly. There too,
vtkDataAssembly provides several convenience methods to update the tree with
ease.

	It is possible to develop a mapper that uses the vtkDataAssembly. Using
APIs that let users use path-queries to specify rendering properties for
various nodes, the mapper can support use-cases where the input structure
keeps changing but the relationships remain largely intact.
Since the same dataset-index can be associated with multiple nodes in a
vtkDataAssembly, the mapper can effectively support scene-graph like
capabilities where user can specify transforms, and other rendering
parameters, while reusing the heavy datasets. The mapper can easily tell if
a dataset has already been uploaded to the rendering pipeline since it will
have the same id and indeed be the same instance even if is being visited
through different branches in the tree.

 VTK Legacy Reader/Writer Information Format

VTK Legacy Reader/Writer Information Format

Overview

The legacy vtk data file readers / writers store certain vtkInformation
entries that are set on vtkAbstractArray’s GetInformation() object. Support
is currently limited to numeric and string information keys, both single- and
vector-valued. Only the information objects attached to arrays are encoded.

Array Metadata Blocks

A block of metadata may immediately follow the specification of an array.
Whitespace is permitted between the array data and the opening METADATA tag.
The metadata block is terminated by an empty line.

vtk DataFile Version 4.1
vtk output
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 6 float
0 0 0 1 0 0 0.5 1 0
0.5 0.5 1 0.5 -1 0 0.5 -0.5 1

METADATA
COMPONENT_NAMES
X%20coordinates
Y%20coordinates
Z%20coordinates
INFORMATION 8
NAME Double LOCATION TestKey
DATA 1
NAME DoubleVector LOCATION TestKey
DATA 3 1 90 260
NAME IdType LOCATION TestKey
DATA 5
NAME String LOCATION TestKey
DATA Test%20String!%0ALine2
NAME Integer LOCATION TestKey
DATA 408
NAME IntegerVector LOCATION TestKey
DATA 3 1 5 45
NAME StringVector LOCATION TestKey
DATA 3
First
Second%20(with%20whitespace!)
Third%20(with%0Anewline!)
NAME UnsignedLong LOCATION TestKey
DATA 9

CELLS 3 15
4 0 1 2 3
4 0 4 1 5
4 5 3 1 0

CELL_TYPES 3
10
10
10

CELL_DATA 3
FIELD FieldData 1
vtkGhostType 1 3 unsigned_char
0 1 1
METADATA
COMPONENT_NAMES
Ghost%20level%20information
INFORMATION 1
NAME UNITS_LABEL LOCATION vtkDataArray
DATA radians

As shown, a metadata block can have two sections, COMPONENT_NAMES and
INFORMATION. The INFORMATION tag is followed by the number of information
keys that follow.

COMPONENT_NAMES

If the METADATA block contains the line COMPONENT_NAMES, the following lines
are expected to be encoded strings containing the names of each component. There
must be one line per component.

INFORMATION

If the METADATA block contains the line INFORMATION, the number of information
keys is read from the INFORMATION line and vtkInformation data that follows is
parsed. The general form of a single valued information entry is:

NAME [key name] LOCATION [key location (e.g. class name)]
DATA [value]

A vector information key is generally represented as:

NAME [key name] LOCATION [key location (e.g. class name)]
DATA [vector length] [value0] [value1] [value2] ...

The exception is a string vector, which contains encoded entries separated by
newlines.

Specific examples of supported key types:

vtkInformationDoubleKey

NAME Double LOCATION TestKey
DATA 1

vtkInformationDoubleVectorKey

NAME DoubleVector LOCATION TestKey
DATA 3 1 90 260

vtkInformationIdTypeKey

NAME IdType LOCATION TestKey
DATA 5

vtkInformationStringKey

NAME String LOCATION TestKey
DATA Test%20String!%0ALine2

vtkInformationIntegerKey

NAME Integer LOCATION TestKey
DATA 408

vtkInformationIntegerVectorKey

NAME IntegerVector LOCATION TestKey
DATA 3 1 5 45

vtkInformationStringVectorKey

NAME StringVector LOCATION TestKey
DATA 3
First
Second%20(with%20whitespace!)
Third%20(with%0Anewline!)

vtkInformationUnsignedLongKey

NAME UnsignedLong LOCATION TestKey
DATA 9

 VTK XML Reader/Writer Information Format

VTK XML Reader/Writer Information Format

Overview

The vtk xml data file readers / writers store certain vtkInformation
entries that are set on vtkAbstractArray’s GetInformation() object. Support
is currently limited to numeric and string information keys, both single- and
vector-valued. Only the information objects attached to arrays are written/read.

Array Information

Array information is embedded in the <DataArray> XML element as a series of
<InformationKey> elements. The required attributes name and location
specify the name and location strings associated with the key – for instance,
the vtkDataArray::UNITS_LABEL() key has name="UNITS_LABEL" and
location="vtkDataArray". The length attribute is required for vector keys.

<DataArray [...]>
 <InformationKey name="KeyName" location="KeyLocation" [length="N"]>
 [...]
 </InformationKey>
 <InformationKey [...]>
 [...]
 </InformationKey>
 [...]
</DataArray>

Specific examples of supported key types:

vtkInformationDoubleKey

<InformationKey name="Double" location="XMLTestKey">
 1
</InformationKey>

vtkInformationDoubleVectorKey

<InformationKey name="DoubleVector" location="XMLTestKey" length="3">
 <Value index="0">
 1
 </Value>
 <Value index="1">
 90
 </Value>
 <Value index="2">
 260
 </Value>
</InformationKey>

vtkInformationIdTypeKey

<InformationKey name="IdType" location="XMLTestKey">
 5
</InformationKey>

vtkInformationStringKey

<InformationKey name="String" location="XMLTestKey">
 Test String!
Line2
</InformationKey>

vtkInformationIntegerKey

<InformationKey name="Integer" location="XMLTestKey">
 408
</InformationKey>

vtkInformationIntegerVectorKey

<InformationKey name="IntegerVector" location="XMLTestKey" length="3">
 <Value index="0">
 1
 </Value>
 <Value index="1">
 5
 </Value>
 <Value index="2">
 45
 </Value>
</InformationKey>

vtkInformationStringVectorKey

<InformationKey name="StringVector" location="XMLTestKey" length="3">
 <Value index="0">
 First
 </Value>
 <Value index="1">
 Second (with whitespace!)
 </Value>
 <Value index="2">
 Third (with
newline!)
 </Value>
</InformationKey>

vtkInformationUnsignedLongKey

<InformationKey name="UnsignedLong" location="XMLTestKey">
 9
</InformationKey>

 Field Data as Time Meta-Data in VTK XML File Formats

Field Data as Time Meta-Data in VTK XML File Formats

As of VTK 8.2, VTK XML readers and writers support embedding time
meta-data as a field array. This is demonstrated best with an example:

<VTKFile type="PolyData" version="1.0" byte_order="LittleEndian" header_type="UInt64">
 <PolyData>
 <FieldData>
 <DataArray type="Float64" Name="TimeValue" NumberOfTuples="1">1.24
 </DataArray>
 </FieldData>
 ...
</VTKFile>

Here TimeValue is a regular double precision array that has a single value of 1.24.
The XML readers will treat this array in a special way. When they encounter this array
during the meta-data stage (RequestInformation()), they will read the value from
this array and generate a vtkStreamingDemandDrivenPipeline::TIME_STEPS() key
in the output information containing this value.

In addition, the XML writers will generate a field array of name TimeValue in the
output, if they encounter time value in their input (vtkDataObject::DATA_TIME_STEP()).
This is done even if the data does not have a TimeValue array. Furthermore, even such
an array exists, it will be replaced with one that contains the value from
vtkDataObject::DATA_TIME_STEP() to make sure that the value is consistent with the
pipeline value.

This change may appear pointless on its own as a single time value is not very useful.
Its main use is when reading file series as it is done by ParaView’s file (time) series
readers.

 MomentInvariants Architecture

MomentInvariants Architecture

Rotation-invariant Pattern Detection

For pattern detection, the orientation of the pattern is usually not known a priory. The process should not be decelerated more than necessary while the pattern detection algorithm looks for all possible rotated copies of the template. Therefore, rotation invariance is a critical requirement.
Moment invariants can achieve rotation invariance without the need for point to point correlations, which are difficult to generate in smooth fields. For an introduction, we recommend

Flusser, J., Suk, T., & Zitová, B. (2016). 2D and 3D Image Analysis by Moments. John Wiley & Sons.

We have implemented the prototypes of two vtk filters that together are able to perform pattern detection. The algorithm, which we used, is described in

Bujack, R., & Hagen, H. (2017). Moment Invariants for Multi-Dimensional Data. In Modeling, Analysis, and Visualization of Anisotropy (pp. 43-64). Springer, Cham.

The first filter computes the moments and the second one performs the normalization based on the given pattern and computes the similarity. They are able to handle two- and three-dimensional scalar, vector, and matrix fields in the format of a vtkImageData. The architecture with inputs and outputs and their types can be found in the following figure.

[image: The architectiure of the moments module.]

The architecture illustrated with example images is shown the following figure.

[image: The architectiure of the moments module.]

Extensions

The MomentInvariants module contains actually a bunch of extra algorithms and helper classes.

The class vtkMomentsHelper provides functions for the moments computation that will be needed by vtkComputeMoments and vtkMomentInvariants.

The class vtkMomentsTensor provides the functionality to treat tensors of arbitrary dimension and rank. It supports addition, outer product, and contractions.

The algorithm vtkSimilarityBalls is a filter that takes the similarity field as produced by vtkMomentInvariants and a grid of type vtkImageData. It computes the local maxima in space plus scale and produces the output localMaxSimilarity that contains the similarity value together with the corresponding radius at the maxima. All other points are zero.
For further visualization, it also produces two output fields that encode the radius through drawing a solid ball or a hollow sphere around those places.
The second input, i.e. the grid, steers the resolution of the balls. It is helpful if its extent is a multiple of the first input’s. Then, the circles are centered nicely.
The spheres/circles are good for 2D visualizations, because they can be laid over a visualization of the field.
The balls are good for 3D volume rendering or steering of the seeding of visualization elements.
The 2D visualization is described in

Bujack, R., Hotz, I., Scheuermann, G., & Hitzer, E. (2015). Moment invariants for 2D flow fields via normalization in detail. IEEE transactions on visualization and computer graphics, 21(8), 916-929

and the 3D counterpart in

Bujack, R., Kasten, J., Hotz, I., Scheuermann, G., & Hitzer, E. (2015, April). Moment invariants for 3D flow fields via normalization. In Visualization Symposium (PacificVis), 2015 IEEE Pacific (pp. 9-16). IEEE.

A schematic overview of the use of vtkSimilarityBalls with example images is given in the following Figure.

[image: The extended architectiure of the moments module.]

The algorithm vtkReconstructFromMoments is a filter that takes the momentData as produced by vtkComputeMoments or vtkMomentInvariants and a grid.
It reconstructs the function from the moments, just like from the coefficients of a Taylor series.
For the reconstruction, we need to orthonormalize the moments first. Then, we multiply the coefficients with their corresponding basis function and add them up.
There are in principal three applications.
First, if we put in the moments of the pattern and the grid of the pattern, we see which parts of the template the algorithm can actually grasp with the given order during the pattern detection. Tte following Figure shows images created using moments up to second order.

[image: The extended architectiure of the moments module.]

Second, if we put in the normalized moments of the pattern and the grid of the pattern, we can see how the standard position looks like. There might be several standard positions due to the ambiguity of the eigenvectors that differ by rotations of 180 degree and possibly a reflection. The algorithm will use the first one. In the previous Figure, the reflection along the x-axis would also be a standard position.

Third, if we put in the moments of the field and the original field data, we can see how well the subset of points, on which the moments were computed, actually represents the field. The following Figure depicts an example using a 16 x 16 coarse grid and moments up to second order.

[image: The extended architectiure of the moments module.]

 Developer’s Guide

Developer’s Guide

This guide is a comprehensive resource for contributing to VTK – for both new and experienced contributors. We welcome your contributions to VTK !

Contents

	Develop

	Regression Testing

	Adding Tests

	Dashboard Scripts

	Updating Third Party Projects

	Imported Third Party Projects

	Deprecation Process

	Release Process

	Coding Conventions

	About this documentation

Quick Start Guide

This is a quick start guide so that you can start contributing to VTK easily.
To understand the process more deeply, you can jump to the workflow
section.

Initial Setup

Before you begin, perform your initial setup using the following steps:

	Register GitLab Access [https://gitlab.kitware.com/users/sign_in] to create an account and select a user name.

	Fork VTK [https://gitlab.kitware.com/vtk/vtk/-/forks/new] into your user’s namespace on GitLab.

	Follow the download instructions to create a
local clone of the main VTK repository:

$ git clone --recursive https://gitlab.kitware.com/vtk/vtk.git VTK

The main repository will be configured as your origin remote.

	Run the developer setup script [https://gitlab.kitware.com/vtk/vtk/Utilities/SetupForDevelopment.sh] to prepare your VTK work tree and
create Git command aliases used below:

$./Utilities/SetupForDevelopment.sh

This will prompt you for your GitLab username and configure a remote
called gitlab to refer to your fork. It will also setup a data directory for you.
No need to do anything else.

Development

Create a local branch for your changes:

git checkout -b your_branch

Make the needed changes in VTK and use git locally to create logically separated commits.
There is no strict requirements regarding git commit messages syntax but a good rule of
thumb to follow is: General domain: reason for change, General domain being a class, a module
, a specific system like build or CI.

git commit -m "General domain: Short yet informative reason for the change"

Build VTK following the guide and fix any build warnings or issues that arise and seems related to your changes.

Add/Improve tests in order to ensure your changes are tested. Take a look in the Testing directory
of the module you are making changes in to see how the tests are currently built and try to follow the same paradigms.
Run your test locally from your build directory and check that they pass:

cmake . && cmake --build .
ctest -VV -R yourTest

Upload

Push your changes to the GitLab fork that you created in the initial setup stage:

git push gitlab

Data

If your test uses new data or baselines, you will need to add it to your fork.
For data, add the file names to the list in your module yourModule/Testing/CMakeLists.txt and drop the files in Testing/Data/.
For baselines, just drop the file in yourModule/Testing/Data/Baselines and run the following commands from your build directory:

cmake . && cmake --build .

This will transform your files into .sha512 files. Check your test is passing by running from your build directory:

ctest -VV -R yourTest

If it passes, add these .sha512 files and commit them, then push with:

git gitlab-push

Create a Merge Request

Once you are happy with the state of your development on your fork, the next step is to create a merge request back into the main VTK repository.

Open [https://gitlab.kitware.com/username/vtk/-/merge_requests/new] in a browser, select your branch in the list and create a Merge Request against master.

In the description, write an informative explanation of your added features or bugfix. If there is an associated issue, link it with the #number in the description.

Tag some VTK maintainers in the description to ensure someone will see it, see here for the complete list.

Robot Checks

Once the MR is created, our GitLab robot will check multiple things and make automated suggestions. Please read them and try to follow the instructions.
The two standard suggestions are related to formatting errors and adding markdown changelog.

To fix the formatting, just add a comment containing:

Do: reformat

Then, once the robot has fixed the formatting, fetch the changes locally (this will remove any local changes to your branch)

git fetch gitlab
git reset --hard gitlab/your_branch

To fix the changelog warning, create, add, commit and push a markdown (.md) file in Documentation/release/dev folder.
In this file, write a small markdown paragraph describing the development.
See other .md files in this folder for examples. It may look like this:

Development title

A new feature that does this and that has been introduced.
This specific issue has been fixed in this particular way.

Suggestions and best practices on writing the changelog can be found in the Documentation/release/dev/0-sample-topic.md file.
This is an optional step but recommended to do for any new feature and user facing issues.

Reviews

VTK maintainers and developers will review your MR by leaving comments on it. Try to follow their instructions and be patient.
It can take a while to get a MR into mergeable form. This is a mandatory step, and it is absolutely normal to get change requests.

Review comments can be resolved, please resolve a comment once you’ve taken it into account and pushed related changes
or once you’ve reached an agreement with the commenter that nothing should be changed.

Once a reviewer is happy with your changes, they will add a +X comment. You need at least one +2 or higher to consider
merging the MR. Two +1s do not equal a +2. If a reviewer leave a -1 comment, please discuss with them to understand what is the issue and how it could be fixed.

Once you have pushed new changes, please tag reviewers again so that they can take a look.
If you do not tag reviewers, they may not know to revisit your changes. Do not hesitate to tag them and ask for help.

Continuous Integration

Before merging a MR, the VTK continuous integration (CI) needs to run and be green.
For CI to be functional, please read and follow this guide [https://discourse.vtk.org/t/the-ultimate-how-to-make-ci-work-with-my-fork-guide/7581].

To run the CI:

	Click on the Pipelines Tab

	Click on the last pipeline status badge

	Press the Play all manual arrows on top of the Build and Test stages

Do not hesitate to tag a VTK developer for help if needed.

You then need to wait for CI to run, it can take a while, up to a full day.

A successful CI should be fully green. If that is so, then your MR is ready !

If not, you need to analyse the issues and fix them. Recover the failure information this way:

Click on the pipelines tab, then on the last status badge, then on the cdash-commit job.
It will take you to the related CDash report where you will find all information.

Everything in the CDash report should be green except the NotRun and Time column. Take a look into each issue and fix them locally.
If there are issues in the pipeline but nothing is visible in the CDash, please ask a maintainer for help to figure out if anything should be done.
You can always try to rerun the failed job by clicking on the arrow of the job in the pipeline.

Once you have fixed some issues locally, commit and push them to gitlab, run the CI again and tag reviewers again for follow-up reviews.

Merging

Once the MR has green CI and you have at least one +2, you can ask for a merge. Before that please make sure that:

	Your commit history is logical (or squashed into a single commit) and cleaned up with good commit messages

	You are rebased on a fairly recent version of master

If that is not the case, please rebase on master using the following commands:

git fetch origin
git rebase -i origin/master
git push gitlab -f

The interactive rebase will let you squash commits, reorganize commits and edit commit messages.

After the force push, make sure to run CI again.

Once all is done, tag a VTK developer so that they can perform the merge command.

Congratulations ! You just contributed to VTK !

 Develop

Develop

This page documents how to develop VTK using GitLab [https://gitlab.kitware.com] and Git [https://git-scm.com].
See the README for more information.

Git is an extremely powerful version control tool that supports many
different “workflows” for individual development and collaboration.
Here we document procedures used by the VTK development community.
In the interest of simplicity and brevity we do not provide an
explanation of why we use this approach.

For a quickstart guide see here

Workflow

VTK development uses a branchy workflow [https://public.kitware.com/Wiki/Git/Workflow/Topic] based on topic branches.
Our collaboration workflow consists of three main steps:

	Local Development:

	Update

	Create a Topic

	Code Review (requires GitLab Access [https://gitlab.kitware.com/users/sign_in]):

	Share a Topic

	Create a Merge Request

	Review a Merge Request

	Revise a Topic

	Integrate Changes:

	Merge a Topic (requires permission in GitLab)

	Delete a Topic

Update

	Update your local master branch:

$ git checkout master
$ git pull

	Optionally push master to your fork in GitLab:

$ git push gitlab master

to keep it in sync. The git gitlab-push script used to
Share a Topic below will also do this.

Create a Topic

All new work must be committed on topic branches.
Name topics like you might name functions: concise but precise.
A reader should have a general idea of the feature or fix to be developed given just the branch name.

	To start a new topic branch:

$ git fetch origin

	For new development, start the topic from origin/master:

$ git checkout -b my-topic origin/master

For release branch fixes, start the topic from origin/release, and
by convention use a topic name starting in release-:

$ git checkout -b release-my-topic origin/release

If backporting a change, you may rebase the branch back onto
origin/release:

$ git checkout -b release-my-topic my-topic
$ git rebase --onto origin/release origin/master

Alternatively, for more targeted or aggregate backports, use the -x flag
when performing git cherry-pick so that a reference to the original
commit is added to the commit message:

$ git checkout -b release-my-topic origin/release
$ git cherry-pick -x $hash_a $hash_b $hash_c
$ git cherry-pick -x $hash_d $hash_e $hash_f

	Edit files and create commits (repeat as needed):

$ edit file1 file2 file3
$ git add file1 file2 file3
$ git commit

Caveats:

	To add data follow these instructions.

	If your change modifies third party code, see Updating Third Party Projects.

	To deprecate APIs, see Deprecation Process.

Guidelines for Commit logs

Remember to motivate & summarize. When writing commit logs, make sure
that there is enough information there for any developer to read and glean
relevant information such as:

	Is this change important and why?

	If addressing an issue, which issue(s)?

	If a new feature, why is it useful and/or necessary?

	Are there background references or documentation?

A short description of what the issue being addressed and how will go a long way
towards making the log more readable and the software more maintainable.

Style guidelines for commit logs are as follows:

	Separate subject from body with a blank line

	Limit the subject line to 60 characters

	Capitalize the subject line

	Use the imperative mood in the subject line e.g. “Refactor foo” or “Fix Issue #12322”,
instead of “Refactoring foo”, or “Fixing issue #12322”.

	Wrap the body at 80 characters

	Use the body to explain what and why and if applicable a brief how.

Share a Topic

When a topic is ready for review and possible inclusion, share it by pushing
to a fork of your repository in GitLab. Be sure you have registered and
signed in for GitLab Access [https://gitlab.kitware.com/users/sign_in] and created your fork by visiting the main
VTK GitLab [https://gitlab.kitware.com/vtk/vtk] repository page and using the “Fork” button in the upper right.

	Checkout the topic if it is not your current branch:

$ git checkout my-topic

	Check what commits will be pushed to your fork in GitLab:

$ git prepush

	Push commits in your topic branch to your fork in GitLab:

$ git gitlab-push

Notes:

	If you are revising a previously pushed topic and have rewritten the
topic history, add -f or --force to overwrite the destination.

	If the topic adds data see this note.

	The gitlab-push script also pushes the master branch to your
fork in GitLab to keep it in sync with the upstream master.

The output will include a link to the topic branch in your fork in GitLab
and a link to a page for creating a Merge Request.

Create a Merge Request

(If you already created a merge request for a given topic and have reached
this step after revising it, skip to the next step.)

Visit your fork in GitLab, browse to the “Merge Requests” link on the
left, and use the “New Merge Request” button in the upper right to
reach the URL printed at the end of the previous step.
It should be of the form:

https://gitlab.kitware.com/<username>/vtk/-/merge_requests/new

Follow these steps:

	In the “Source branch” box select the <username>/vtk repository
and the my-topic branch.

	In the “Target branch” box select the vtk/vtk repository and
the master branch. It should be the default.

If your change is a fix for the release branch, you should still
select the master branch as the target because the change needs
to end up there too.

For other release branches (e.g., release-6.3), merge requests should
go directly to the branch (they are not tied with master in our
workflow).

	Use the “Compare branches” button to proceed to the next page
and fill out the merge request creation form.

	In the “Title” field provide a one-line summary of the entire
topic. This will become the title of the Merge Request.

Example Merge Request Title:

Wrapping: Add Java 1.x support

	In the “Description” field provide a high-level description
of the change the topic makes and any relevant information about
how to try it.

	Use @username syntax to draw attention of specific developers.
This syntax may be used anywhere outside literal text and code
blocks. Or, wait until the next step
and add comments to draw attention of developers.

	If your change is a fix for the release branch, indicate this
so that a maintainer knows it should be merged to release.

	Optionally use a fenced code block with type message to specify
text to be included in the generated merge commit message when the
topic is merged.

Example Merge Request Description:

This branch requires Java 1.x which is not generally available yet.
Get Java 1.x from ... in order to try these changes.

```message
Add support for Java 1.x to the wrapping infrastructure.
```

Cc: @user1 @user2

	The “Assign to”, “Milestone”, and “Labels” fields
may be left blank.

	Use the “Submit merge request” button to create the merge request
and visit its page.

Guidelines for Merge Requests

Remember to motivate & summarize. When creating a merge request, consider the
reviewers and future perusers of the software. Provide enough information to motivate
the merge request such as:

	Is this merge request important and why?

	If addressing an issue, which issue(s)?

	If a new feature, why is it useful and/or necessary?

	Are there background references or documentation?

Also provide a summary statement expressing what you did and if there is a choice
in implementation or design pattern, the rationale for choosing a certain path.
Notable software or data features should be mentioned as well.

A well written merge request will motivate your reviewers, and bring them up
to speed faster. Future software developers will be able to understand the
reasons why something was done, and possibly avoid chasing down dead ends,
Although it may take you a little more time to write a good merge request,
you’ll likely see payback in faster reviews and better understood and
maintainable software.

Review a Merge Request

Add comments mentioning specific developers using @username syntax to
draw their attention and have the topic reviewed. After typing @ and
some text, GitLab will offer completions for developers whose real names
or user names match.

Here is a list of developers usernames and their specific area of
expertise. A merge request without a developer tagged has very low chance
to be merged in a reasonable timeframe.

	@mwestphal: Qt, filters, data Model, widgets, parallel, anything else.

	@charles.gueunet: filters, data model, SMP, events, pipeline, computational geometry, distributed algorithms.

	@kmorel: General VTK Expertise, VTK-m accelerators.

	@demarle: Ray tracing.

	@will.schroeder: algorithms, computational geometry, filters, SPH, SMP, widgets, point cloud, spatial locators.

	@sujin.philip: VTK-m Accelerators, SMP, DIY.

	@yohann.bearzi: filters, data model, HTG, computational geometry, algorithms.

	@sebastien.jourdain: web, WebAssembly, Python, Java.

	@allisonvacanti: VTK-m, vtkDataArray, vtkArrayDispatch, vtk::Range, data model, text rendering.

	@sankhesh: volume rendering, Qt, OpenGL, widgets, vtkImageData, DICOM, VR.

	@ben.boeckel: CMake, module system, third-parties.

	@cory.quammen: readers, filters, data modeling, general usage, documentation.

	@seanm: macOS, Cocoa, cppcheck, clang.

	@spiros.tsalikis: filters, SMP, computational geometry.

	@thomas.galland: readers, filters, selection, VR.

If you would like to be included in this list, juste create a merge request.

Human Reviews

Reviewers may add comments providing feedback or to acknowledge their
approval. When a human reviewers suggest a change, please take it into
account or discuss your choices with the reviewers until an agreement
is reached. At this point, please resolve the discussion by clicking
on the dedicated button.

When all discussion have been addressed, the reviewers will either do
another pass of comment or acknowledge their approval in some form.

Please be swift to address or discuss comments, it will increase
the speed at which your changes will be merged.

Comments Formatting

Comments use GitLab Flavored Markdown [https://gitlab.kitware.com/help/markdown/markdown] for formatting. See GitLab
documentation on Special GitLab References [https://gitlab.kitware.com/help/markdown/markdown#special-gitlab-references] to add links to things
like merge requests and commits in other repositories.

Lines of specific forms will be extracted during
merging and included as trailing lines of the
generated merge commit message.

A commit message consists of up to three parts which must be specified
in the following order: the leading line, then
middle lines, then trailing lines.
Each part is optional, but they must be specified in this order.

Leading Line

The leading line of a comment may optionally be exactly one of the
following votes followed by nothing but whitespace before the end
of the line:

	-1 or :-1: indicates “the change is not ready for integration”.

	+1 or :+1: indicates “I like the change”.
This adds an Acked-by: trailer to the merge commit message.

	+2 indicates “the change is ready for integration”.
This adds a Reviewed-by: trailer to the merge commit message.

	+3 indicates “I have tested the change and verified it works”.
This adds a Tested-by: trailer to the merge commit message.

Middle Lines

The middle lines of a comment may be free-form GitLab Flavored Markdown [https://gitlab.kitware.com/help/markdown/markdown].

Trailing Lines

Zero or more trailing lines in the last section of a comment may
each contain exactly one of the following votes followed by nothing
but whitespace before the end of the line:

	Rejected-by: me means “The change is not ready for integration.”

	Acked-by: me means “I like the change but defer to others.”

	Reviewed-by: me means “The change is ready for integration.”

	Tested-by: me means “I have tested the change and verified it works.”

Each me reference may instead be an @username reference or a full
Real Name <user@domain> reference to credit someone else for performing
the review. References to me and @username will automatically be
transformed into a real name and email address according to the user’s
GitLab account profile.

Fetching Changes

One may fetch the changes associated with a merge request by using
the git fetch command line shown at the top of the Merge Request
page. It is of the form:

$ git fetch https://gitlab.kitware.com/$username/vtk.git $branch

This updates the local FETCH_HEAD to refer to the branch.

There are a few options for checking out the changes in a work tree:

	One may checkout the branch:

$ git checkout FETCH_HEAD -b $branch

or checkout the commit without creating a local branch:

$ git checkout FETCH_HEAD

	Or, one may cherry-pick the commits to minimize rebuild time:

$ git cherry-pick ..FETCH_HEAD

Robot Reviews

The “Kitware Robot” automatically performs basic checks on the commits
and adds a comment acknowledging or rejecting the topic. This will be
repeated automatically whenever the topic is pushed to your fork again.
A re-check may be explicitly requested by adding a comment with a single
trailing line:

Do: check

A topic cannot be merged until the automatic review
succeeds.

Continuous Integration

VTK uses GitLab CI [https://gitlab.kitware.com/help/ci/examples/README.md] to
test its functionality. CI results are published to CDash and a link is added
to the External stage of the CI pipeline by @kwrobot. Developers and
reviewers should start jobs which make sense for the change using the following
methods:

	The first thing to check is that CI is enabled in your fork of VTK. If you
see a CI/CD item on the left sidebar in your fork’s project, you’re all
set. If not, go to Settings > General and enable CI/CD for “Everyone With
Access” under the “Visibility, project features, permissions” section.

	Merge request authors should visit their merge request’s pipeline and click
the “Play” button on one or more jobs manually. If the merge request has the
“Allow commits from members who can merge to the target branch” check box
enabled, VTK developers and maintainers may use the “Play” button as well.
This flag is visible when editing the merge request. When in doubt, it’s a
good idea to run a few jobs as smoke tests to catch early build/test failures
before a full CI run that would tie up useful resources. Note that, as detailed below,
a full CI run is necessary before the request can be merged.

	VTK Project developers may trigger CI on a merge request by adding a comment
with a command among the [trailing lines][#trailing-lines]:

Do: test

@kwrobot will add an award emoji to the comment to indicate that it was
processed and trigger all jobs that are awaiting manual interaction in the
merge request’s pipelines.

The Do: test command accepts the following arguments:

	--named <regex> or -n <regex>: Trigger jobs matching <regex> anywhere
in their name. Job names may be seen on the merge request’s Pipelines tab.

	--stage <stage> or -s <stage>: Only affect jobs in a given stage. Stage
names may be seen on the merge request’s Pipelines tab. Note that the stage
names are determined by what is in the .gitlab-ci.yml file and may be
capitalized in the web page, so lowercasing the webpage’s display name for
stages may be required.

	--action <action> or -a <action>: The action to perform on the jobs.
Possible actions:

	manual (the default): Start jobs awaiting manual interaction.

	unsuccessful: Start or restart jobs which have not completed
successfully.

	failed: Restart jobs which have completed, but without success.

	completed: Restart all completed jobs.

If the merge request topic branch is updated by a push, a new manual trigger
using one of the above methods is needed to start CI again.

Before the merge, all the jobs, including tidy, must be run and reviewed, see below.

If you have any question about the CI process, do not hesitate to ask a CI maintainer:

	@ben.boeckel

	@mwestphal

Reading CI Results

Reading CI results is a very important part of the merge request process
and is the responsibility of the author of the merge request, although reviewers
can usually help. There are two locations to read the results, GitLab CI and CDash.
Both should be checked and considered clean before merging.

To read GitLab CI result, click on the Pipelines tab then on the last pipeline.
It is expected to be fully green. If there is a yellow warning job, please consult CDash.
If there is a red failed job, click on it to see the reason for the failure.
It should clearly appears at the bottom of the log.
Possible failures are:

	Timeouts: please rerun the job and report to CI maintainers

	Memory related errors: please rerun the job and report to CI maintainers

	Testing errors: please consult CDash for more information, usually an issue in your code

	Non disclosed error: please consult CDash, usually a build error in your code

To read CDash results, on the job page, click on the “cdash-commit” external job which
will open the commit-specific CDash page. Once it is open, make sure to show “All Build” on the bottom left of the page.
CDash results displays error, warnings, and test failures for all the jobs.
It is expected to be green except for the “NoRun” and “Test Timings” categories, which can be ignored.

	Configure warnings: there must not be any; to fix before the merge

	Configure errors: there must not be any; to fix before the merge

	Build warnings: there must not be any; to fix before the merge. If unrelated to your code, report to CI maintainers.

	Build errors: there must not be any; to fix before the merge. If unrelated to your code, rerun the job and report to CI maintainers.

	NotRun test : ignore; these tests have self-diagnosed that they are not relevant on the testing machine.

	Testing failure: there should not be any, ideally, to fix before the merge. If unrelated to your code, check the test history to see if it is a flaky test and report to CI maintainers.

	Testing success: if your MR creates or modifies tests, please check that your test are listed there.

	Test timings errors: can be ignored, but if it is all red, you may want to report it to CI maintainers.

To check the history of a failing test, on the test page, click on the “Summary” link to see a summary of the test for the day,
then click on the date controls on the top of the page to go back in time.
If the test fails on other MRs or on master, this is probably a flaky test, currently in the process of being fixed or excluded.
A flaky test can be ignored.

As a reminder, here is our current policy regarding CI results.
All the jobs must be run before merging, including tidy.
Configure warnings and errors are not acceptable to merge and must be fixed.
Build warning and errors are not acceptable to merge and must be fixed.
Testing failure should be fixed before merging but can be accepted if a flaky test has been clearly identified.

Revise a Topic

If a topic is approved during GitLab review, skip to the
next step. Otherwise, revise the topic
and push it back to GitLab for another review as follows:

	Checkout the topic if it is not your current branch:

$ git checkout my-topic

	To revise the 3rd commit back on the topic:

$ git rebase -i HEAD~3

(Substitute the correct number of commits back, as low as 1.)
Follow Git’s interactive instructions.

	Return to the above step to share the revised topic.

Merge a Topic

Once review has concluded that the MR topic is ready for integration
(at least one +2), authorized developers may add a comment with a single
trailing line:

Do: merge

in order for your change to be merged into the upstream repository.

If your merge request has been already approved by developers
but not merged yet, do not hesitate to tag an authorized developer
and ask for a merge.

By convention, do not request a merge if any -1 or Rejected-by:
review comments have not been resolved and superseded by at least
+1 or Acked-by: review comments from the same user.

The Do: merge command accepts the following arguments:

	-t <topic>: substitute <topic> for the name of the MR topic
branch in the constructed merge commit message.

Additionally, Do: merge extracts configuration from trailing lines
in the MR description (the following have no effect if used in a MR
comment instead):

	Backport: release[:<commit-ish>]: merge the topic branch into
the release branch to backport the change. This is allowed
only if the topic branch is based on a commit in release already.
If only part of the topic branch should be backported, specify it as
:<commit-ish>. The <commit-ish> may use git rev-parse [https://git-scm.com/docs/git-rev-parse]
syntax to reference commits relative to the topic HEAD.
See additional backport instructions [https://gitlab.kitware.com/utils/git-workflow/-/wikis/Backport-topics] for details.
For example:

	Backport: release
Merge the topic branch head into both release and master.

	Backport: release:HEAD~1^2
Merge the topic branch head’s parent’s second parent commit into
the release branch. Merge the topic branch head to master.

	Topic-rename: <topic>: substitute <topic> for the name of
the MR topic branch in the constructed merge commit message.
It is also used in merge commits constructed by Do: stage.
The -t option to a Do: merge command overrides any topic
rename set in the MR description.

Merge Success

If the merge succeeds the topic will appear in the upstream repository
master branch and the Merge Request will be closed automatically.

Merge Failure

If the merge fails (likely due to a conflict), a comment will be added
describing the failure. In the case of a conflict, fetch the latest
upstream history and rebase on it:

$ git fetch origin
$ git rebase origin/master

(If you are fixing a bug in the latest release then substitute
origin/release for origin/master.)

Return to the above step to share the revised topic.

Delete a Topic

After a topic has been merged upstream the Merge Request will be closed.
Now you may delete your copies of the branch.

	In the GitLab Merge Request page a “Remove Source Branch”
button will appear. Use it to delete the my-topic branch
from your fork in GitLab.

	In your work tree checkout and update the master branch:

$ git checkout master
$ git pull

	Delete the local topic branch:

$ git branch -d my-topic

The branch -d command works only when the topic branch has been
correctly merged. Use -D instead of -d to force the deletion
of an unmerged topic branch (warning - you could lose commits).

 Regression Testing

Regression Testing

Testing and dashboard submitter setup

Regression testing in VTK takes the form of a set of programs, that are included in the VTK source code and enabled in builds configured through CMake to have the VTK_BUILD_TESTING flag turned on. Test pass/fail results are returned to CTest via a test program’s exit code. VTK contains helper classes that do specific checks, such as comparing a produced image against a known valid one, that are used in many of the regression tests. Test results may be submitted to Kitware’s CDash instance, were they will be gathered and displayed at http://open.cdash.org/index.php?project=VTK

All proposed changes to VTK are automatically tested on Windows, Mac and Linux machines. All changes that are merged into the master branch are subsequently tested again by more rigorously configured Windows, Mac and Linux continuous dashboard submitters. After 9PM Eastern Time, the master branch is again tested by a wider set of machines and platforms. These results appear in the next day’s page.

At each step in the code integration path the developers who contribute and merge code are responsible for checking the test results to look for problems that the new code might have introduced. Plus signs in CDash indicate newly detected problems. Developers can correlate problems with contributions by logging in to CDash. Submissions that contain a logged in developer’s change are highlighted with yellow dots.

It is highly recommended that developers test changes locally before submitting them. To run tests locally:

	Configure with VTK_BUILD_TESTING set ON

The exact set of tests created depends on many configuration options. Tests in non-default modules are only tested when those modules are purposefully enabled, the smoke tests described in the Coding Style section above are enabled only when the python or Tcl interpreter is installed, tests written in wrapped languages are only enabled when wrapping is turned on, etc.

	Build.

VTK tests are only available from the build tree.

	Run ctest at the command line in the build directory or make the TESTING target in Visual Studio.

As ctest runs the tests it prints a summary. You should expect 90% of the tests or better to pass if your VTK is configured correctly. Detailed results (which are also printed if you supply a –V argument to ctest) are put into the Testing/Temporary directory. The detailed results include the command line that ctest uses to spawn each test. Other particularly useful arguments are:

--R TestNameSubstringToInclude to choose tests by name

--E TestNameSubstringToExclude to reject tests by name

--I start,stop,step to run a portion of the tests

--j N to run N tests simultaneously.

Dashboard submitting machines work at a slightly higher level of abstraction that adds the additional stages of downloading, configuring and building VTK before running the tests, and submitting all results to CDash afterward. With a build tree in place you can run “ctest –D Experimental” to run at this level and submit the results to the experimental section of the VTK dashboard or “ctest –M Experimental -T Build –T Submit” etc to pick and choose from among the stages. When setting up a test submitter machine one should start with the experimental configuration and then, once the kinks are worked out, promote the submitter to the Nightly section.

The volunteer machines use cron or Windows task scheduler to run CMake scripts that configure a VTK build with specific options, and then run ctest –D as above. Within CDash, you can see each test machine’s specific configuration by clicking on the Advanced View and then clicking on the note icon in the Build Name column. This is a useful starting point when setting up a new submitter. It is important that each submitter’s dashboard script include the name of the person who configures or maintains the machine so that, when the machine has problems, the dashboard maintainer can address it.

For details about the Continuous Integration infrastructure hosted at Kitware see here.

Run-time environment of tests using ctest

When running a test using ctest, an extra empty environment variable is set: VTK_TESTING. One
can catch this environment variable and know that the code is executed under ctest. In particular,
VTK_TESTING is used to disable anti-aliasing in the constructor of vtkOpenGLRenderWindow for the
sake of making comparing image baseline more robust against graphics drivers discrepancies.

 Adding Tests

Adding Tests

This page documents how to add test data while developing VTK with Git [http://git-scm.com].
See the README for more information.

Setup

The workflow below depends on local hooks to function properly.
Follow the main developer setup instructions
before proceeding. In particular, run SetupForDevelopment.sh:

$./Utilities/SetupForDevelopment.sh

Workflow

Our workflow for adding data integrates with our standard Git
development process. Start by
creating a topic.
Return here when you reach the “edit files” step.

These instructions follow a typical use case of adding a new
test with a baseline image.

Writing new tests

All new features that go into VTK must be accompanied by tests. This ensures
that the feature works on many platforms and that it will continue to work as
VTK evolves.

Tests for the classes in each module of VTK are placed underneath the module’s
Testing/ subdirectory. Modules that the tests depend upon beyond
those that the module itself depends upon are declared with the TEST_DEPENDS
argument in the vtk.module file. Test executables are added to VTK’s build
system by naming them in the CMakeLists.txt files in each Testing/
directory. In those CMakeLists, standard add_executable() + add_test() command
pairs could be used, but the following macros defined in vtkModuleTesting.cmake
are preferable as they consolidate multiple tests together, participate in
VTK’s modular build scripts, and ensure consistency:

 Dashboard Scripts

Dashboard Scripts

This page documents how to use the VTK dashboard branch in Git [http://git-scm.com].
See the README for more information.

Using the Dashboard Scripts

The dashboard branch contains a dashboard client helper script.
Use these commands to track it:

$ mkdir -p ~/Dashboards/VTKScripts
$ cd ~/Dashboards/VTKScripts
$ git init
$ git remote add -t dashboard origin https://gitlab.kitware.com/vtk/vtk.git
$ git pull origin

The vtk_common.cmake script contains setup instructions in its
top comments.

Update the dashboard branch to get the latest version of this
script by simply running:

$ git pull

Here is a link to the script as it appears today: vtk_common.cmake [https://gitlab.kitware.com/vtk/vtk/-/tree/dashboard/vtk_common.cmake].

Changing the Dashboard Scripts

If you find bugs in the hooks themselves or would like to add new features,
the can be edited in the usual Git manner:

$ git checkout -b my-topic-branch

Make your edits, test it, and commit the result. Create a patch file with:

$ git format-patch origin/dashboard

And post the results in the Development [https://discourse.vtk.org/c/development] category in the VTK Discourse [https://discourse.vtk.org/] forum.

 Updating Third Party Projects

Updating Third Party Projects

When updating a third party project, any changes to the imported project
itself (e.g., the zlib/vtkzlib directory for zlib), should go through the
update.sh framework. This framework ensures that all patches to the third
party projects are tracked externally and available for (preferably) upstream
or other projects also embedding the library.

The Imported Third Party Projects document lists all projects grouped by import
method:

	update.sh framework

	git submodule

	copy

Important

Any updates to projects imported through the copy method should first be converted
over to the update.sh framework.

Updating a Project Upstream

Ideally, any code changes to third party code should first be submitted to the upstream
project using whatever workflow they prefer or require. Once that is done, the changes
can next be brought into VTK.

Updating the Import

Examine the project’s update.sh script and note the value of the repo= field.

If it’s referring to anything other than Kitware’s GitLab [https://gitlab.kitware.com/third-party],
then skip to the next section.

Otherwise, you first need to bring in the upstream changes into the third-party repo.
To do that, first fork and clone the repository named in the repo= field.
Then use git commands to bring in a copy of the upstream changes.

Here’s an example of updating the twisted project from tag 17.1.0 to 17.5.0:

$ cd twisted/
$ git checkout for/vtk
$ git fetch origin
$ git rebase --onto twisted-17.5.0 twisted-17.1.0
$ git push

When deciding what to rebase, you should generally use
the first commit in the current history that isn’t upstream.

Updating a Project into VTK

Bringing changes into VTK involves first deciding what to bring in. That is specified in the
update.sh script under the tag= field. Usually this is a for/vtk branch, but may
be master, or a tag, or any other Git reference.

If update.sh needs to be edited (the usual case), create a branch in the usual way
and commit just those changes.

Next, run the update.sh script as below. This will update the local copy of the project to
the version specified within.

$ cd vtk/ThirdParty/zlib
$ git checkout -b update_zlib_YYYY_MM_DD
$./update.sh

Appending the date to the branch name is not necessary, it just prevents any conflict in the
event of you doing this procedure multiple times and inadvertently using the same branch name.

(All this requires a Git 2.5 or higher due the worktree tool being used to
simplify the availability of the commits to the main checkout.)

Make sure to update the SPDX_DOWNLOAD_LOCATION in CMakeLists.txt to reflect
the changes made to the project.

Now you can review the change and make a merge request from the branch as normal.

Porting a Project

When converting a project, if there are any local patches, a project should be
created on Kitware’s GitLab [https://gitlab.kitware.com/third-party] to track it
(requests may be filed on the repo-requests [https://gitlab.kitware.com/third-party/repo-requests] repository). If the upstream
project does not use Git, it should be imported into Git (there may be existing
conversions available on Github already). The project’s description should
indicate where the source repository lives.

Once a mirror of the project is created, a branch named for/foo should be
created where patches for the foo project will be applied (i.e., for/vtk
for VTK’s patches to the project). Usually, changes to the build system, the
source code for mangling, the addition of .gitattributes files, and other
changes belong here. Functional changes should be submitted upstream (but may
still be tracked so that they may be used).

For mangling documentation, some guidelines [https://gitlab.kitware.com/third-party/repo-requests/-/wikis/mangling] are available.

The basic steps to import a project twisted based on the tag
twisted-17.1.0 looks like this:

$ git clone https://github.com/twisted/twisted.git
$ cd twisted/
$ git remote add kitware git@gitlab.kitware.com:third-party/twisted.git
$ git push -u kitware
$ git push -u kitware --tags
$ git checkout twisted-17.1.0
$ git checkout -b for/vtk
$ git push --set-upstream kitware for/vtk

Making the initial import involves filling out the project’s update.sh
script in its directory. The update-common.sh script
describes what is necessary, but in a nutshell, it is basically metadata such
as the name of the project and where it goes in the importing project.

The most important bit is the extract_source function which should subset
the repository. If all that needs to be done is to extract the files given in
the paths variable (described in the update-common.sh script), the
git_archive function may be used if the git archive tool generates a
suitable subset.

Make sure update.sh is executable before commit. On Unix, run:

 $ chmod u+x update.sh && git add -u update.sh

On Windows, run:

 $ git update-index --chmod=+x update.sh

Also add an entry to Imported Third Party Projects for the project, and
CMakeLists.txt and module.cmake as appropriate.

Process

The basic process involves a second branch where the third party project’s
changes are tracked. This branch has a commit for each time it has been
updated and is stripped to only contain the relevant parts (no unit tests,
documentation, etc.). This branch is then merged into the main branch as a
subdirectory using the subtree merge strategy.

Initial conversions will require a manual push by the maintainers since the
conversion involves a root commit which is not allowed under normal
circumstances. Please post a message on the VTK Discourse [https://discourse.vtk.org/] forum asking
for assistance if necessary.

 Imported Third Party Projects

Imported Third Party Projects

This page provides an overview of the imported third-party projects that VTK depends
on, grouped by import method.

The lists below references project directory name found in either the ThirdParty
or Utilities source sub-directory available in the VTK GitLab [https://gitlab.kitware.com/vtk/vtk] repository where additional
details may be found.

Using the update.sh framework

The following list shows third-party projects that were imported using the update.sh
framework described in the Updating Third Party Projects document:

	cgns

	cli11

	diy2

	doubleconversion

	eigen

	exodusII

	expat

	exprtk

	fast_float

	fides

	fmt

	freetype

	gl2ps

	glew

	h5part

	hdf5

	ioss

	jpeg

	jsoncpp

	kissfft

	KWIML

	KWSys

	libharu

	libproj

	libxml2

	loguru

	lz4

	lzma

	MetaIO

	mpi4py

	netcdf

	nlohmannjson

	ogg

	pegtl

	png

	pugixml

	sqlite

	theora

	tiff

	utf8

	verdict

	xdmf3

	zfp

	zlib

 Deprecation Process

Deprecation Process

This page documents how to deprecate an API and mark it as no longer necessary
for downstream consumers of VTK.

Deprecating classes and methods

Classes, functions, and methods may be deprecated using the deprecation macros.

#include "vtkDeprecation.h" // Include the macros.

// A deprecated class.
VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
class oldClass {
public:
 // A deprecated method.
 VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
 void oldMethod();
};

// A deprecated function.
VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
void oldFunction();

The X_Y_Z should be the newest macro available in the vtkDeprecation.h
header when the API is added.

Note that, unlike, the old VTK_LEGACY_REMOVE mechanism, the APIs are not
deleted. This does interfere with various kinds of deprecations.

	Changing the return type: Don’t do this. Use a new name for the
function/method.

	Deprecating macros: Use VTK_LEGACY_REMOVE. New macro APIs should be
highly discouraged.

Lifetime of deprecated APIs

Deprecated APIs should exist for at least one release with the deprecation
warning active. This gives consumers of VTK at least one cycle to notice the
deprecation and move off of it.

Upon branching for a release, master will soon after have all instances of
deprecated symbols removed.

Avoiding warnings within VTK

VTK is providing the deprecated symbols and as such may still use them in tests
or implementations. Since these generate warnings when compiling VTK itself,
classes which define deprecated symbols must suppress them.

Sources which continue to use the deprecated macros should add a comment to the
top of the source file to hide deprecation warnings in CI.

// Hide VTK_DEPRECATED_IN_X_Y_Z() warnings for this class.
#define VTK_DEPRECATION_LEVEL 0

If one already exists, please add another comment to it so that when deprecated
symbols are removed, it shows up in the search.

Using VTK_DEPRECATION_LEVEL

When using VTK, the VTK_DEPRECATION_LEVEL macro may be set to a version
number. APIs which have been deprecated after this point will not fire (as the
API is not deprecated as of the level requested). It should be defined using
the VTK_VERSION_CHECK(major, minor, patch) macro.

Note that APIs on the verge of deletion (those deprecated in at least one
release) will always raise deprecation warnings.

If not set, its value defaults to the current level of VTK.

 Release Process

Release Process

This document provides a high-level overview of the VTK release cycle and
associated release process.

Overview

We aim to release a new version of VTK every six months. However, we recognize
that this schedule is flexible. The project is funded and developed by many
different groups, each of which works towards their own particular sets of
features.

VTK releases are named with a Major.Minor.Patch scheme.

Branching Scheme

The overall release history resembles a skinny tree. Development proceeds along
the master branch, consisting of topic branches that start from and are merged
into master. Every so often, a release is tagged and branched from it.

In general, no work takes place on the release branch, other than the handful
of important patches that make up occasional patch releases.

Hint

Steps for contributing changes specific to the release branch are documented in
Create a Topic.

On the master branch, bug fixes and new features are continuously
developed. At release time, the focus temporarily shifts to producing
a library that is as stable and robust as possible.

Steps

The process for cutting releases is as follows:

	Announce upcoming release

A few weeks before the intended release branch, announce on VTK Discourse [https://discourse.vtk.org/]
that a new release is coming. This alerts developers to avoid making drastic
changes that might delay the release and gives them a chance to push important
and nearly completed features in time for the release. For example,
see this post [https://discourse.vtk.org/t/vtk-9-2-0-release-cycle/8149].

	Polish the dashboards and bug tracker by addressing outstanding issue and
coordinate effort with relevant developers.

Persistent compilation and regression test problems are fixed. Serious
outstanding bugs are fixed.

	Create a new issue [https://gitlab.kitware.com/vtk/vtk/-/issues/new] titled
Release X.Y.Z[rcN] based of the new-release [https://gitlab.kitware.com/vtk/vtk/-/blob/master/.gitlab/issue_templates/new-release.md?plain=1] template.

Important

Specific steps to create eiter the candidate or the official release are found
in the newly created issue.

	Perform the release candidate cycle

	Tag the release branch and create and publish release candidate
artifacts and change summaries.

	Announce the release candidate and request feedback from the
community, especially third-party packagers.

Hint

Bug reports should be entered into the bug tracker with the upcoming
release number as the milestone.

	If the community reports bugs, classify them in the bug tracker and ensure
they are fixed.

Only serious bugs and regressions need to be fixed before the release.
New features and minor problems should be merged into master as usual.

Patches for the release branch should start from the release branch, be
submitted through GitLab, and then merged into master. Once fully
tested there, the branch can be merged into the release branch.

When the selected issues are fixed in the release branch, tag the tip
of the release branch and release it as the next candidate, then the
cycle continues.

	Distribution specific patches can accumulate over time. Consider reviewing the
following distribution specific pages to identify potential fixes and improvements
that could be integrated in VTK itself:

	Debian:

	https://tracker.debian.org/pkg/vtk9

	https://udd.debian.org/patches.cgi?src=vtk9

	Gentoo:

	https://packages.gentoo.org/packages/sci-libs/vtk

	https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/vtk/files

	openSUSE:

	https://build.opensuse.org/package/show/openSUSE:Factory/vtk

	Package the official release

The official VTK package consists of tar balls and ZIP files of the source,
Python Wheels, Doxygen documentation, and regression test data, all at the
tag point.

Volunteer third-party packagers create binary packages from the official
release for various platforms, so their input is especially valuable during
the release cycle.

The release manager also compiles release notes for the official release
announcement. Release notes are compiled from various standardized topic documents [https://gitlab.kitware.com/vtk/vtk/-/tree/master/Documentation/release]
added to the Documentation/release/dev folder while features or issues
are fixed. The aggregation of these topic files is done manually and
results in the creation of a file named Documentation/release/X.Y.md for
the current release.

GitLab and Releases

GitLab milestones are used for keeping track of branches for the release. They
allow keeping track of issues and merge requests which should be “done” for
the milestone to be considered complete.

For each release (including release candidates), a milestone is created with a
plausible due date. The milestone page allows for an easy overview of branches
which need wrangling for a release.

Merge Requests

Merge requests which need to be rebased onto the relevant release branch
should be marked with the needs-rebase-for-release tag and commented on how
the branch can be rebased properly:

This branch is marked for a release, but includes other commits in
`master`. Please either rebase the branch on top of the release branch and
remove the `needs-rebase-for-release` tag from the merge request:

```sh
$ git rebase --onto=origin/release origin/master $branch_name
$ git gitlab-push -f
```

or, if there are conflicts when using a single branch, open a new branch
and open a merge request against the `release` branch:

```sh
$ git checkout -b ${branch_name}-release $branch_name
$ git rebase --onto=origin/release origin/master ${branch_name}-release
$ git gitlab-push
```

Thanks!

Wrangling Branches

Branches may be wrangled using the filters in the merge request page. Replace
$release at the end with the relevant milestone name:

https://gitlab.kitware.com/vtk/vtk/-/merge_requests?state=all&milestone_title=$release

The following states of a merge request indicate where they are in the flow:

	open for master: get into master first

	open for release: ensure it is already in master

	open with needs-rebase-for-release tag: wait for contributor to rebase
properly; ping if necessary

	MERGED: merge into release

There is currently no good way of marking a branch that went towards master
is also in release already since tags cannot be added to closed merge
requests. Suggestions welcome :) .

 Coding Conventions

Coding Conventions

General

VTK is a large body of code with many users and developers. Coding in a
consistent style eases shared development. VTK’s style guidelines also
ensure wide portability. All code that is contributed to VTK must
conform to the following style guidelines. Exceptions are permissible,
following discussion in code review, as long as the result passes the
nightly regression tests. External code contributed into the ThirdParty
directory is exempt from most of the following rules except for the
rules that say “All code”.

	All code that is compiled into VTK by default must be compatible with VTK’s BSD- style license.

	Copyright notices should appear at the top of C++ header and implementation files using SPDX syntax.

	All C++ code must be valid C++11 code.

	The Java and Python wrappers must work on new code, or it should be excluded from wrapping.

	Multiple inheritance is not allowed in VTK classes.

Rationale: One important reason is that Java does not support it.

	Only one public class per header file. Internal helper classes may be forward declared in header files, but can then only be defined in implementation files, ie using the PIMPL idiom.

Rationale: helpful when searching the code and limits header inclusion bloat that slows compilation time.

	Class names and file names must match, class names must be unique.

Rationale: helpful when searching the code, includes are flattened at install.

	The indentation style can be characterized as the modified Allman (https://en.wikipedia.org/wiki/Indent_style#Allman_style)style. Indentations are two spaces, and the curly brace (scope delimiter) is placed on the following line and indented to the same level as the control statement.

Rationale: Readability and historical

	Conditional clauses (including loop conditionals such as for and while) must be in braces below the conditional.
Ie, instead of if (test) clause or if (test) { clause }, use

if (test)
{
 clause
}

Rationale: helpful when running code through a debugger

	Two space indentation. Tabs are not allowed. Trailing whitespace is not allowed.

Rationale: Removing tabs ensures that blocks are indented consistently in all editors.

	Only alphanumeric characters in names. Use capitalization to demarcate words within a name (i.e., camel case). Preprocessor variables are the exception, and should be in all caps with a single underscore to demarcate words.

Rationale: Readability

	Every class, macro, etc starts with either vtk or VTK. Classes should all start with lowercase vtk and macros or constants can start with either.

Rationale: avoids name clashes with other libraries

	After the vtk prefix, capitalize the first letter of class names, methods and static and instance variables. Local variables are allowed to vary, but ideally should start in lower case and then proceed in camel case.

Rationale: Readability

	Try to always spell out a name and not use abbreviations except in cases where the shortened form is obvious and widely understood.

Rationale: Readability, self-documentation

	Classes that derive from vtkObject should have protected constructors and destructors, and privately declared but unimplemented copy constructor and assignment operator.

	Classes that don’t derive from vtkObject should obey the rule of three. If the class implements the destructor, copy constructor or copy assignment operator they should implement all of them.

Rationale: VTK’s reference counting implementation depends on carefully controlling each object’s lifetime.

	Following the copyright notice, the name and purpose of each class should be documented at the top of the header with standard doxygen markup.:

/**
 * @class vtkclassname
 * @brief one line description
 *
 * Longer description of class here.
*/

Rationale: Doxygen generated documentation uses this to describe each class.

	Public methods must be documented with doxygen markup.

/**
 * Explanation of what the method/ivar is for
 */

Descriptions should do more than simply restate the method or ivar’s name.

The documentation for each public ivar should document the default value.

The documentation style for SetGet macros should be a single comment for the pair and a brief description of the variable that is being set/get. Use doxygen group marking to make the comment apply to both macro expanded functions.

///@{
/**
 * Set / get the sharpness of decay of the splats.
 * This is the exponent constant in the Gaussian
 * equation. Normally this is a negative value.
 */
 */
vtkSetMacro(ExponentFactor,double);
vtkGetMacro(ExponentFactor,double);
///@}

The documentation style for vector macros is to name each of the resulting variables. For example comment

/**
 * Set/Get the color which is used to draw shapes in the image. The parameters are SetDrawColor(red, green, blue, alpha)
 */
vtkSetVector4Macro(DrawColor, double);
vtkGetVector4Macro(DrawColor, double);

The description for SetClamp macros must describe the valid range of values.

/**
 * Should the data with value 0 be ignored? Valid range (0, 1).
 */
vtkSetClampMacro(IgnoreZero, int, 0, 1);
vtkGetMacro(IgnoreZero, int);

Rationale: Doxygen generated documentation (http://www.vtk.org/doc/nightly/html/) is generated from these comments and should be consistently readable.

	Public and even Protected instance variables are allowed only in exceptional situations. Private variables should be used instead with public access given via Set/Get macro methods when needed.
Rationale: Consistent API, ease of deprecation, and SetMacro takes part in reference counting.

	Protected methods are allowed only when they are intended to be used by inheriting classes and overridden by inheriting classes. Private methods should be the default for any method.
Please note this is not true in many classes but should be followed when adding new code.
Rationale: Consistent API, ease of deprecation.

	Accessors to vtkObject instance variables should be declared in the header file, and defined in the implementation file with the vtkCxxSetObjectMacro.
Rationale: Reduces header file bloat and assists in reference counting.

	Use this-> inside of methods to access class methods and instance variables.
Rationale: Readability as it helps to distinguish local variables from instance variables.

	Header files should normally have just two includes, one for the superclass’ header file and one for the class’ module export header declaration. It is required that all but the superclass header have a comment explaining why the extra includes are necessary. Care should be taken to minimize the number of includes in public headers, with predeclaration/PIMPL preferred.
Rationale: limits header inclusion bloat that slows compilation time.

	Include statements in implementation files should generally be in alphabetical order, grouped by type. For example, VTK includes first, system includes, STL includes, and Qt includes.
Rationale: avoid redundant includes, and keep a logical order.

	All subclasses of vtkObject should include a PrintSelf() method that prints all publicly accessible ivars.

Rationale: useful in debugging and in wrapped languages that lack sufficient introspection.

	All subclasses of vtkObject should include a type macro in their class declaration.

Rationale: VTK’s implementation of runtime type information depends on it

	Do not use id as a variable name in public headers, also avoid min, max, and other symbols that conflict with the Windows API.

Rationale: id is a reserved word in Objective-C++, and against variable name rules. min, max, and less common identifiers listed in Testing/Core/WindowsMangleList.py are declared in the Windows API.

	Prefer the use of vtkNew when the variable would be classically treated as a stack variable.

	Eighty character line width is preferred.

Rationale: Readability

	Method definitions in implementation files should be preceded by // followed by 78 - characters.

Rationale: Readability

	New code must include regression tests that will run on the dashboards. The name of the file to test vtkClassName should be TestClassName.cxx. Each test should call several functions, each as short as possible, to exercise a specific functionality of the class. The main() function of the test file must be called TestClassName(int, char*[])

Rationale: Code that is not tested can not be said to be working.

	All code must compile and run without warning or error messages on the nightly dashboards, which include Windows, Mac, Linux and Unix machines. Exceptions can be made, for example to exclude warnings from ThirdParty libraries, by adding exceptions to CMake/CTestCustom.cmake.in

	Namespaces should not be brought into global scope in any public headers, i.e. the using keyword should not appear in any public headers except within class scope. It can be used in implementations, but it is preferred to bring symbols into the global scope rather than an entire namespace.

Rationale: Using VTK API should not have side-effects where parts of the std namespace (or the entire thing) are suddenly moved to global scope.

	While much of the legacy VTK API uses integers for boolean values, new interfaces should prefer the bool type.

Rationale: Readability.

	Template classes are permitted, but must be excluded from wrapped languages.

Rationale: The concept of templates doesn’t exist in all wrapped languages.

Specific C++ Language Guidelines

C++ Standard Library

	Do not use vtkStdString in new API; prefer std::string

Rationale: vtkStdString was introduced as a workaround for compilers that couldn’t handle the long symbol name for the expanded std::string type. It is no longer needed on modern platforms.

	STL usage in the Common modules’ public API is discouraged when possible, Common modules are free to use STL in implementation files. The other modules may use STL, but should do so only when necessary if there is not an appropriate VTK class. Care should be taken when using the STL in public API, especially in the context of what can be wrapped.

Exception: std::string should be used as the container for all 8-bit character data, and is permitted throughout VTK.

Rationale: limits header inclusion bloat, wrappers are not capable of handling many non-vtkObject derived classes.

	References to STL derived classes in header files should be private. If the class is not intended to be subclassed it is safe to put the references in the protected section.

Rationale: avoids DLL boundary issues.

C++ Language Features Required when using VTK

	nullptr [http://en.cppreference.com/w/cpp/language/nullptr] Use nullptr instead of 0 and NULL when dealing with pointer types

	override [http://en.cppreference.com/w/cpp/language/override] VTK_OVERRIDE will be replaced with the override keyword

	final [http://en.cppreference.com/w/cpp/language/final] VTK_FINAL will be replaced with the final keyword

	delete [http://en.cppreference.com/w/cpp/language/function#Deleted_functions] The use of delete is preferred over making default members private and unimplemented.

C++11 Features allowed throughout VTK

	default [http://en.cppreference.com/w/cpp/language/default_constructor] The use of default is encouraged in preference to empty destructor implementations

	static_assert [http://en.cppreference.com/w/cpp/language/static_assert] Must use the static_assert (bool_constexpr , message) signature. The signature without the message in c++17

	non static data member initializers [http://en.cppreference.com/w/cpp/language/data_members]

	strongly typed enums [http://en.cppreference.com/w/cpp/language/enum]
VTK prefers the usage of strongly typed enums over classic weakly
typed enums.

Weakly typed enums conversion to integers is undesirable, and the
ability for strongly typed enums to specify explicit storage size
make it the preferred form of enums.

strongly typed: enum class Color { red, blue };

weakly typed: enum Color { red, blue };

While VTK is aware that conversion of all enums over to strongly
typed enums will uncover a collection of subtle faults and incorrect
assumptions. Converting existing classes to use strongly typed enums
will need to be investigated and discussed with the mailing list, as
this will break API/ABI, potentially cause issues with VTK bindings,
and possibly require changes to users VTK code.

C++11 Features acceptable in VTK implementation files, private headers, and template implementations

	auto [http://en.cppreference.com/w/cpp/language/auto]
Use auto to avoid type names that are noisy, obvious, or unimportant - cases where the type doesn’t aid in clarity for the reader.
auto is permitted when it increases readability, particularly as described below. Never initialize an auto-typed variable with a braced initializer list.

Specific cases where auto is allowed or encouraged:

	(Encouraged) For iterators and other long/convoluted type names, particularly when the type is clear from context (calls to find, begin, or end for instance).

	(Allowed) When the type is clear from local context (in the same expression or within a few lines). Initialization of a pointer or smart pointer with calls to new commonly falls into this category, as does use of auto in a range-based loop over a container whose type is spelled out nearby.

	(Allowed) When the type doesn’t matter because it isn’t being used for anything other than equality comparison.

	(Encouraged) When iterating over a map with a range-based loop (because it is often assumed that the correct type is std::pair<KeyType, ValueType> whereas it is actually std::pair<const KeyType, ValueType>). This is particularly well paired with local key and value aliases for .first and .second (often const-ref).

	for (const auto& item : some_map) {
const KeyType& key = item.first;
const ValType& value = item.second;
// The rest of the loop can now just refer to key and value,
// a reader can see the types in question, and we've avoided
// the too-common case of extra copies in this iteration.
}

	(Discouraged) When iterating in integer space. for (auto i=0; i < grid->GetNumberOfPoints(); ++i). Because vtk data structures usually contain more than 2 billion elements, iterating using 32bit integer is discouraged (and often doesn’t match the type used)

	braced initializer list [http://en.cppreference.com/w/cpp/language/list_initialization]
Braced initializer list are allowed as they prevent implicit narrowing conversions, and “most vexing parse” errors. They can be used when constructing POD’s and other containers.

Braced initializer lists are not allowed to be used as the right hand side for auto:

 auto a = { 10, 20 }; //not allowed as a is std::initializer_list<int>

	lambda expressions [http://en.cppreference.com/w/cpp/language/lambda]

Usage of lambda expressions are allowed with the following guidelines.

	Use default capture by value ([=]) only as a means of binding a few variables for a short lambda, where the set of captured variables is obvious at a glance. Prefer not to write long or complex lambdas with default capture by value.

	Except for the above, all capture arguments must be explicitly captured. Using the default capture by reference ([&]) is not allowed. This is to done so that it is easier to evaluate lifespan and reference ownership.

	Keep unnamed lambdas short. If a lambda body is more than maybe five lines long, prefer using a named function instead of a lambda.

	Specify the return type of the lambda explicitly if that will make it more obvious to readers.

	shared_ptr [http://en.cppreference.com/w/cpp/memory/shared_ptr]

	Do not combine shared_ptr and vtk derived objects. VTK internal reference counting makes the shared_ptr reference counting (and destructor tracking) pointless.

	unique_ptr [http://en.cppreference.com/w/cpp/memory/unique_ptr]

	Do not combine unique_ptr and vtk derived objects. We prefer using vtkNew as VTK objects use internal reference counting and custom deletion logic, the ownership semantics of unique_ptr are invalid.

	make_unique is not part of c++11

	template alias [http://en.cppreference.com/w/cpp/language/type_alias]

	The use of alias templates is preferred over using ‘typedefs’. They provide the same language pattern of normal declarations, and reduce the need for helper template structs. For example (Scott Meyers, Effective Modern C++)

template<typename T> using MyAllocList = std::list<T, MyAlloc<T>>;

	universal references (&&) / std::move / std::forward

	extern templates [http://en.cppreference.com/w/cpp/language/class_template]

	Note: This should be investigated as an update to the current infrastructure used to export explicit template instantiations used within VTK

	unordered maps [http://en.cppreference.com/w/cpp/concept/UnorderedAssociativeContainer]

	std::array [http://en.cppreference.com/w/cpp/container/array]

	The use of std::array is preferred over using raw fixed sized arrays. They offer compile time bounds checking without any runtime cost.

	range based for loop [http://en.cppreference.com/w/cpp/language/range-for]

C++11 Features allowed under certain conditions

	concurrency [https://isocpp.org/wiki/faq/cpp11-library-concurrency]

Concurrency inside of vtk should be handled by using or extending the already existing collection of support classes like vtkAtomic and vtkSMPThreadLocal.

Instead of directly using new c++11 constructs such as std::compare_exchange_weak instead extend the functionality of vtk core concurrency classes.

Note: Thread local storage has not been supported on OSX previously to XCode 8. VTK offers the following classes that should be used instead:

	vtkSMPThreadLocalObject [http://www.vtk.org/doc/release/7.0/html/classvtkSMPThreadLocalObject.html]

	vtkSMPThreadLocal [http://www.vtk.org/doc/release/6.3/html/classvtkSMPThreadLocal.html]

	std::isnan [http://en.cppreference.com/w/cpp/numeric/math/isnan], std::isfinite [http://en.cppreference.com/w/cpp/numeric/math/isfinite], std::isinf [http://en.cppreference.com/w/cpp/numeric/math/isinf]

These functions should not be called directly, instead the wrapped versions provided by vtk should be used instead.

	vtk::isnan -> std::isnan

	vtk::isfinite -> std::isfinite

	vtk::isisinfnan -> std::isinf

The reason for these wrappings is to work around compiler performance issues. For example, some clang version would convert integral types to double and do the operation on the double value, instead of simply returning false/true.

	std::future [http://en.cppreference.com/w/cpp/thread/future]/ std::async [http://en.cppreference.com/w/cpp/thread/async]

Future/Async based programming inside of vtk should be handled on a case by case basis. In general the use cases for this kind of execution model is best applied at the vtkExecutive / vtkPipeline level, or at the File IO level.

In these cases the recommendation is to extending or adding support classes so that these design patterns can be utilized in the future.

	variadic templates [http://en.cppreference.com/w/cpp/language/parameter_pack]

Variadic Templates are not allowed in VTK unless they are the only solution to the given problem.

C++11 Features that are not allowed

	std::regex [http://en.cppreference.com/w/cpp/regex]

	Not supported by GCC 4.8 (can be used once GCC 4.9 is required)

	constexpr [http://en.cppreference.com/w/cpp/language/constexpr]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	unicode string literals [http://en.cppreference.com/w/cpp/language/string_literal] (n2442) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	universal character names in literals [http://en.cppreference.com/w/cpp/language/character_literal] (n2170) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2170.html]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	user-defined literals [http://en.cppreference.com/w/cpp/language/user_literal] (n2765) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	Extended sizeof (n2253) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2253.html]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	Unrestricted Unions [http://en.cppreference.com/w/cpp/language/union] (n2544) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

	Noexcept [http://en.cppreference.com/w/cpp/language/noexcept] (n3050) [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html]

	Not supported by VS2013 [https://msdn.microsoft.com/en-us/library/hh567368.aspx]

Parts of this coding style are enforced by git commit hooks that are put in
place when the developer runs the SetupForDevelopment script, other parts
are enforced by smoke tests that run as part of VTK’s regression test suite.
Most of these guidelines are not automatically enforced.
VTK’s commit hook enforced style checks Section list the style checks that are in place.

VTK’s commit hook enforced style checks

	Well formed commit message

Every commit message should consist of a one line summary optionally followed by a blank line and further details. This is most easily approximated to the subject of an email, and the body in the form of paragraphs.

	Valid committer username and email address
Every developer must have a valid name and email configured in git.\

	ASCII filename check
All file names must contain only ASCII characters.

	No tabs

	No trailing whitespace

	No empty line at end of file

	Proper file access mode

Files must be committed with sensible access modes.

	One megabyte maximum file size

	No submodules

The VTK project does not allow submodules. For required third party dependencies, the recommended scheme is to use git’s subtree merge strategy to reproducibly import code and thereby simplify eventual integration of upstream changes.

Additionally, new developers should be aware that the regression test machines have fairly strict compiler warnings enabled and usually have VTK_DEBUG_LEAKS configured on to catch leaks of VTK objects. Developers should be in the habit of doing the same in their own environments so as to avoid pushing code that the dashboards will immediately object to. With GCC, it is easiest to do so by turning on VTK_EXTRA_COMPILER_WARNINGS.

 About this documentation

About this documentation

This website is hosted on readthedocs.io [https://readthedocs.org/]. It is generated using
Sphinx [https://readthedocs.org/] together with the MyST [https://readthedocs.org/] parser. The Python API is
extracted using autodoc2 [https://sphinx-autodoc2.readthedocs.io] extension while cmake API uses
moderncmake-domain [https://pypi.org/project/sphinxcontrib-moderncmakedomain]. The complete configuration along with
custom helpers for auto-generating some of the content can be found here [https://gitlab.kitware.com/vtk/vtk/-/tree/master/Documentation/docs].

 Resources

Resources

For commercial or confidential consulting related to VTK or any of our other products and services, please contact Kitware’s advanced support team [https://www.kitware.com/contact/advanced-support/] for personalized assistance.

Links

	Name

	Description

	

	Book

	Descriptions of important visualization algorithms, including example images and code that utilizes VTK

	book.vtk.org [http://book.vtk.org]

	Discourse

	Community forum

	discourse.vtk.org [http://discourse.vtk.org]

	GitLab

	Merge requests and issues take place here

	gitlab.kitware.com/vtk/vtk [http://gitlab.kitware.com/vtk/vtk]

	Examples

	Examples, Tutorials, and guides for VTK in C++ and Python

	examples.vtk.org [http://examples.vtk.org]

	Doxygen

	Documentation of VTK C++ classes updated daily

	vtk.org/doc/nightly/html [http://vtk.org/doc/nightly/html]

	CDash

	Quality Dashboard

	open.cdash.org/index.php?project=VTK [http://open.cdash.org/index.php?project=VTK]

Python

	Name

	Description

	

	PyPI

	Python Wheels

	pip install vtk

	wheels.vtk.org

	See Additional Python Wheels

	pip install --extra-index-url https://wheels.vtk.org vtk

Docker

The VTK Docker Repositories are a set of ready-to-run Docker images [https://hub.docker.com/search?q=kitware%2Fvtk] aiming to support development and testing of VTK-based projects.

	Repository

	Description

	Dockerfile

	kitware/vtk [https://hub.docker.com/r/kitware/vtk]

	Images with built dependencies to support the continuous integration of VTK

	 [https://gitlab.kitware.com/vtk/vtk/-/tree/master/.gitlab/ci/docker]

	kitware/vtk-for-ci [https://hub.docker.com/r/kitware/vtk-for-ci]

	Images with installation of VTK (in /opt/vtk/install) to support building & testing your VTK-based projects.
Learn more reading this blog [https://www.kitware.com/adding-ci-to-your-paraview-plugin-and-vtk-modules/].

	

	kitware/vtk-wasm [https://hub.docker.com/r/kitware/vtk-wasm]

	Static emscripten build of VTK to support building VTK-based WebAssembly applications. See Using WebAssembly

	 [https://gitlab.kitware.com/vtk/vtk-wasm-docker]

	kitware/vtkm [https://hub.docker.com/r/kitware/vtkm]

	Images with built dependencies to support the continuous integration of VTK-m [https://gitlab.kitware.com/vtk/vtk-m].

	 [https://gitlab.kitware.com/vtk/vtk-m/-/tree/master/.gitlab/ci/docker]

 Release Details

Release Details

Release Notes

	9.3

	9.2

	9.1

	9.0

	8.2

	8.1

	8.0

	7.1

	7.0

	6.3

	6.2

	6.1

	6.0

	5.10

	5.8

	5.6

	5.4

	5.2

	5.0

 9.3

9.3

Released on 2023-11-09.

9.3.0 Release Notes

Changes made since VTK 9.2.0 include the following.

Changes

Build

	Compile fixes for C++20 builds with gcc11.

	Apply /utf-8 option for MSVC builds for standardization.

	Headers vtkBlockSortHelper.h from VTK::RenderingVolume and
vtkDIYKdTreeUtilities.h from VTK::FiltersParallelDIY2 are now installed.

	The vtk-config.cmake CMake package no longer permits unknown components to
be listed and will report them as not found. This helps ensure the usability
VTK::Component when VTK_Component_FOUND is set.

	The vtk_encode_string CMake API now supports the ABI_MANGLE_SYMBOL_BEGIN,
ABI_MANGLE_SYMBOL_END, and ABI_MANGLE_HEADER arguments to specify a
mangling mechanism. Previously (where mangling was supported), it was
hard-coded to VTK’s own mangling decisions.

Charts

	Uniformize the vtkPlot API for color setters/getter, in order to fit the
API of vtkPen and vtkBrush. Methods using floating point parameters
(e.g. vtkPlot::SetColor(double r, double g, double b)) are now suffixed
with F to avoid confusion with equivalent functions using unsigned chars.
The former ones are marked as deprecated.

	vtkChartParallelCoordinates’s default selection behavior has been
simplified. Multiple selection is no longer supported in SELECTION_DEFAULT.

Copyright

	SPDX information have been added and replace all previous copyright declaration
in all of VTK. See more information [https://gitlab.kitware.com/vtk/vtk/-/commit/987d39ac31203df75281f0ab4be135dfc3c42d89] on the process used.

Core

	OSPRay has been disabled for older x86_64 processors which do not support SSE4.1.

	Removed hidden private dependency of CommonCore on CommonDataModel.

	Nested parallelism has been disabled by default for all backends except TBB,
which should improve performance. Enabling nested parallelism is still
possible when sub-task are coarse enough, using the SetNestedParallelism
method or a LocalScope.

	Improved vtkSMPTools STDThread backend. A common, global, thread pool is
now shared between all SMP calls, so they no longer create threads.

Data

	vtkPolyLine::Clip improved to generate polylines whenever possible.

	vtkCompositeDataSet::ShallowCopy now does an actual shallow copy up to
array pointers.

	Fixed calculation of vtkPyramid centroid.

Filters

	VTK’s interruption method has been updated to use CheckAbort. CheckAbort
will check the current filter’s AbortExecute flag as well as any upstream
filter’s AbortExecute flag. If any are set, the filter will output empty
data and tell downstream filters to abort as well. Currently,
vtkContourGrid, vtkClipDataSet, vtkShrinkFilter, and
vtkRTAnalyticSource.

	vtkmContour’s ComputeScalars parameter has been fixed to behave like vtkContourFilter.

	vtkExtractCells has been relocated from Filters/Extraction to Filters/Core.

	vtkTemporalDataSetCache now deep copies data by default.

Geovis

	Moved vtkCompassWidget and vtkCompassRepresentation from Geovis/Core
to Interaction/Widgets.

Interaction

	vtkSelectPolyData now passes cell data attributes to the selected and
unselected outputs.

	Output support fixed for vtkSelectPolyData when GenerateSelectionScalars
is enabled.

I/O

	vtkPLYReader changed to use new vtkResourceStream IO.

	vtkPLY::get_ascii_item signature changed from
void(const char*, int, int*, unsigned int*, double*) to
void(vtkResourceParser*, int, int*, unsigned int*, double*)

	vtkPLY::ply_read signature changed from PlyFile*(std::istream*, int*, char***)
to PlyFile*(vtkResourceStream*, int*, char***)

	vtkPLY::get_words signature changed from
void(std::istream* is, std::vector<char*>* words, char line_words[], char orig_line[]) to
void(vtkResourceParser* is, std::vector<char*>* words, char line_words[], char orig_line[])

	vtkPIOReader::GetTimeDataArray now returns nullptr when the index is out-of-range.

	CGNS fixed compilation with HDF5 1.12.

	vtkSTLReader fixed to not consume new lines erroneously.

Python

	OSMesa VTK wheels are now provided. These are available on VTK’s official
channels (the VTK repository’s Python index and vtk.org), but not PyPI
because OSMesa conflicts with other OpenGL packages.

	The numpy adapter (util.numpy_support) converts numpy.int8 arrays to
vtkSignedCharArray rather than vtkCharArray, to ensure that signedness
is preserved by the conversion.

Rendering

	Fix wireframe render shading issues for some GPUs.

	VTK previously exported a lot of its shader strings from its libraries. Now only
those that are available through installed headers are available. These include:

	vtkTextureObjectVS from VTK::RenderingOpenGL2

	vtkCompositeZPassFS from VTK::RenderingParallel

	Volume label mapping improved to properly index upto 256 labels each with their own color, opacity
and gradient transfer functions.

System

	vtkExecutableRunner’s argument splitting system has been overhauled. There
are now 2 modes to execute a command using the ExecuteInSystemShell flag:

	When ExecuteInSystemShell is true (default), the class will execute the
given command in the system shell, leaving the actual argument split to the shell.

	When ExecuteInSystemShell is false, you will have to split the command
and its arguments yourself using the new AddArgument API.

Third Party

	VTK’s vendored zlib library has been updated to 1.2.13.

	VTK’s vendored fmt library has been updated to 9.1.0.

	VTK’s vendored ioss library has been updated to the 2022-10-14 release.

	VTK’s vendored libtiff library has been updated to 4.6.0. The new version
fixes a number of CVEs.

	VTK’s vendored netcdf library has been updated to 4.9.2.

	VTK’s vendored mpi4py library has been updated to 3.1.4.

	VTK’s vendored expat library has been updated to 2.4.8.

	VTK’s vendored libxml2 library has been updated to 2.10.1.

	VTK’s vendored PDAL library has been updated to 2.1.

	Added fix for Proj compatibility with windows.h with the VTK STRICT definition.

New Features

ABI Namespace

	VTK is now wrapped in a customizable inline namespace (VTK_ABI_NAMESPACE).
To wrap code in the ABI namespace use VTK_ABI_NAMESPACE_BEGIN and
VTK_ABI_NAMESPACE_END. This change means you can now link different versions
of VTK into the same runtime without generating conflicts between VTK symbols.
Note: this does not prevent conflicts with third-part symbol (including VTK-m).

	Where to put namespaces:

	Around classes, functions, variables, typedefs (optional).

	Inner most named namespaces, there is no need to use the ABI namespace
inside of an anonymous namespace.

	ABI namespace should never be around a named namespace.

	Forward declarations of classes/functions/variables/typedefs require ABI
namespace if their implementation/declarion was inside the ABI namespace.

	Where not to put namespace:

	Do not namespace around non-exported classes/functions/variables/typedefs (usually found in tests).

	Do not namespace around main functions.

	Python bindings cannot be namespaced.

	Most Utilities are not namespaced, including vtksys/vtkmeta/ksys.

	It doesn’t hurt anything, but it is not required to namespace symbols that
are compiled into a driver (such as Wrapping Tools).

	Some VTK modules have C interfaces that cannot be mangled:

	VTK::CommonCore (GetVTKVersion)

	VTK::IOXML (Provides a C API, vtkXMLWriterC_-)

	VTK::WrappingPythonCore (Python Wrapping cannot have mangling)

	Thirdpary Libraries and their VTK module wrappers do not have mangling:

	VTK::metaio

	VTK::xdmf2

	VTK::vpic

	All C libraries (ie. HDF5, netCDF, etc.)

	VTKm CUDA Accelerators do not get mangled:

	VTK::AcceleratorsVTKmCore

	VTK::AcceleratorsVTKmDataModel

	VTK::AcceleratorsVTKmFilters

Build

	VTK_LOGGING_TIME_PRECISION can be used to change the precision of loguru
timing output (when VTK_ENABLE_LOGGING is ON).

	VTK_ZSPACE_USE_COMPAT_SDK can be used to control runtime search for zSpace
Core Compatibility libraries. Default is ON, disabling the search.

	VTK_GENERATE_SPDX can be used to generate SPDX [https://docs.vtk.org/en/latest/advanced/spdx_and_sbom.html] files for each
VTK module. Default is OFF. The generation of SPDX files is considered experimental.

	Added VTK_USE_FUTURE_BOOL configure-time variable. The codebase contains
many variables typed as int that really should be bool. But changing them
breaks backwards compatibility, and so a vtkTypeBool typedef was introduced
which is defined to either int or bool depending on the new
VTK_USE_FUTURE_BOOL configure-time variable. This allows for the piecemeal
changing of many int variables to vtkTypeBool.

Charts

	vtkChartParallelCoordinates now has a chart legend which can be toggled
with the SetShowLegend method. This legend can be customized using the
vtkChartLegend API.

	vtkPlotParallelCoordinates now has the option to set a preconfigured color
array using SetColorModeToDefault.

	Fixed bug where calling vtkPlotBar.GetLookupTable caused a segmentation
fault when no data had been plotted.

	You can now set an array name for the vtkPlotHistogram2D. This allows you
to set an array that is not scalar, ie. an array with a number of components
greater than 1.

Core

	vtkMath::GetPointAlongLine can be used to compute a point along a line
defined by two points and an offset.

	vtkValueFromString is a new low-level function that converts a string to an
integer, a floating-point value or a boolean. vtkValueFromString is faster
than standard library functions such as the std::strto* function family.

	VTK now provides a way to obtain type names at compile time in the
Common/Core/vtkTypeName.h header:

#include "vtkTypeName.h"

// ...
std::string typeName = vtk::TypeName<vtkImageData>();
std::cout << typeName << std::endl;

	The vtkStringToken class introduces a utility for hashing strings at either
compile or run-time and using the resulting integers as tokens. Additional
utilities regarding compile-time hashing have also been added:

	vtkStringManager holds strings hashed at runtime. This makes it possible
for the string-token class to return the original string to you in some cases.
Because the manager holds a map from string-hash to string, only a single
copy of the string is stored no matter how many copies of the token exist.

	Added new vtk::literals namespace for creating hashes and tokens at compile time.

	""_hash - returns a 32-bit integer hash of the given string.

	""_token - returns a vtkStringToken instance of the given string.
Note that because the hash is computed during compilation, you may not
call the token’s Data() method to retrieve the string unless it is
inserted at run time by some other code.

	Since hashing is performed at build time, the following example is possible:

#include "vtkStringToken.h"
using namespace vtk::literals;
vtkStringToken t;
switch (t.GetId())
{
 case "foo"_hash: foo(); break;
 case "bar"_hash: bar(); break;
 default: vtkErrorMacro("Unknown token " << t.Data()); break;
}

	VTK now provides a way to iterate over a class and all its ancestor types (as
long as they inherit vtkObjectBase and use the vtkTypeMacro() to define
Superclass type-aliases). The vtk::ParentClasses<T>::enumerate() function
will invoke a functor you pass on T and each superclass of T. This is
used by a new vtk::Inheritance<T>() function that inserts the name of each
class inherited by T into a container you pass to it. See
Common/Core/Testing/Cxx/TestInherits for example usage.

	vtkThreadedCallbackQueue can be used to run functions in the background on
different threads. Use the Push method to add functions to the queue. The
Push method returns a vtkSmartPointer<vtkThreadedCallbackQueue::vtkSharedFutureBase>,
which lets users synchronize tasks.

Data

	Added vtkImplicitArray template class that implements a read-only
vtkGenericDataArray interface which transforms an implicit function mapping
integers to values into a practically zero cost vtkDataArray. This is
helpful in cases where one needs to attach data to data sets and memory
efficiency is paramount.

	Additional backends have been added in the vtkImplicitArray framework:

	vtkAffineArray that gets constructed with a slope and intercept and
then returns values linearly depending on the queried index.

	vtkCompositeArray that takes an std::vector<vtkDataArray*> at
construction and returns values as if the list has been concatenated into
one array.

	vtkConstantArray that gets constructed with a given value and then
returns that same value regardless of the index queried.

	vtkStdFunctionArray which uses a std::function<ValueType(int)> backend
capable of covering almost any function one might want to use.

	vtkIndexedArray that takes an indexing array (either vtkIdList or
vtkDataArray) and a base vtkDataArray at construction and returns
values indirected using the indexing array to give access to a shuffled
array without the memory cost.

	Read more about vtkImplicitArrays here [https://gitlab.kitware.com/vtk/vtk/-/blob/722365c58bbe829014a6272cf2f55364d68fb0b6/Documentation/release/dev/add-vtkImplicitArrays.md].

	ProcessIds data array is now accessible directly from vtkDataSetAttributes
just like any other data array (e.g GlobalIds or Normals).

	Added vtkCellGrid. It exists to support finite element techniques using
novel function spaces, which violate vtkDataSet’s assumptions – especially
discontinuous Galerkin (DG) elements.

	vtkPolyhedronUtilities added to support polyhedron decomposition into
tetrahedra. Improves downstream filter results (e.g. contours) on polyhedrons
with concave faces.

	Added new vtkPolyhedron::TriangulateFaces method.

	Added new vtkStaticFaceHashLinksTemplate templated class that can be used to
group faces of an unstructured grid and eliminates duplicates.

	Added vtkHyperTreeGridGeometricLocator which is a geometric locator for
vtkHyperTreeGrid datasets.

	vtkHyperTreeGrid has a new type of cursor, called unlimited cursors.
vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor and
vtkHyperTreeGridNonOrientedUnlimitedGeometryCursor have been added.

	vtkDataSet::GetCellNumberOfFaces can be used to get the number of faces in
a given cell.

	vtkBoundingBox::ComputeBounds added to compute the bounds for a set of points.
This is used for the GetCellBounds method in vtkUnstructuredGrid,
vtkPolyData, and vtkExplicitStructuredGrid.

	Added vtkCompositeDataSet::CompositeShallowCopy which shallow copies up to
dataset pointers only.

	Add new vtkNonLinearCell::StableClip method and vtkQuadraticTetra::StableClip
implementation. The goal of this clip is to only decompose a cell if its
actually clipped, otherwise keep the non-linear cell in its entirety. Note:
this clipping approach will lead to topological holes between decomposed cells
and the remaining non-linear cells.

	vtkPolyData::BuildCells has been multithreaded.

	Improved performance of vtkUnstructuredGrid’s IsCellBoundary/GetCellNeighbors methods.

	Improved stability of vtkCellLocator::FindClosestPointWithinRadius.

Documentation

	The VTK documentation has undergone a major update and consolidation to
enhance its usefulness for developers. The /Documentation/docs directory
now contains the contents and configuration for the Sphinx-based website,
published on the ReadTheDocs platform at https://docs.vtk.org. This
consolidates all existing documentation for VTK, including the newly added
list of supported data formats, API of all VTK public CMake modules, the VTK
formats specification (previously part of vtk-examples), and the general
information about the VTK project. Software process and conventions
documentation has also been moved from docs.google.com [http://docs.google.com] to the new website.

	In addition to the documentation website, two new resources have been
introduced: the VTK book, which hosts the markdown version of the VTK book at
https://book.vtk.org and VTK examples at https://examples.vtk.org, which
contain many examples with redirects put in place to ensure the previous URL
remains functional. Many other updates to the documentation have also been
made, including improved documentation structure, removal of obsolete
documents, and addition of imported third-party projects to the developer
guide. VTK documentation now follows a versioning system and is actively
maintained alongside the code.

	Contributions and feedback are welcome for all three websites to ensure that
the VTK documentation remains up-to-date.

	Next steps

	The next steps for the VTK documentation project include setting up a
versioning system for docs, doxygen, and the book. Work is also underway to
include a description of each Modules (as well as a README.md file) in
docs.vtk.org. And there are plans to explore the possibility of using
merge request previews for the documentation so that contributors don’t
have to compile it themselves.

	For examples.vtk.org, the plan is to consolidate examples from VTK and
vtk-examples.

	Pages on the mediawiki site will be marked as deprecated, and a link to
docs.vtk.org will be included.

	These efforts will help ensure that VTK documentation remains user-friendly
and accessible to all developers.

Filters

	Added Filters/GeometryPreview module which include filters for creating a
preview of the geomertry of a dataset. Current GeometryPreview filters are:

	vtkPointSetToOctreeImageFilter, used to convert a vtkPointSet into an
image with a number of points per cell target and an unsigned char
octree cell array.

	vtkOctreeImageToPointSetFilter, used to convert an image with an
unsigned char octree cell array to a vtkPointSet.

	vtkPointSetStreamer, used to stream points as buckets.

	vtkImageReslice now supports oriented images, and can reslice an image into
a new orientation via the new SetOutputDirection() method.

	vtkDistancePolyDataFilter can now output directions in conjunction with the
(signed/unsigned) distances. This is enabled using ComputeDirection
(default:off).

	vtkVortexCore now outputs 2 extra arrays, vorticity and vorticity_magnitude.

	vtkQuadricDecimation has the following changes:

	Added new MapPointData property to which maps input point data to its
decimated output.

	Added regularization mode. This is enabled by setting
vtkQuadricDecimation::SetRegularize(true) and
vtkQuadricDecimation::SetRegularization(value) where value is the standard
deviation used in the Gaussian distribution.

	vtkHyperTreeGridGradient has added support for vector fields. The resulting
gradient has 3 times the number of components as the input field.
Additionally, vorticity, divergence and Q-Criterion can now be computed.

	vtkHyperTreeGridContour now has 2 contour strategies in the 3D case: the
former behavior called USE_VOXELS, and the new USE_DECOMPOSED_POLYHEDRA
which can produce better contour results when the generated dual cells used
for contouring appear to be concave. Note: USE_DECOMPOSED_POLYHEDRA is much
slower than the former strategy.

	vtkExtractCells has new flags PassThroughCellIds and OutputPointsPrecision.

	vtkProbeFilter has new flag SnapToCellWithClosestPoint which can be used
with vtkPointSet inputs to snap the probe points to the cell with the closest point.

	vtkPlaneCutter has new flags OutputPointsPrecision and MergePoints.

	vtkPCANormalEstimation has two new search modes used for the selection
of neighbor points: KNN and RADIUS.

	Various optimizations for vtkGeometryFilter:

	Significant memory reduction (x5) with the introduction of
vtkStaticFaceHashLinksTemplate.

	Significant speedup (x100) for vtkGeometryFilter’s conversion of
vtkUnstructuredGrid to vtkPolyData if the vtkUnstructuredGrid has
only either vertices, or lines, or polys, or strips.

	Improved performance of vtkResampleToImage.

	Improved performance of vtkDistancePolyDataFilter.

	Improved performance of vtkFrustumSelector.

	Improved performance of vtkExtractSelection.

	Improved memory performance for vtkCellDataToPointData.

	Added more VTK-m accelerated filter overrides. If the
VTK::AcceleratorsVTKmFilters is enabled and the CMake option
VTK_ENABLE_VTKM_OVERRIDES is ON, the following filters will be overridden:

	vtkGradientFilter -> vtkmGradient

	vtkTableBasedClipDataSet -> vtkmClip

	vtkCutter -> vtkmSlice

	vtkThreshold -> vtkmThreshold

	vtkCellDataToPointData -> vtkmAverageToPoints

	vtkPointDataToCellData -> vtkmAverageToCells

	The following filter components have been multithreaded:

	vtkRectilinearGrid::GetPoints

	vtkExtractCells

	vtkExtractSelection::ExtractSelectedCells

	vtkExtractSelection::ExtractSelectionPoints

	vtkExtractGeometry

	vtkPolyDataNormals

	vtkProbeFilter::ProbeEmptyPoints

	vtkTableBasedClipDataSet

	vtkThreshold

	New filter vtkHyperTreeGridPProbeFilter can be used to probe a
vtkHyperTreeGrid using vtkDataSet.

	New filter vtkFieldDataToDataSetAttribute provides a way to efficiently pass
FieldData single-value arrays to other AttributeData. This is useful for
composite data, where FieldData can be used to store a single scalar, varying
at block level only. Moving this scalar, for instance, to PointData, allows to
use it in your pipeline.

	New filter vtkTensorPrincipalInvariants computes principal values and vectors from 2D and 3D symmetric tensors.

	The new vtkYieldCriteria filter computes different yield criteria from given
2D or 3D symmetric tensors. Available yield criteria currently include:

	Tresca criterion

	Von Mises criterion

	Added support for vtkHyperTreeGrid with vtkValueSelector,
vtkLocationSelector and vtkFrustumSelector. The selections generate can
also now be extracted with the vtkExtractSelection filter.

	Added HyperTreeGridToUnstructuredGrid boolean flag to vtkExtractSelection
filter to control whether to output an unstructured grid (when true) or a
hyper try grid (when false, the default).

	Fix vtkHyperTreeGridAxisClip when insideout is true.

	The vtkHyperTreeGridGeometry filter now provides PassThroughCellIds
(default false) to pass through original cell IDs from the input
vtkHyperTreeGrid to the output vtkPolyData.

	Added support for vtkHyperTreeGrid resampling with vtkResampleWithDataSet
and vtkPResampleWithDataSet filters.

	vtkPolyDataToUnstructuredGrid is a new multithreaded filter that converts

vtkPolyData to vtkUnstructuredGrid.

	Added vtkAttributeDataToTableFilter filter to VTK from ParaView. It serves
to turn a data object into a table by shallow copying its attributes into row
data. This replaces vtkDataObjectToTable, which has been deprecated.

	vtkBoundaryMeshQuality filter added to compute quality metrics for boundary meshes.

	vtkGenerateProcessIds filter added to generate process ids for both
PointData and CellData, and store it via ProcessIds attribute. This filter
replaces vtkProcessIdScalars, which has been deprecated.

	Added PointDataWeighingStrategy option to vtkCleanUnstructuredGrid for
choosing how to collapse point data. Previously, when merging duplicate points,
the point with the lowest index had its data transported to the merged output
point. With this new option, you can now choose between:

	vtkCleanUnstructuredGrid::FIRST_POINT (for backwards compatibility):
where the point with the lowest index in the input gets the ownership of
the merged point.

	vtkCleanUnstructuredGrid::AVERAGING: where the data on the merged output
point is the number average of the input points.

	vtkCleanUnstructuredGrid::SPATIAL_DENSITY: where the merged point data
is averaged using a partition of the volumes in the cells attached to each
point being merged.

	vtkTableFFT no longer adds or squeezes certain arrays, like those starting
with vtk, when the input and the output have a different size.

	vtkTableFFT now supports complex valued FFTs.

	Added hemispherical capping support along with texture coordinates for vtkCylinderSource to
replace the vtkCapsuleSource which has now been deprecated.

	vtkClipClosedSurface now provides the ability to clip on the reverse side of the clipping planes
and also provides the new triangulated geometry created by clipping as a second output.

I/O

	VTK now supports URI [https://datatracker.ietf.org/doc/html/rfc3986] parsing,
resolution and loading through the two new classes vtkURI and
vtkURILoader. URI support as been implemented to enable resource stream
support in readers that need to access multiple resources. For more information
about URI usage and loading, please refer to the vtkURILoader documentation.

	vtkResourceStream added as customizable replacement for standard istreams.
Added vtkFileResourceStream and vtkMemoryResourceStream implementations.

	vtkResourceParser added as a high-performance formatted input parser.
vtkResourceParser parses strings, floats, integers and booleans from any
vtkResourceStream. Most std::istream common features have equivalent
methods in vtkResourceParser, making migration mostly trivial.

	Added vtkPLYReader, vtkGLTFReader and vtkOBJReader support for reading
from vtkResourceStream.

	vtkMemoryResourceStream can now own a streamed buffer, meaning you can free
the source buffer after setting it. You can now set source buffer as a
std::string, a std::vector or a vtkBuffer*.

	Added vtkNek5000Reader to support NEK5000 data format.

	Added vtkOpenVDBReader in the IOOpenVDB module read to .vdb files.

	Added vtkIOSSWriter writer for the Exodus file format implemented using the
IOSS library [https://sandialabs.github.io/seacas-docs]. Input can be
vtkPartitionedDataSetCollection, vtkPartitionedDataSet or vtkDataSet.
vtkIOSSWriter can be executed in parallel.

	Added support for higher-order Lagrange cells with vtkIOSSReader.

	vtkIOSSReader now supports mixed-order, 12-node wedge elements.

	Added flag ReadAllFilesToDetermineStructure to vtkIOSSReader which toggles
reading all files or only reading the first file to determine mesh structure.

	Added vtkNetCDFUGRIDReader support for reading 2D meshes from NetCDF UGRID files.

	VTKHDF’s major version has been incremented to 2 due to the following additions:

	Added VTKHDF support for both static and transient vtkPolyData files.
The metadata schematic for how transient data is read is shown below (first image).

	Added VTKHDF support for transient ImageData and UnstructuredGrid data.
The metadata schematic for how transient data is read is shown below (second image).

	Specific documentation related to the evolution of the VTKHDF format can
be found here [https://kitware.github.io/vtk-examples/site/VTKFileFormats/].

	Added ANSYS Fluent CFF Reader (Common Fluid Format) into its own dedicated
module VTK::IOFLUENTCFF, which currently supports the new vtkFLUENTCFFReader.
See further documentation here [https://docs.vtk.org/en/latest/modules/vtk-modules/IO/FLUENTCFF/README.html].

	Added vtkNumberToString::SetHighExponent and vtkNumberToString::SetLowExponent
to control the exponent range for scientific or fixed notation.

	Fixed reading fault on vector fields with vtkXMLHyperTreeGridReader.

	Added support for mixed cell unstructured grids in vtkConduitSource. See
ValidateMeshTypeMixed and ValidateMeshTypeMixed2D tests in
IO/CatalystConduit/Testing/Cxx/TestConduitSource.cxx for more details.

	vtkDataObjectToConduit now supports polygons, vtkPolyData and mixed shapes
vtkUnstructuredGrid topologies.

[image: poly data hdf schema]
[image: schema]

	Add vtkMPICommunicator support for MPI message lengths > MAX_INT, which can
now occur in MPI 4.X and later.

	Added vtkMPICommunicator::NoBlockSend method that allows for dynamic MPI types.

	Fixed bugs in vtkMPICommunicator::Test* and vtkMPICommunicator::Wait* that
prevented them from being called repeatedly.

	vtkIOSSReader can now merge entity blocks into a single block for the exodus
format using the flag MergeExodusEntityBlocks which is off by default. This
is useful e.g. for cases where the entity blocks just represent different cell
types but they actually describe the same block.

	Incorrect vtkEnSightWriter output has been fixed for VTK_POLYGON, VTK_WEDGE,
VTK_QUADRATIC_WEDGE, VTK_QUADRATIC_EDGE or VTK_CONVEX_POINT_SET cell types.
Support for VTK_POLYHEDRON has also been added.

	Added flag WriteNodeIDs to vtkEnSightWriter, which toggles writing node
and element IDs to the EnSight data. This makes the output geometry file
significantly smaller.

	Added property SizeAverageCellToPoint to vtkOpenFOAMReader that allows the
user to weigh the cell point averaging operation by cell size.

Interaction

	Add support for removing intermediate layers with vtkExpandMarkedElements.
Added boolean flags RemoveSeed and RemoveIntermediateLayers. Using these
flags will remove their respective layers, keeping only the final expansion
layer. This functionality has been extended for use in vtkSelectionSource
and vtkSelector.

	vtkAppendSelection SetColorArray, SetInputColor and GetInputColor
methods added to associate colors to selections which are used to generate
a color array.

	vtkCameras can now be oriented with the vtkCamera3DWidget and its
representation vtkCamera3DRepresentation. The representation allows you to
move the camera position, target position, to rotate the view up and to
update its view angle. See example:

[image: camera widget example]

	Added vtk3DCursorWidget and vtk3DCursorRepresentation to track mouse in a
scene. The 3D cursor follows the mouse and is placed on the surface of the
actor’s scene. Note: this behavior does not currently support volumes.

	Added SetForce3DArcPlacement API to vtkAngleRepresentation2D which allows
users to force correct the 3D placement of arcs that may be misalligned.

	Moved vtkCompassWidget and vtkCompassRepresentation from Geovis/Core to
Interaction/Widgets. Previously these classes were in a non-working state,
but have been fixed with the following changes:

	vtkSliderRepresentation and subclasses: Fixes were applied to correctly
calculate the local coordinate for the slider position. They also now honor
their Visibility parameter.

	In vtkCompassWidget you can now adjust the update TimerDuration,
TiltSpeed and DistanceSpeed when clicking on the slider end caps.

	Added standardized color setters (SetForegroundColor, SetHandleColor and
SetInteractionColor) to several widgets used by ParaView. These widgets include
vtkBoxRepresentation, vtkCurveRepresentation, vtkLineRepresentation,
vtkSphereRepresentation, vtkImplicitCylinderRepresentation,
vtkImplicitPlaneRepresentation, vtkDisplaySizedImplicitPlaneRepresentation
and vtkPointHandleRepresentation3D. Description of added methods:
The intended use of these colors is as follows:

	Color

	Description

	HandleColor

	Widget handles that are available to interact with via click+drag.

	InteractionColor

	Widget handles the user is interacting with (via a click+drag) or hovering over.

	ForegroundColor

	Widget elements meant to contrast with the background and which are not interactive.

	Added vtkOrientationWidget and its representation
vtkOrientationRepresentation which are used to rotate any actor. The
appearance of widget controls are customizable through the representation.
See examples:

[image: orientation widget demonstration]
[image: orientation widget representations]

Math

	Add GetOctaveFrequencyRange computation to vtkFFT which gets lower/upper
frequencies of octaves. Parameters include octaveSubdivision, from which
you can choose one-third, half, or full octave frequency ranges (default is
full) as well as baseTwo which toggles between base 2 and base 10 power
(default is base 2).

Module System

	Added vtk_module_wrap_python(HEADERS_DESTINATION) argument. This argument
adds a header into the install tree that initializes the builtin module table
for statically built Python modules. This header had not been installed previously.

Python

	Added ModernizePythonImports.py script that parse Python scripts and
replaces “import vtk” with module specific imports for performance.

	vtkDataObject’s now support pickling by the Python
pickle module [https://docs.python.org/3/library/pickle.html].

	To use this new feature in python, you must first run:

import vtkmodules.util.pickle_support

	Once you have imported the module the pickling of data objects is straightforward:

from vtkmodules.vtkFiltersSources import vtkSphereSource
import vtkmodules.util.pickle_support
import pickle

sphereSrc = vtkSphereSource()
sphereSrc.Update()

pickled = pickle.dumps(sphereSrc.GetOutput())
unpickled = pickle.loads(pickled)

print(unpickled)

	Python 3.12 wheels are now provided for the following platforms:

	Linux x86_64

	Linux x86_64 (with OSMesa)

	macOS x86_64

	macOS arm64

	Windows x86_64

	Windows x86_64 (with OSMesa)

Qt

	Added minimal Qt/VTK example application MinimalQtVTKApp.

	QML integration support has been upgraded to allow a vtkRenderWindow per QQuick item.

	Added custom cursor methods to QVTKOpenGLStereoWidget and
QVTKOpenGLNativeWidget that get/set the cursor shape.

Rendering

	Added VTK_USE_WIN32_OPENGL option to disable Win32 API in
VTK::RenderingOpenGL2 on Windows. This enables OSMesa support on Windows.

	Improved performance of vtkTupleInterpolator.

	Added new module providing zSpace support to VTK, implementing render window,
interactor style, camera, etc. Supports both the “Core zSpace API” (legacy)
and the “Core Compatibility zSpace API” (latest).

	vtkAxisActor2D labels now use UseFontSizeFromProperty, which was formerly
used exclusively by the title.

	vtkImageResliceMapper now fully supports oriented images, in the same manner
as vtkImageSliceMapper. This allows the display of arbitrary oblique slices
of oriented images, including those where the orientation matrix has a
negative determinant.

	Improved performance and consistency of
vtkRenderWindowInteractor::ProcessEvents across all platforms.

	vtkCompositePolyDataMapper can now color separate blocks with different
scalar arrays. To use this functionality, turn on ScalarVisibility and
select a ScalarMode and/or a ColorMode.

	Improved performance of vtkContext2D for rendering large numbers of points.

	vtkCompositePolyDataMapper can now use separate lookup tables and
interpolation modes for different blocks in a composite dataset. You can
override lookup table and other related attributes like scalar interpolation
and scalar ranges. Refer to vtkMapper documentation. Here’s a summary:

	ScalarVisibility: True/False

	UseLookupTableScalarRange: When true, the mapper shall import the range
from the lookup table.

	InterpolateScalarsBeforeMapping: Applies when mesh is colored using point
scalars. This flag decides whether point colors are sampled using texture
maps instead of interpolating colors on the GPU after scalars are mapped to
colors.

	ColorMode: Specifies whether to map scalars to colors or directly use the
scalars as RGB(A) values.

	ScalarRange: Specifies a range of scalars for color mapping.

	LookupTable: Specifies a lookup table.

	vtkCompositePolyDataMapper in VTK::RenderingCore has been improved to
efficiently render large datasets. It now performs as well as vtkCompositePolyDataMapper2
in the VTK::RenderingOpenGL2 module, which has now been deprecated. This
refactor has significantly impacted the following VTK modules:

	vtkCompositePolyDataMapper now has an API similar to
vtkCompositePolyDataMapper2.

	vtkCompositeSurfaceLICMapper derives vtkCompositePolyDataMapper instead
of vtkCompositePolyDataMapper2.

	The OSPRay module uses vtkCompositePolyDataMapper instead of
vtkCompositePolyDataMapper2.

	vtkVtkJSSceneGraphSerializer uses vtkCompositePolyDataMapper instead of
vtkCompositePolyDataMapper2.

	Added new vtkOpenGLES30PolyDataMapper supports polydata and composite
dataset rendering with OpenGL ES 3.0. If VTK was configured with
VTK_OPENGL_USE_GLES=ON, this mapper is an override for vtkPolyDataMapper.

	Fixed vtkSurfaceLICMapper crash when rendering lines as tubes or points as spheres.

	vtkTextureObject can now be used to create texture buffers on all OpenGL
implementations that support 2D textures.

	Fixed vtkCamera CAVE bugs for head tracking and volume rendering.

	Fixed compositing artifacts when volume rendering in parallel with the OSPRay
raycaster. This fix adds a new VolumeSamplingRate parameter to
vtkOSPRayRendererNode.

	vtkPolarAxesActor has a number of new features.

	Radial/polar axes and arc ticks are now customizable.
SetRequestedNumberOfRadialAxes, SetRequestedDeltaAngleRadialAxes,
SetArcTickMatchesRadialAxes, SetRequestedNumberOfPolarAxes,
SetRequestedDeltaAnglePolarAxes, SetArcTickMatchesPolarAxes,
SetDeltaAngleMajor, and SetDeltaAngleMinor are all new methods.

	Tick size is now computed as a ratio of maximum radius by default. You can
specify a value for this ratio using SetTickRatioRadiusSize, default is 0.02.

	You can now change polar arcs resolution per degree. See
SetPolarArcResolutionPerDegree, default is 0.2.

	Text offsets are now customizable with SetPolarTitleOffset,
SetRadialTitleOffset, SetPolarLabelOffset and SetPolarExponentOffset.

	vtkMultiVolume now supports RGBA volume inputs in a similar way to the
existing single-input volume rendering. When turning off the
IndependentComponent flag of the vtkVolumeProperty and providing
4-components to the mapper values are interpreted as RGBA.

	Added new gradient background modes. You can select from various gradient
background modes with vtkViewport::SetGradientMode. The following modes are available:

	VTK_GRADIENT_VERTICAL
Background color is used at the bottom, Background2 color is used at the top.

	VTK_GRADIENT_HORIZONTAL
Background color on the left, Background2 color on the right.

	VTK_GRADIENT_RADIAL_VIEWPORT_FARTHEST_SIDE
Background color in the center, Background2 color on and beyond the circle
ellipse edge. Circle/Ellipse touches all sides of the square/rectangle
viewport.

	VTK_GRADIENT_RADIAL_VIEWPORT_FARTHEST_CORNER
Background color in the center, Background2 color on and beyond the circle/
ellipse edge. Circle/Ellipse touches all corners of the square/rectangle
viewport.
See gradient background examples:

[image: vtkViewport gradient modes example]

Third Party

	fast_float added as a vendored package. It is available using the
VTK::fast_float module.

VTK-m

	VTK-m submodule has been updated to the latest release, VTK-m 2.0.0. Being a
major update, it significantly breaks compatibility with the API provided by
VTK-m 1.X. Thus, many changes were needed in VTK to make it compatible with
VTK-m 2.0.0.

	All VTK-m cmake targets are now prefixed with vtkm_. Exceptions have been
made for vtkm::cuda and vtkm::kokkos_hip, for compatibility with
external VTK-m imports.

	VTK-m VTK module is now called vtk::vtkvtkm as opposed to vtk::vtkm.

	vtkmlib functions that translate VTK to VTK-m data structures now respect
coordinates system changes. Coordinates systems are now represented as a
field inside the VTK-m dataset rather than a special/unique component.

	The Fides library has been updated upstream to ensure compatibility with
VTK-m 2.0.0. This update in upstream has been brought to VTK to enable using
VTK-m 2.0.0 and Fides through VTK.

Deprecated and Removed Features

Legacy

The following APIs were deprecated in 9.1 or earlier and are now removed:

	Python 2 support has been removed.

	Threading types (use C++ std classes instead):

	vtkSimpleConditionVariable (std::condition_variable)

	vtkConditionVariable (std::condition_variable)

	vtkMutexType

	vtkSimpleMutexLock (std::mutex)

	vtkMutexLock (std::lock_guard)

	vtkCritSecType

	vtkSimpleCriticalSection (std::mutex)

	The EvaluateLocationProjectedNode method has been removed on the following
classes; use EvaluateLocation instead:

	vtkBezierCurve

	vtkBezierHexahedron

	vtkBezierQuadrilateral

	vtkBezierTetra

	vtkBezierTriangle

	vtkBezierWedge

	vtkBezierInterpolation::flattenSimplex has been renamed to
::FlattenSimplex

	vtkBezierInterpolation::unflattenSimplex has been renamed to
::UnFlattenSimplex

	vtkBezierInterpolation::deCasteljauSimplex has been renamed to
::DeCasteljauSimplex

	vtkBezierInterpolation::deCasteljauSimplexDeriv has been renamed to
::DeCasteljauSimplexDeriv

	vtkHigherOrderHexahedron::getEdgeCell has been renamed to ::GetEdgeCell

	vtkHigherOrderHexahedron::getFaceCell has been renamed to ::GetFaceCell

	vtkHigherOrderHexahedron::getInterp has been renamed to ::GetInterpolation

	vtkHigherOrderQuadrilateral::getEdgeCell has been renamed to ::GetEdgeCell

	vtkHigherOrderTetra::getEdgeCell has been renamed to ::GetEdgeCell

	vtkHigherOrderTetra::getFaceCell has been renamed to ::GetFaceCell

	vtkHigherOrderTriangle::eta has been renamed to ::Eta

	vtkHigherOrderTriangle::deta has been renamed to ::Deta

	vtkHigherOrderTriangle::getEdgeCell has been renamed to ::GetEdgeCell

	vtkHigherOrderQuadrilateral::getBdyQuad has been renamed to ::GetBoundaryQuad

	vtkHigherOrderQuadrilateral::getBdyTri has been renamed to ::GetBoundaryTri

	vtkHigherOrderQuadrilateral::getEdgeCell has been renamed to ::GetEdgeCell

	vtkHigherOrderQuadrilateral::getInterp has been renamed to ::GetInterpolation

	vtkIncrementalOctreeNode::InsertPoint without numberOfNodes is removed
for the variant with it

	vtkLine::Intersection3D has been replaced by vtkLine::Intersection

	vtkPointData::NullPoint has been replaced by vtkFieldData::NullData

	vtkSelectionNode::INDEXED_VERTICES has been removed

	vtkReaderExecutive has been removed

	vtkThreadMessager has been removed; use C++ std threading support instead

	vtkPassThroughFilter has been replaced by vtkPassThrough

	vtkXMLPPartitionedDataSetWriter has been replaced by
vtkXMLPartitionedDataSetWriter

	vtkBlueObeliskData::GetWriteMutex has been replaced by ::LockWriteMutex
and ::UnlockWriteMutex

	vtkThreshold::ThresholdByLower has been replaced by ::SetLowerThreshold
or ::SetThresholdFunction

	vtkThreshold::ThresholdByUpper has been replaced by ::SetUpperThreshold
or ::SetThresholdFunction

	vtkThreshold::ThresholdBetween has been replaced by ::SetLowerThreshold
and ::SetUpperThreshold or ::SetThresholdFunction

	vtkMultiBlockFromTimeSeriesFilter has been replaced by
vtkGroupTimeStepsFilter

	vtkDataSetGhostGenerator has been replaced by vtkGhostCellsGenerator

	vtkDataSetSurfaceFilter methods ::GetUseStrips, ::SetUseStrips,
::UseStripsOn, and ::UseStripsOff have been removed

	vtkStructuredGridGhostDataGenerator has been replaced by
vtkGhostCellsGenerator

	vtkUniformGridGhostDataGenerator has been replaced by
vtkGhostCellsGenerator

	vtkUnstructuredGridGhostCellsGenerator has been replaced by
vtkGhostCellsGenerator

	vtkPDataSetGhostGenerator has been replaced by
vtkGhostCellsGenerator

	vtkPStructuredGridGhostDataGenerator has been replaced by
vtkGhostCellsGenerator

	vtkPUniformGridGhostDataGenerator has been replaced by
vtkGhostCellsGenerator

	vtkPUnstructuredGridGhostCellsGenerator has been replaced by
vtkGhostCellsGenerator

	vtkOpenGLRenderer::HaveApplePrimitiveIdBug has been removed as no supported
macOS release has the issue anymore

	vtkOpenGLRenderWindow has removed the following methods:

	::GetBackLeftBuffer

	::GetBackRightBuffer

	::GetFrontLeftBuffer

	::GetFrontRightBuffer

	::GetBackBuffer

	::GetFrontBuffer

	vtkOpenGLRenderWindow::GetOffScreenFramebuffer has been replaced by
::GetRenderFramebuffer

	vtkDataEncoder::PushAndTakeReference has been replaced by ::Push

	vtkGenericOpenGLRenderWindow::IsDrawable is removed

	vtkIOSRenderWindow::IsDrawable is removed

	vtkCocoaRenderWindow::IsDrawable is removed

	vtkRenderWindow::IsDrawable is removed

	vtkDIYUtilities::GetDataSets is replaced by
vtkCompositeDataSet::GetDataSets

	vtkCurveRepresentation::*DirectionalLine* methods have been renamed to
::*Directional*

	vtkSimpleImageFilterExample has been removed

	vtkExodusIIReaderPrivate::PrintData has been renamed to ::PrintSelf

	vtkEnSightReader::ReplaceWildcards has been replaced by
vtkGenericEnSightReader::ReplaceWildcardsHelper

	vtkQtSQLDatabase::*Port has been renamed to ::*DbPort to avoid Windows
SDK macro collisions

	The vtkDataSetSurfaceFilter::GetInterpolatedPointId overload
without weights has been replaced by the one with it

Charts

	vtkPlot color setter/getter methods with floating point parameters are now
suffixed with F. The former methods without the suffix have been deprecated.
For example:

	vtkPlot::SetColor(double r, double g, double b) has been moved to
vtkPlot::SetColorF(double r, double g, double b).

Core

	The vtkStdString implicit conversion to const char* is deprecated. Instead,
call .c_str() explicitly on the instance.

	vtkVariant::ToX and related string parsing no longer supports [-]infinity
as a valid float conversion. Only [-]inf is now supported.

Data

	Deprecated vtkCompositeDataSet::RecursiveShallowCopy, use
vtkCompositeDataSet::ShallowCopy instead.

	vtkUnstructuredGrid::GetCellLinks has been deprecated,
vtkUnstructuredGrid::GetLinks instead.

	vtkAbstractCellLinks::BuildLinks(vtkDataSet*) has been deprecated, use
vtkAbstractCellLinks::BuildLinks() instead.

Filters

	vtkDataObjectToTable is deprecated in favor of
vtkAttributeDataToTableFilter, which has the same functionality.

	vtkProcessIdScalars is deprecated in favor of vtkGenerateProcessIds. The
following is a migration example:

	Deprecated vtkProcessIdScalars code:

vtkNew<vtkProcessIdScalars> processIdsGenerator;
processIdsGenerator->SetInputConnection(someData->GetOutputPort());
processIdsGenerator->SetScalarModeToCellData();
processIdsGenerator->Update();

vtkDataSet* pidGeneratorOutput = processIdsGenerator->GetOutput();
vtkIntArray* pidArray = vtkIntArray::SafeDownCast(pidGeneratorOutput->GetCellData()->GetArray("ProcessId"));

	New vtkGenerateProcessIds code:

vtkNew<vtkGenerateProcessIds> processIdsGenerator;
processIdsGenerator->SetInputConnection(someData->GetOutputPort());
processIdsGenerator->GeneratePointDataOff();
processIdsGenerator->GenerateCellDataOn();
processIdsGenerator->Update();

vtkDataSet* pidGeneratorOutput = processIdsGenerator->GetOutput();
vtkIdTypeArray* pidArray = vtkIdTypeArray::SafeDownCast(pidGeneratorOutput->GetCellData()->GetProcessIds());

	vtkCapsuleSource is deprecated in favor of vtkCylinderSource::SetCapping(true) and
vtkCylinderSource::SetCapsuleCap(true), which has the same functionality.

I/O

	vtkOpenFOAMReader support for polyhedral decomposition,
SetDecomposePolyhedra, has been deprecated.

	vtkNumberToString::operator() has been deprecated in favor of
vtkNumberToString::Convert.

Python

	The VTK wheels no longer provide the VTK::PythonInterpreter module as it is
unnecessary in such situations.

Rendering

	vtkXOpenGLRenderWindow::SetSizeNoXResize() has been deprecated due to
structural RenderingUI changes in VTK 9.0.

	vtkOutputWindowCleanup has been deprecated as it is no longer used.

	vtkCompositePolyDataMapper2 has been deprecated in favor of
vtkCompositePolyDataMapper following the latter’s performance improvements.

Other Changes

 9.2

9.2

Released on 2022-09-27.

9.2.0 Release Notes

Changes made since VTK 9.1.0 include the following.

Changes

Build

	The VTK_USE_MPI and VTK_USE_TK options are more lenient and will not
force any modules in the MPI or Tk group, respectively, to be built.
Instead, affected modules may be disabled if they are unwanted.

	VTK’s packages now hint OpenVR locations (for the build tree or
VTK_RELOCATABLE_INSTALL=OFF installations).

	Installation destinations for Python modules is now fixed under MinGW.

	Compile fixes for older compilers, mainly GCC 4.8.

Core

	vtkVector’s += and -= operators now return a vtkVector& as expected.
Previously they returned uninitialized vtkVector instances which is of
little use to anyone.

	vtkSetGet.h macros which create setters now have *Override variants to
use the override keyword instead of repeating virtual.

	vtkObject instances may now be assigned a name used in reporting. It is not
copied by ShallowCopy or DeepCopy copies.

	vtkAbstractArray::CreateArray now prefers creating sized integer arrays
rather than arrays of basic C types. This is intended to help readers get
the correct size instead of having to remember whether long is 32 or 64
bits on the given platform.

Data

	The vtkArrayListTemplate helper class for vtkDataSetAttributes
incorrectly held a vtkDataArray*. This meant that filters using the class
could not support other arrays such as vtkStringArray. Now, it holds a
vtkAbstractArray* to support these types. Users may adapt by using
vtkArrayDownCast to obtain a vtkDataArray* if needed.

Filters

	vtkArrayCalculator, vtkmodules.numpy_interface.dataset_adapter, and
vtkProgrammableFilter support for vtkHyperTreeGrid has been improved.

	vtkUnstructuredGridQuadricDecimation::NO_ERROR has been renamed to
::NON_ERROR to avoid conflicts with Microsoft Windows SDK headers.

	vtkImprintFilter::ABSOLUTE has been renamed to ::ABSOLUTE_TOLERANCE to
avoid conflicts with Microsoft Windows SDK headers.

	vtkMeshQuality and vtkCellTypes now use a enum class QualityMeasureTypes instead of #define symbols for metrics.

	vtkCheckerboardSplatter no longer has nested parallelism.

	vtkmProbe filters now return probed fields as point data rather than cell
data.

	vtkDescriptiveStatistics’s Kurtosis formula had a mistake which is now
corrected.

	vtkDescriptiveStatistics previously supported toggling kurtosis, skewness,
and variance over sample or population individually. Now, sample or
population can be selected using the SampleEstimate boolean (on by
default). This simplifies interactions with the filter and avoids confusion
by mixing and matching. The previous APIs still exist, but do not do anything.

	vtkPlaneCutter now frees the sphere trees if the input changes and can
handle vtkUniformGridAMR inputs.

	vtkPlaneCutter now uses vtkAppendPolyData internally to merge internal
results. This avoids complex vtkMultiBlockDataSet inputs from creating
complicated sets of vtkMultiPieceDataSet. Inputs and outputs are now
transformed as follows:

	vtkMultiBlockDataSet input becomes vtkMultiBlockDataSet

	vtkUniformGridAMR input becomes vtkPartitionedDataSetCollection
(previously vtkMultiBlockDataSet)

	vtkPartitionedDataSetCollection input becomes
vtkPartitionedDataSetCollection

	vtkPartitionedDataSet input becomes vtkPartitionedDataSet

	vtkDataSet input becomes vtkPolyData (previously
vtkPartitionedDataSet)

	vtkCellTreeLocator has moved from VTK::FiltersGeneral to
VTK::CommonDataModel

	vtkArrayCalculator no longer calls Modified() on any value setting
because it causes multi-threaded contention.

	The vtkArrayRename filter may be used to rename data arrays within a data
set.

	vtkGeometryFilter no longer supports the vtkUnstructuredGrid::FastMode
using the Degree flag.

	vtkTemporalDataSetCache no longer crashes when a nonexistent timestep is
requested.

	vtkTableFFT no longer prefixes output array names with “FFT_” like it was in 9.1
and just keep the same name as the input like it was doing before 9.1. A new API
has been added to keep 9.1 behavior when needed.

	vtkContourTriangulator polygon bounds checking now factors in the tolerance.

	vtkImageDifference calculations have been fixed. Note that this may affect
testing results.

	vtkLagrangianParticleTracker caching invalidation logic fixed.

Interaction

	vtkFrustumSelection has been optimized.

	Selection extraction on vtkUniformGridAMR has been fixed.

I/O

	The vtkIOSSReader now provides DisplacementMagnitude to scale point
displacement.

	The vtkIOSSReader now turns off the LOWER_CASE_VARIABLE_NAMES IOSS
property.

	vtkIOSSReader now reads side sets correctly by avoiding a false positive
hit in its internal cache.

	FFmpeg 5.0 is now supported.

	vtkXdmfReader no longer caches internal XdmfGrid instances to avoid
wasting memory. See #19633.

	vtkJSONSceneExporter no longer overwrites existing files.

	vtkGLTFExporter now exports the correct camera transformation matrix.
Imported scenes may use vtkGLTFImporter::SetCamera(0) prior to Update()
to use the original camera location.

	vtkPLYWriter may now write the point normals of input meshes, if present.

	vtkPIOReader now requires dump files to begin with the problem name. This
avoids using an unrelated file for partially written dumps.

	vtkNetCDFCAMReader now properly extracts level data.

Rendering

	vtkProp3D actors may now be added using different coordinate frames:
WORLD (the default), PHYSICAL (in VR, the physical room’s coordinates, in
meters), and DEVICE (relative to the device). When using PHYSICAL or
DEVICE, a renderer must be provided via the new
SetCoordinateSystemRenderer() and SetCoordinateSystemDevice() methods.
Such props should typically use UseBoundsOff() to ignore their bounds when
resetting the camera.

	Unstable volume rendering configurations are detected.

	Volume rendering now supports more than 6 lights.

	vtkXOpenGLRenderWindow and vtkXRenderWindowInteractor now properly
disconnects from the display when it is not owned.

	Add a missing GIL lock in vtkMatplotlibMathTextUtilities.

	Avoid a hard-coded translation when resetting the camera in VR.

Python

	SDKs for each weekly wheels are now available on vtk.org. Releases will
also have them available.

	vtkmodules.qt now supports PyQt6.

	Python 3.10 is now supported by vtkpython.

	Python 3.10 wheels are now supported.

	VTK’s wrapped classes may now be interposed by using the class’ override
decorator:

from vtkmodules.vtkCommonCore import vtkPoints

@vtkPoints.override
class foo(vtkPoints):
 pass

o = vtkPoints() # o is actually an instance of foo

	Note that Python subclasses still cannot override C++ virtual functions,
cannot alter the C++ class hierarchy, is global, and is ignored when the
class uses vtkObjectFactory to provide a subclass from its ::New()
method.

	.pyi files for autocompletion and hinting in editors are now available in
VTK builds and wheels. Note that Windows wheels older than 3.8 do not provide
.pyi files for platform-specific reasons.

	Starting with 9.2.3, Python 3.11 is supported and newly-deprecated APIs are
avoided.

	Starting with 9.2.3, Matplotlib 3.6 is now supported.

	Starting with 9.2.3, vtk[web] is required to get web dependencies with the
wheels.

Web

	Fix a memory leak in vtkWebApplication.

	The render window serializers were updated to better map VTK options to
VTK.js options. This includes font coloring for scalar bars and color
transfer function discretization.

	vtkDataSetSurfaceFilter is used in place of vtkGeometryFilter

	The generic mapper serializer now uses vtkDataSetSurfaceFilter to always
extract a surface from the input dataset.

	Python print statements were changed to DEBUG logging statements.

Third Party

	VTK’s vendored HDF5 library has been updated to 1.13.1.

	VTK’s vendored verdict library has been updated.

	VTK’s vendored freetype library has been updated to 2.12.0.

	VTK’s vendored mpi4py’s Cython updated to support Python 3.11.

	Avoidance of deprecated APIs in new FFmpeg releases.

	VTK’s vendored libproj better supports cross-compilation.

Infrastructure

	Modules may now specify license files for the module in their vtk.module
file. It will automatically be installed.

New Features

Animation

	Animations may now be played in reverse using vtkAnimationCue’s direction
to vtkAnimationCue::PlayDirection::BACKWARD

Build

	When VTK::AcceleratorsVTKmFilters is enabled, the
VTK_ENABLE_VTKM_OVERRIDES option may be turned on to provide factory
overrides for other VTK filters. Note that for these overrides to be used,
the relevant VTKm modules must be linked (for C++) or imported (for Python)
to be effective.

Core

	vtkMath::Convolve1D can be used to compute the convolution of two 1D
signals using full, same, or valid boundary conditions.

	vtkReservoirSampler may be used to perform reservoir sampling. It is
intended for selecting random fixed-size subsets of integer sequences (e.g.,
array indices or element IDs).

Charts

	The parallel coordinates chart now supports multiple selections on the same
axis. This includes addition, subtraction, and toggle actions.

Filters

	The vtkGenerateTimeSteps filter may be used to add timesteps to
shallow-copied data within a pipeline.

	The vtkHyperTreeGridGradient filter may be used to compute a gradient over
a scalar field. The edges of the dual is used, so all neighbors are
considered, but coarse cells are ignored.

	The vtkExtractParticlesOverTime filter may extract particles over time that
pass through a given volumetric dataset.

	vtkMultiObjectMassProperties now also computes the centroids of each
object. Centroids are calculated using tetrahedron centroids and uniform
density.

	vtkJoinTables may perform a SQL-style JOIN operation on two vtkTable
objects. The columns to keep depend on the mode: intersection (keep columns
common to both tables), union (keeps columns present in either table), and
left and right (keeping the keys present in the respective input table).

	vtkComputeQuantiles has been split out of vtkComputeQuartiles as a new
superclass. It supports arbitrary numbers of buckets.

	vtkMeshQuality and vtkCellQuality have:

	been multithreaded

	improved documentation

	no longer supports the AspectBeta tetrahedron metric

	improved pyramid cell metrics:

	EquiangleSkew

	Jacobian

	ScaledJacobian

	Shape

	Volume

	improved wedge cell metrics:

	Condition

	Distortion

	EdgeRatio

	EquiangleSkew

	Jacobian

	MaxAspectFrobenius

	MaxStretch

	MeanAspectFrobenius

	ScaledJacobian

	Shape

	Volume

	new triangle cell metrics:

	EquiangleSkew

	NormalizedInradius

	new quadrilateral cell metrics:

	EquiangleSkew

	new tetrahedron cell metrics:

	EquiangleSkew

	EquivolumeSkew

	MeanRatio

	NormalizedInradius

	SquishIndex

	new hexahedron cell metrics:

	EquiangleSkew

	NodalJacobianRatio

	The new vtkLinearTransformCellLocator is a cell locator adaptor which can
calculate a transformation matrix from a base dataset to another dataset.
This matrix is then used to perform cell locator operations. The
UseAllPoints() method may be used to use either all dataset points (if the
transformation might not be linear) or, at most, 100 sample points sampled
uniformly from the dataset’s point array.

	vtkCellLocator, vtkStaticCellLocator, vtkCellTreeLocator,
vtkModifiedBSPTree, and vtkLinearTransformCellLocator each have numerous
improvements:

	support for ShallowCopy()

	caching cell bounds has been multithreaded

	InsideCellBounds checks are now cached

	new IntersectWithLine methods sorted by a parametric t; this also
provides FindCellsAlongLine for each locator

	the tolerance parameter may be used to check cell bound intersections

	The UseExistingSearchStructure parameter may be used to not rebuild
locators when component data changes, but the geometry stays the same; use
ForceBuildLocator to rebuild as needed in this case

	vtkCellTreeLocator supports 64bit IDs.

	vtkCellTreeLocator::IntersectWithLine() and
vtkModifiedBSPTree::IntersectWithLine() are now thread-safe.

	vtkCellLocator is now fully thread-safe.

	The vtkAlignImageDataSetFilter has been added which can align image
datasets to share a single global origin and offset extents in each component
image accordingly. All images must use the same spacing.

	The new vtkLengthDistribution filter may be used to estimate the range of
geometric length scales preset in a vtkDataSet.

	vtkImageMathematics can now perform operations on more than two images.
Rather than connecting a second image to port 1, all connections are made to
port 0 instead. This unifies behavior with other repeatable image filters
such as vtkImageAppend.

	VTKm’s vtkmContour filter may be used as a factory override for
vtkContourFilter.

	VTKm filter factory overrides may be toggled using
vtkmFilterOverrides::SetEnabled().

	The vtkExtractHistogram filter has been moved from ParaView into VTK.

	vtkPointDataToCellData now handles categorical data using multiple threads.

	vtkSuperquadricSource now creates pieces using multiple threads.

	Particle traces now support vtkDataObjectTree objects to define seed points
rather than only vtkDataSet objects.

	vtkStreamTracer now uses SMP when multiprocessing is not in use.

	vtkStreamTracer performance and quality have been improved.

	vtkFindCellStrategy::FindClosestPointWithinRadius() has been added.

	vtkCompositeInterpolatedVelocityField::SnapPointOnCell() has been
refactored from the vtkInterpolatedVelocityField and
vtkCellLocatorInterpolatedVelocityField subclasses.

	vtkParticleTracerBase is now multithreaded (with one MPI rank or more than
100 particles).

	vtkParticleTracerBase can now use either use a cell locator (the default)
or point locator for interpolation.

	vtkParticleTracerBase supports different levels of mesh changes over time:

	DIFFERENT: the mesh changes on every timestep.

	SAME: the mesh is the same on every timestep.

	LINEAR_TRANSFORMATION: the mesh is a linear transformation of the prior
timesteps (partially applies to point locators as only cell links are
preserved).

	SAME_TOPOLOGY: the mesh data changes, but its topology is the same every
timestep (only applies to point locators).

	vtkTemporalInterpolatedVelocityField can now use the FindCellStrategy
because it now preserves higher numerical accuracy internally.

	vtkGeometryFilter is now multi-threaded over more data types including:

	vtkUnstructuredGrid

	vtkUnstructuredGridBase

	vtkImageData (3D)

	vtkRectilinearGrid

	vtkStructuredGrid

	vtkGeometryFilter can now handle ghost and blank cells and points.

	vtkGeometryFilter can now remove ghost interfaces using the
RemoveGhostInterfaces flag (default on).

	The vtkFiniteElementFieldDistributor filter can now visualize Discontinuous
Galerkin (DG) finite element fields of type H(Grad), H(Curl), and H(Div).

	Note that all cells must be of the same type and the field data must
contain a vtkStringArray describing the DG fields, basis types, and
reference cells.

Interaction

	vtkDisplaySizedImplicitPlaneWidget is now provided. Compared to
vtkImplicitPlaneWidget2:

	the outline is not drawn by default

	the intersection edges of the outline and the plane may be drawn

	the normal arrow and plane size are relative to the viewport

	their sizes may be bounded by the widget bounds

	the origin may be moved freely rather than constrained to the bounding box

	the handle sizes are larger

	the plane is represented as a disc

	the only option for the perimeter is to be tubed or not

	the perimeter may be selected and resized to change the disc radius

	the actors are highlighted only when hovered

	except the plane surface which is highlighted when any actor is hovered
over

	a new plane origin may be picked using P or p

	the ctrl modifier will snap to the closest point on an object or the
camera plane focal point otherwise

	a new plane normal may be picked using N or n

	the ctrl modifier will snap to the closest normal on an object or the
camera plane normal otherwise

	picking tolerance is relative to the viewport size

	vtkResliceImageViewer may now apply a factor when scrolling.

	vtkResliceCursorWidgetLineRepresentation supports alt+leftclick to
translate along a single axis.

	vtkVRInteractorStyle now supports the Grounded movement style. The
existing movement style is called Flying. Grounded movement is
constrained to an xy plane in four directions on one joystick. The other
joystick changes elevation.

	vtkSelection now supports the xor boolean operator.

	vtkSelectionSource now supports multiple selection nodes.

	vtkSelectionSource may now define the field option using either FieldType
or ElementType.

	vtkSelectionSource now defines the ProcessId of the selection.

	vtkAppendSelection can now append multiple selections through an expression
using selection input names.

	vtkConvertSelection may now convert BLOCK and BLOCK_SELECTORS nodes to
INDICES.

I/O

	vtkFidesReader reader can now use the Inline engine for in-situ
processing.

	vtkCatalystConduit may be used to adapt Conduit [https://llnl-conduit.readthedocs.io/en/latest/index.html] datasets via the
Catalyst [https://gitlab.kitware.com/paraview/catalyst] library’s conduit interactions [https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html#relationship-with-conduit]. This
module requires an external catalyst library to be provided. This module
includes:

	vtkConduitSource: a source filter which generates a vtkPartionedDataSet
or vtkPartitionedDataSetCollection from a Conduit node (it may also
generate vtkMultiBlockDataSet if needed for historical reasons).

	vtkDataObjectToConduit to convert any vtkDataObject into a Conduit node

	a Catalyst implementation

	The vtkHDFReader filter now supports overlapping AMR datasets. The
specification can be found in the
VTK File Formats documentation [https://kitware.github.io/vtk-examples/site/VTKFileFormats/#hdf-file-formats].

	vtkCGNSReader now support reading cell- or face-centered data arrays for
meshes with 3D cells. Note that connectivity must be defined using NGON_n
in face-based meshes. Data arrays are then defined with a GridLocation_t of
either CellCenter or FaceCenter. The behavior may be selected by setting
vtkCGNSReader::DataLocation to vtkCGNSReader::CELL_DATA (the default and
previous behavior) or vtkCGNSReader::FACE_DATA.

	vtkPIOReader can now read restart block and even/odd dumps.

	vtkPIOReader will now add the xdt, ydt, zdt, and rho derived
variables and calculate them if they are not already present in the restart
file.

	vtkIOSSReader now caches time values internally to avoid filesystem
contention on HPC systems.

	The new vtkIOSSWriter can write Exodus files using the IOSS library. For
now, only element blocks, node sets, and side sets are supported.

Qt

	QVTKTableModelAdapter may be used to provide a QAbstractItemModel model
as a vtkTable to use in a pipeline.

Rendering

	Basic OpenXR support is supported for virtual reality rendering.

	The vtkHyperTreeGridMapper mapper may be used to render only visible parts
of a vtkHyperTreeGrid in 2D.

	Rendering point sets may now use OSPRay’s “Particle Volume” when using
vtkPointGaussianMapper’s ray tracing backend.

	vtkColorTransferFunction::AddRGBPoints may now be called with points and
colors in batches for much better performance.

	The WindowLocation API has moved from vtkTextRepresentation to
vtkBorderRepresentation so that it can be used by more classes.

	Volumetric shadows is now supported which allows for a volumetric model to
cast shadows on itself. Requires volumetric shading to be enabled. An
illumination reach parameter controls how accurate the shadows will be, 0
meaning only local shadows and 1 for shadows across the entire volume.

[image: TestOSPRayPointGaussianMapper]

	Interactive rendering of most widgets are now supported with OSPRay.

[image: TestOSPRayBoxWidget2]
[image: TestOSPRaySplineWidget2]
[image: TestOSPRayImplicitPlaneWidget2]
[image: TestOSPRayPointHandleRepresentation3D]

Widgets

	The vtkCoordinateFrameWidget controls 3 orthogonal right-handed planes.
Axes are rendered proportionally to the viewport size (and is configurable).
Interaction may pick a basis point and choose alignment with a surface normal
or another point. See this Discourse thread [https://discourse.vtk.org/t/vtkcoordinateframewidget/7379] for discussion.

	vtkHardwarePicker may be used to pick a point and normal by intersection
with a mesh cell or nearest mesh point.

[image: Coordinate Frame Widget]

Testing

	The vtkHyperTreeGridPreConfiguredSource may be used to generate different
vtkHyperTreeGrid datasets for testing purposes instead of hand-crafting
them.

Wrapping

	Wrapping tools now support Unicode command line arguments.

	vtkSmartPointer<T> parameters and return values are now supported in
wrapped Python APIs. std::vector<vtkSmartPointer<T>> is also supported by
appearing as a tuple in Python and conversion from any sequence when
converting to C++.

Module System

	vtk_module_sources is now provided as a wrapper around target_sources for
VTK module targets.

	vtk_module_add_module now supports a NOWRAP_TEMPLATE_CLASSES keyword for
template classes which should not be wrapped.

Deprecated and Removed Features

Legacy

The following APIs were deprecated in 9.0 or earlier and are now removed:

	vtkPlot::GetNearestPoint(const vtkVector2f&, const vtkVector2f&, vtkVector2f*)

	vtkPlot::LegacyRecursionFlag (used to help subclasses implement the
replacement for the prior method)

	The following APIs have been replaced by vtkOutputWindow::SetDisplayMode():

	vtkOutputWindow::SetUseStdErrorForAllMessages()

	vtkOutputWindow::GetUseStdErrorForAllMessages()

	vtkOutputWindow::UseStdErrorForAllMessagesOn()

	vtkOutputWindow::UseStdErrorForAllMessagesOff()

	vtkWin32OutputWindow::SetSendToStdErr()

	vtkWin32OutputWindow::GetSendToStdErr()

	vtkWin32OutputWindow::SendToStdErrOn()

	vtkWin32OutputWindow::SendToStdErrOff()

	vtkArrayDispatcher, vtkDispatcher, vtkDoubleDispatcher have been
replaced by vtkArrayDispatch

	Fetching edge and face points via int rather than vtkIdType:

	vtkConvexPointSet::GetEdgePoints(int, int*&)

	vtkConvexPointSet::GetFacePoints(int, int*&)

	vtkHexagonalPrism::GetEdgePoints(int, int*&)

	vtkHexagonalPrism::GetFacePoints(int, int*&)

	vtkHexahedron::GetEdgePoints(int, int*&)

	vtkHexahedron::GetFacePoints(int, int*&)

	vtkPentagonalPrism::GetEdgePoints(int, int*&)

	vtkPentagonalPrism::GetFacePoints(int, int*&)

	vtkPolyhedron::GetEdgePoints(int, int*&)

	vtkPolyhedron::GetFacePoints(int, int*&)

	vtkPyramid::GetEdgePoints(int, int*&)

	vtkPyramid::GetFacePoints(int, int*&)

	vtkTetra::GetEdgePoints(int, int*&)

	vtkTetra::GetFacePoints(int, int*&)

	vtkVoxel::GetEdgePoints(int, int*&)

	vtkVoxel::GetFacePoints(int, int*&)

	vtkWedge::GetEdgePoints(int, int*&)

	vtkWedge::GetFacePoints(int, int*&)

	Querying point cells with an unsigned short count of cells:

	vtkPolyData::GetPointCells(vtkIdType, unsigned short&, vtkIdType*&)

	vtkUnstructuredGrid::GetPointCells(vtkIdType, unsigned short&, vtkIdType*&)

	vtkAlgorithm::SetProgress() has been replaced by
vtkAlgorithm::UpdateProgress()

	The following APIs have been replaced by
vtkResourceFileLocator::SetLogVerbosity():

	vtkResourceFileLocator::SetPrintDebugInformation()

	vtkResourceFileLocator::GetPrintDebugInformation()

	vtkResourceFileLocator::PrintDebugInformationOn()

	vtkResourceFileLocator::PrintDebugInformationOff()

	vtkIdFilter::SetIdsArrayName() has been replaced by
vtkIdFilter::SetPointIdsArrayName() and
vtkIdFilter::SetCellIdsArrayName()

	vtkExtractTemporalFieldData has been replaced by
vtkExtractExodusGlobalTemporalVariables

	vtkTemporalStreamTracer and vtkPTemporalStreamTracer have been replaced
by vtkParticleTracerBase, vtkParticleTracer, vtkParticlePathFilter, or
vtkStreaklineFilter

	vtkHyperTreeGridSource::GetMaximumLevel() and
vtkHyperTreeGridSource::SetMaximumLevel() have been replaced by
vtkHyperTreeGridSource::GetMaxDepth() and
vtkHyperTreeGridSource::SetMaxDepth()

	QVTKOpenGLNativeWidget, QVTKOpenGLStereoWidget, QVTKOpenGLWindow
methods have been removed:

	::SetRenderWindow() is now ::setRenderWindow()

	::GetRenderWindow() is now ::renderWindow()

	::GetInteractor() and GetInteractorAdaptor() have been removed

	::setQVTKCursor() is now QWidget::setCursor()

	::setDefaultQVTKCursor() is now QWidget::setDefaultCursor()

	QVTKOpenGLWidget is replaced by QVTKOpenGLStereoWidget

	vtkJSONDataSetWriter::{Get,Set}FileName() is now
vtkJSONDataSetWriter::{Get,Set}ArchiveName()

	vtkLineRepresentation::SetRestrictFlag() has been removed

	The following vtkRenderWindow methods have been removed:

	GetIsPicking()

	SetIsPicking()

	IsPickingOn()

	IsPickingOff()

	The following APIs have been replaced by vtkShaderProperty methods of the
same names:

	vtkOpenGLPolyDataMapper::AddShaderReplacement()

	vtkOpenGLPolyDataMapper::ClearShaderReplacement()

	vtkOpenGLPolyDataMapper::ClearAllShaderReplacements()

	vtkOpenGLPolyDataMapper::ClearAllShaderReplacements()

	vtkOpenGLPolyDataMapper::SetVertexShaderCode()

	vtkOpenGLPolyDataMapper::GetVertexShaderCode()

	vtkOpenGLPolyDataMapper::SetFragmentShaderCode()

	vtkOpenGLPolyDataMapper::GetFragmentShaderCode()

	vtkOpenGLPolyDataMapper::SetGeometryShaderCode()

	vtkOpenGLPolyDataMapper::GetGeometryShaderCode()

	The following APIs have been removed (they supported the legacy shader
replacements):

	vtkOpenGLPolyDataMapper::GetLegacyShaderProperty()

	vtkOpenGLPolyDataMapper::LegacyShaderProperty

	The following APIs have been removed since only FLOATING_POINT mode is now
supported:

	vtkValuePass::SetRenderingMode()

	vtkValuePass::GetRenderingMode()

	vtkValuePass::SetInputArrayToProcess()

	vtkValuePass::SetInputComponentToProcess()

	vtkValuePass::SetScalarRange()

	vtkValuePass::IsFloatingPointModeSupported()

	vtkValuePass::ColorToValue()

	vtkPythonInterpreter::GetPythonVerboseFlag() has been replaced by
vtkPythonInterpreter::GetLogVerbosity()

	vtkUnicodeString and vtkUnicodeStringArray have been removed. The
vtkString and vtkStringArray classes are now fully UTF-8 aware. UTF-16
conversion is no longer possible through VTK APIs.

	vtkVariant support for __int64 and unsigned __int64 has been removed.
They have returned false for years.

Core

	vtkCellTypes no longer uses LocationArray. It was used for
vtkUnstructuredGrid but is now stored with the class instead. As of this
deprecation, all supported APIs are now only static methods.

	vtkUnstructuredGrid::GetCellTypes is deprecated. Instead,
vtkUnstructuredGrid::GetDistinctCellTypesArray should be used to access the
set of cell types present in the grid.

	vtkHyperTreeGrid::GetNumberOfVertices() is now
vtkHyperTreeGrid::GetNumberOfCells() to align with VTK’s usage of the
terminology.

	Classes may now opt into the garbage collection mechanism by overriding the
UsesGarbageCollector() method to return true instead of via the
Register() and UnRegister() methods.

	vtkCriticalSection is deprecated. vtkCriticalSection was intended to be
deprecated in VTK 9.1.0, but a warning was never added to it. VTK now has the
warning present as it was originally intended.

Filters

	vtkChemistryConfigure.h has been deprecated. It previously only provided
information to VTK’s test suite which is now routed internally instead. There
is no replacement and any usage can simply be removed.

	vtkMFCConfigure.h has been deprecated. It used to provide information used
during the module’s build that is now passed through command line flags
instead. There is no replacement and any usage can simply be removed.

	vtkMeshQuality’s mechanism to run the filter in legacy mode is deprecated.
In particular the CompatibilityMode and Volume members are no longer
necessary with the new mode and should not be used anymore.

	vtkMeshQuality method renames:

	SetQuadQualityMeasureToMaxEdgeRatios to
SetQuadQualityMeasureToMaxEdgeRatio

	SetHexQualityMeasureToMaxEdgeRatios to
SetHexQualityMeasureToMaxEdgeRatio

	QuadMaxEdgeRatios to QuadMaxEdgeRatio

	TetShapeandSize to TetShapeAndSize

	vtkDescriptiveStatistics::UnbiasedVariance,
vtkDescriptiveStatistics::G1Skewness, and
vtkDescriptiveStatistics::G2Kurtosis are now deprecated in favor of a
single vtkDescriptiveStatistics::SampleEstimate instead.

	vtkCellLocator, vtkStaticCellLocator, vtkCellTreeLocator,
vtkModifiedBSPTree, and vtkLinearTransformCellLocator all have deprecated
their LazyEvaluation flag due to thread-safety issues.
BuildLocatorIfNeeded is also deprecated for those that supported it.

	vtkStaticCellLocator:UseDiagonalLengthTolerance() has been deprecated
because it no longer uses Tolerance.

	vtkParticleTracerBase::StaticMesh is deprecated in preference to
vtkParticleTracerBase::SetMeshOverTime (an enumeration rather than a
boolean).

	vtkCachingInterpolatedVelocityField,
vtkCellLocatorInterpolatedVelocityField, and vtkInterpolatedVelocityField
filters have been deprecated. Instead, use:

	vtkCellLocatorInterpolatedVelocityField becomes
vtkCompositeInterpolatedVelocityField with vtkCellLocatorStrategy.

	vtkInterpolatedVelocityField becomes
vtkCompositeInterpolatedVelocityField with vtkClosestPointStrategy.

	vtkCachingInterpolatedVelocityField becomes
vtkCompositeInterpolatedVelocityField with the appropriate strategy.

Interaction

	vtkExtractSelectedThresholds, vtkExtractSelectedPolyDataIds,
vtkExtractSelectedLocations, vtkExtractSelectedIds, and
vtkExtractSelectedBlock can now be replaced by vtkExtractSelection.

	vtkHierarchicalBoxDataIterator is now deprecated in favor of
vtkUniformGridAMRDataIterator.

Rendering

	vtkOSPRayRendererNode::VOLUME_ANISOTROPY,
vtkOSPRayRendererNode::GetVolumeAnisotropy(), and
vtkOSPRayRendererNode::SetVolumeAnistropy() are deprecated in favor
ofvtkVolumeProperty::SetScatteringAnisotropy() and
vtkVolumeProperty::GetScatteringAnisotropy().

Other Changes

 9.1

9.1

Released on 2021-11-04.

9.1.0 Release Notes

Changes made since VTK 9.0.0 include the following.

Changes

Charts

	vtkChartXYZ now applies matrix transformations in the right order (see
issue 17542 [https://gitlab.kitware.com/vtk/vtk/-/issues/17542])

Data

	The node numbering for VTK_LAGRANGE_HEXAHEDRON has been corrected to match
the numbering of VTK_QUADRATIC_HEXAHEDRON when the Lagrange cell is
quadratic. Readers can internally convert data to the new numbering with XML
file version 2.2 and legacy file version 5.1. The (0, 1) edge is swapped
with the (1, 1) edge:

 quadratic VTK_QUADRATIC_HEXAHEDRON
VTK_LAGRANGE_HEXAHEDRON VTK_LAGRANGE_HEXAHEDRON
 before VTK 9.1 VTK 9.1 and later

 +_____+_____+ +_____+_____+
 |\ :\ |\ :\
 | + : + | + : +
 | \ 19 + \ | \ 18 + \
 18 + +-----+-----+ 19 + +-----+-----+
 | | : | | | : |
 |__ | _+____: | |__ | _+____: |
 \ + \ + \ + \ +
 + | + | + | + |
 \ | \| \ | \|
 +_____+_____+ +_____+_____+

	vtkPolyData::ComputeBounds() used to ignore points that do not belong to
any cell which was not consistent with other vtkPointSet subclasses. See
[ParaView issue #20354][paraview-issue20354]. The previous behavior is
available through vtkPolyData::ComputeCellsBounds() and
vtkPolyData::GetCellsBounds() (usually for rendering purposes).

Filters

	The VTK::FlowPaths and VTK::ParallelFlowPaths filters now use a
vtkSignedCharArray rather than a vtkCharArray since the latter is
ambiguous as to whether it is signed or unsigned. This affects the
protected API available to subclasses and the usage of the output’s
ParticleSourceId point data array.

	vtkStaticCellLocator::FindCellsAlongLine() now uses a tolerance for
intersections with boxes.

	The tolerance used in vtkStaticCellLocator is now retrieved from the
locator’s tolerance rather than relying on the size of the dataset. Previous
behavior may be restored using the UseDiagonalLengthTolerance property.

	vtkTubeFilter now increases the radius of tubes linearly with respect to
the norm of the input vector when the radius is selected to vary by the
vector’s norm.

	vtkArrayCalculator has been updated to use C++ containers rather than raw
pointers.

	vtkArrayCalculator no longer supports the old dot syntax by default and
the dot() function must be used instead.

	vtkArrayCalculator can now use exprtk [https://github.com/ArashPartow/exprtk] to parse expressions (the
new default). This brings in functionality, but cannot define functions that
return vectors.

	vtkArrayCalculator’s input variable names must now be sanitized or quoted.

I/O

	There is a new VTK::IOChemistry module which contains chemistry-related
readers. Moved classes:

	vtkCMLMoleculeReader: from VTK::DomainsChemistry

	vtkGaussianCubeReader: from VTK::IOGeometry

	vtkGaussianCubeReader2: from VTK::IOGeometry

	vtkMoleculeReaderBase: from VTK::IOGeometry

	vtkPDBReader: from VTK::IOGeometry

	vtkVASPAnimationReader: from VTK::DomainsChemistry

	vtkVASPTessellationReader: from VTK::DomainsChemistry

	vtkXYZMolReader: from VTK::IOGeometry

	vtkXYZMolReader2: from VTK::IOGeometry

	vtkOpenFOAMReader no longer supports the include compatibility keyword
(deprecated in 2008).

	vtkOpenFOAMReader no longer treats uniformFixedValue as special. Proper
support requires logic that would require VTK to use OpenFOAM libraries.

	vtkOpenFOAMReader no longer supports OpenFOAM 1.3 cloud naming (deprecated
in 2007).

Rendering

	vtkVolumeMapper and its subclasses now accept vtkDataSet input, but
ignore any type that is not a vtkImageData or vtkRectilinearGrid (or
their subclasses). Derived classes may need to SafeDownCast if the input is
assumed to be vtkImageData.

	OpenGL framebuffers are now handled using a RenderFramebuffer that is
internally managed rather than destinations such as BackLeft and Front.
If SwapBuffers is on, then the RenderFramebuffer will be blitted to a
DisplayFramebuffer (twice for stereo rendering). The
vtkOpenGLRenderWindow::BlitToRenderFramebuffer may be used to blit the
current read framebuffer to the render framebuffer to initialize color and
depth data. The vtkOpenGLRenderWindow::FrameBlitMode property may be set to
control the following behavior:

	BlitToHardware: blit to hardware buffers (such as BACK_LEFT)

	BlitToCurrent: blit to the bound draw framebuffer

	NoBlit: blitting will be handled externally

	vtkTexture’s API now more closely matches OpenGL’s API. Instead of Repeat
and EdgeClamp properties, Wrap is provided using values such as
ClampToEdge, Repeat, MirroredRepeat, and ClampToBorder. A border
color may be selected when using ClampToBorder.

Java

	The byte, short, long, and float types may now be exposed in the
wrapped Java APIs. The Java API now uses types as close as possible to the
C++ types used in the wrapped API.

Python

	VTK now defaults to Python 3.x rather than Python 2.

	The VTK::WebPython module no longer supports Python 2.

	Python 2.6, 3.2, and 3.3 are no longer supported. Python 3.6 or higher is
recommended.

	VTK’s web support now requires wslink>=1.0.0. This slims down the
dependency tree by dropping Twisted in favor of asyncio and aiohttp.

	VTK’s wheels are now built via CI (rather than by hand). Wheels are available for:

	Python versions 3.6, 3.7, 3.8, and 3.9

	Platforms manylinux2014, macos10.10, and windows

	Python 3.9 also supports macos11.0 arm64

	Official wheels do not use any external dependencies, but see
build.md for instructions on building custom wheels.

	VTK object repr() now shows the address of the underlying C++
vtkObjectBase and the Python object itself:

	<vtkmodules.vtkCommonCore.vtkFloatArray(0xbd306710) at 0x69252b820>.

	VTK objects which are not derived from vtkObjectBase now have a repr()
that shows the construction method (though this is dependent on how the
backing type serializes itself, so it may not be 100% accurate; please file
issues for types which look “odd”):

	vtkmodules.vtkCommonCore.vtkVariant("hello")

	vtkmodules.vtkCommonDataModel.vtkVector3f([1.0, 2.0, 3.0])

Rendering

	vtkTextProperty::LineSpacing now defaults to 1.0 rather than 1.1.

Infrastructure

	VTK’s deprecation mechanism now marks specific APIs as deprecated so that
compilers may warn about its usage. Clients still requiring older APIs can
suppress warnings by defining VTK_DEPRECATION_LEVEL to
VTK_VERSION_CHECK(x, y, z) to suppress warnings about APIs deprecated after
x.y.z.

New Features

Algorithms

	vtkFFT is now available to perform discrete Fourier transformations.

Core

	The vtkGaussianRandomSequence::GetNextScaledValue(),
vtkMinimalStandardRandomSequence::GetNextRangeValue(), and
vtkRandomSequence::GetNextValue() APIs have been added to avoid the
->Next(), ->GetValue() ping-ponging.

	vtkVariant::ToString() and vtkVariant::ToUnicodeString() now support
formatting and precision arguments when processing numerical values or
arrays.

Charts

	vtkChartMatrix may now share x and/or y axes between charts using the
Link(c1, c2) and Unlink(c1, c2) methods. Labels for the axes may be set
using the LabelOuter(leftBottom, rightTop) method.

	vtkChartMatrix now supports nested vtkChartMatrix items.

	vtkChartMatrix::Paint and vtkChartMatrix::GetChartIndex methods have been
refactored to use an iterator-based API.

	vtkChartXYZ now resizes dynamically with the scene by managing its
margins). Manual calls to SetGeometry is no longer necessary.

	vtkChartXYZ now supports removing plots.

	vtkChartXYZ can now turn off its clipping planes to avoid disappearing
plots when zooming in.

	vtkChartXYZ can now zoom the axes along with the data.

	vtkChartXYZ now supports axes labels.

	vtkChartXYZ now uses vtkTextProperty for its text rendering.

Data

	vtkDataObjectTypes::TypeIdIsA may be used to determine if a type is the
same as or a specialization of another type.

	vtkDataObjectTypes::GetCommonBaseTypeId may be used to find the first
common base class of two types.

	vtkPartitionedDataSetCollection and vtkDataAssembly has been introduced
to represent hierarchical datasets rather than vtkMultiBlockDataSet and
vtkMultiPieceDataSet. The new vtkConvertToPartitionedDataSetCollection
filter can be used to convert any dataset into a
vtkPartitionedDataSetCollection with vtkDataAssembly representing any
hierarchical organization within a vtkMultiBlockDataSet. Converting back
may be performed with vtkPConvertToMultiBlockDataSet or
vtkConvertToMultiBlockDataSet.

	vtkUnstructuredGrid::GetCell is now thread-safe.

Documentation

	VTK’s Doxygen documentation now cross-references pages with the
vtk-examples [https://kitware.github.io/vtk-examples/site/] website to examples using the class. Images for
the classes are now embedded into the class documentation as well.

[image: Doxygen Examples]

Geometry

	The vtkCell API now includes support for the 19-node-pyramid named
vtkTriQuadraticPyramid. Along with the addition of this API, several
filters, readers and tests have been updated to incorporate
vtkTriQuadraticPyramid:

	Filters:

	vtkCellValidator

	vtkUnstructuredGridGeometryFilter

	vtkReflectionFilter

	vtkBoxClipDataset

	vtkCellTypeSource

	Readers:

	vtkIossReader

Filters

	vtk3DLinearGridPlaneCutter has been updated to also handle cell data. Each
triangle of the output dataset contains the attributes of the cell it
originated from. Using this class should be faster than using the
vtkUnstructuredGridCutter or the vtkDataSetCutter and should avoid some
small projection error. The vtkCutter has also been updated to benefit from
these changes.

	vtkMergeVectorComponents has been added to the VTK::FiltersGeneral module
which supports vtkDataSet objects and may be used to combine three arrays
of components into a new output array. This filter supports multithreading
via vtkSMPTools.

	vtkArrowSource now has an option to be placed and oriented around its
center which makes placing it after scaling and rotation much easier.

	vtkDataSetSurfaceFilter can now extract surfaces from all structured data
sets including vtkImageData, vtkStructuredGrid, and vtkRectilinearGrid
when they have blanked cells marked using a ghost array.

	vtkDataSetSurfaceFilter has a “fast mode” which only considers the
outer-most surface without considering external faces within the outer shell
which is intended for rendering purposes.

	vtkExtractExodusGlobalTemporalVariables now supports field data arrays.

	vtkExtractEdges now supports a UseAllPoints to use a non-Locator-based
strategy to skip selecting only the points which are used and instead assumes
that all points will be present in the output.

	The vtkGhostCellsGenerator filter is now available to generate ghost cells.
It uses DIY for MPI communication internally and can handle any
vtkMultiBlockDataSet, vtkPartitionedDataSet, and
vtkPartitionedDataSetCollection that is filled with the supported input
dataset types including vtkImageData, vtkRectilinearGrid,
vtkStructuredGrid, vtkUnstructuredGrid, and vtkPolyData. Ghost cells
are only exchanged with elements of the same type and are treated as the
“closest” supported common ancestor class. Note that vtkHyperTreeGrid is
not supported and vtkHyperTreeGridGhostCellsGenerator should be used for it
instead.

	vtkGroupDataSetsFilter may be used to combine input datasets into a
vtkMultiBlockDataSet, vtkPartitionedDataSet, or
vtkPartitionedDataSetCollection. Each input is added as an individual block
and may be named using SetInputName.

	vtkGroupTimeStepsFilter may be used to turn temporal data into a single
vtkMultiBlockDataSet or vtkPartitionedDataSetCollection with all of the
temporal data. The output type is vtkPartitionedDataSetCollection unless
the input is vtkMultiBlockDataSet in which case another
vtkMultiBlockDataSet is output.

	vtkVortexCore’s output points now include interpolated variables of the
input points.

	vtkVortexCore is now fully multithreaded using vtkSMPTools.

	vtkMergeTimeFilter may be used to synchronize multiple input temporal
datasets. The output is a vtkMultiBlockDataSet with one block per input
element. The output timestep may be either a union or intersection of the
input timestep lists (which may be de-duplicated with either absolute or
relative tolerances).

	vtkResizingWindowToImageFilter may be used as an alternative to
vtkWindowToImageFilter to create screenshots of any size and aspect ratio
using the SetSize(width, height) method regardless of the window size. Note
that offscreen buffers are used and therefore memory usage is higher than
vtkWindowToImageFilter. Memory usage may be limited using the
SetSizeLimit(width, height) method (defaulting to (4000, 4000)). For
images larger than the limit the filter will fallback to
vtkWindowToImageFilter in order to save memory.

	vtkExtractVectorComponents can now work multithreaded using vtkSMPTools.

	vtkPartitionedDataSetCollectionSource is now available to programmatically
produce a vtkPartitionedDataSetCollection.

	vtkThresholdPoints::InputArrayComponent has been added to enable selection
of a single component within the active data array. If a value larger than
the number of components is used, the magnitude of each array tuple will be
used.

	vtkTubeBender is now provided in order to generate better paths for tubes
in vtkTubeFilter. This is particularly visible when generating tubes around
acute angles.

	vtkArrayCalculator now supports multithreading via vtkSMPTools.

	vtkVectorFieldTopology may be used to compute the topological skeleton of a
2D or 3D vector field given as a set of critical points and separatrices.
Separatrices are lines in 2D and surfaces in 3D (computed via
vtkStreamSurface).

	vtkTableFFT now offers a frequency column in the output table.

	vtkTableFFT can now compute the FFT per block and then average these
results.

	vtkTableFFT can now apply a windowing function before computing the FFT.

	vtkMergeCells can now merge points using double precision tolerances.

	vtkTemporalPathLineFilter can now manage backwards times using its
SetBackwardTime() method. When using backwards time, each
vtkDataObject::DATA_TIME_STEP() from subsequent ::RequestData() method
calls will decrease.

	vtkPlaneCutter used to always generate a vtkMultiBlockDataSet regardless of
input type. Now vtkPlaneCutter decides what the output type will be based
on the input type.

	If input type is vtkUniformGridAMR or vtkMultiBlockDataSet, the output
type will be vtkMultiBlockDataSet.

	If input type is vtkPartitionedDataSetCollection, the output type will be
vtkPartitionedDataSetCollection.

	If input type is vtkDataSet or vtkPartitionedDataSet, the output type
will be vtkPartitionedDataSet.

	The RemapPointIds functor of vtkRemoveUnusedPoints has now been
multithreaded properly. (#18222)

Imaging

	The vtkImageProbeFilter works like vtkProbeFilter, but is designed for
image data. It uses vtkImageInterpolator rather than cell and point
interpolations. The filter supports SMP acceleration.

I/O

	VTK can now read ADIOS2 files or data streams using Fides [https://gitlab.kitware.com/vtk/fides]. This can
be provided as a JSON file containing the data model or Fides can generate
its own data model automatically (see Fides documentation for details). Fides
converts the ADIOS2 data to a VTK-m dataset and the vtkFidesReader creates
partitioned datasets that contain either native VTK datasets or VTK VTK-m
datasets. Time and time streaming is supported. Note that the interface for
time streaming is different and requires calling PrepareNextStep() and
Update() for each new step.

	The vtkCONVERGECFDReader has been added to read CONVERGE CFD (version 3.1)
files containing meshes, surfaces, and parcels as well as support for time
series data. Each stream is considered its own block. Cell and point data
arrays may be selected using the CellArrayStatus and ParcelArrayStatus
APIs. Note that parallel support is not yet available.

	vtkEnSightGoldBinaryReader now supports reading undefined and partial
variables from per-node and per-element files.

	VTK’s EnSight Gold support can now read asymmetric tensors. This is not
supported in EnSight6 files yet.

	The vtkIossReader has been added which supports reading CGNS and Exodus
databases and files. The output is provided as a
vtkPartitionedDataSetCollection with vtkDataAssembly representing the
logical structure. Note that not all CGNS files are supported; only the
subset supported by the backing IOSS library [https://sandialabs.github.io/seacas-docs]. Eventually, the
vtkExodusIIReader will be deprecated in preference for this reader.

	The vtkMP4Writer writer may be used to write H.264-encoded MP4 files on
Windows using the Microsoft Media Foundation API. The Rate property is
available to set the framerate and the BitRate property may be used to set
the quality of the output.

	vtkOMFReader may be used to read Open Mining Format [https://omf.readthedocs.io/en/stable/index.html]
files. The output is a vtkPartitionedDataSetCollection with each
vtkPartitionedDataSet is one OMF element (point set, line set, surface, or
volume).

	vtkOpenVDBWriter may be used to write OpenVDB [https://www.openvdb.org] files. MPI is
supported by writing separate files for each rank. Temporal data is also
written to a separate file for each timestep.

	vtkTGAReader may be used to read TGA images.

	vtkPDBReader now supports reading PDB files with multiple models.

	vtkPDBReader now generates an array containing the model each atom belongs
to.

	vtkVelodyneReader may be used to read Velodyne AMR files.

[image: AMR-Detonation]

	vtkNrrdReader can now read gzip-encoded compressed NRRD files.

	vtkOpenFOAMReader now supports reading internal dimensioned fields.

	vtkOpenFOAMReader now supports string expansion syntaxes from OpenFOAM
v1806 (#include, <case>, <constant>, <system>).

	vtkOpenFOAMReader now handles mixed-precision workflows much more robustly.

	vtkOpenFOAMReader now handles multi-region cases without a default region.

	vtkOpenFOAMReader now respects the inGroups boundary entry for selection
of multiple patches by group.

	vtkOpenFOAMReader now properly handles empty zones and has basic support
for face zones.

	vtkOpenFOAMReader respects point patch value fields suing the correct
visitation order.

	vtkOpenFOAMReader no longer has hard-coded limits on polyhedral size.

	vtkOpenFOAMReader now preserves uncollated Lagrangian information.

	vtkOpenFOAMReader now avoids naming ambiguities for Lagrangian and region
names using a /regionName/ prefix for non-default regions.

Interaction

	A new 3D camera orientation widget. The widget’s representation is
synchronized with the camera of the owning renderer. The widget may be used
to select an axis or using its handles.

	vtkSelectionNode now supports BLOCK_SELECTORS to select whole blocks from
a composite dataset using a selector expression for hierarchy or an
associated vtkDataAssembly for vtkPartitionedDataSetCollections.

	Interactive 2D widgets have been added (ported from ParaView). The
vtkEqualizerFilter and vtkEqualizerContextItem are now available using
this feature.

	Source data: [image: Equalizer filter and Interactive 2D]

	After applying the filter: [image: Equalizer filter and Interactive 2D]

	VTK’s OpenVR’s input model has been updated to be action-based and supports
binding customization within the OpenVR user interface. This includes
controller labeling and user configuration.

	vtkEventData now understands an “Any” device so that handlers can look for
all events and do filtering internally. See merge request 7557 [https://gitlab.kitware.com/vtk/vtk/-/merge_requests/7557#e8d22b8c27ce72ddec1110556087c6bd8d15fbec]
for an example of how to update custom 3D event handling.

	vtkResliceCursorWidget now refreshes when scrolling.

	Frustum selection of lines and polylines now only considers the line itself,
not their containing area (i.e., they were treated as polygons during
selection).

	Selections of vtkDataAssembly may be limited to a subset of blocks using a
collection of xpath selectors for the dataset.

	vtkChartXYZ can now be controlled using the arrow keys for rotation.

	vtkScalarBarActor now supports custom tick locations via
vtkScalarBarActor::SetCustomLabels() and
vtkScalarBarActor::SetUseCustomLabels().

Java

	Java 1.7 is now required (bumped from 1.6).

	The wrapped Java API now handles strings more efficiently by handling
encoding in the Java wrappers directly. No APIs are affected.

Python

	vtkPythonInterpreter::SetRedirectOutput can be used to disable Python
output to vtkOutputWindow.

	VTK now offers two CMake options for deployments that can help to handle
Python 3.8’s DLL loading policy changes on Windows. This allows import vtkmodules to handle PATH manipulations to ensure VTK can be loaded rather
than relying on vtkpython to do this work.

	VTK_UNIFIED_INSTALL_TREE: This option can be set to indicate that VTK
will share an install tree with its dependencies. This allows VTK to avoid
doing extra work that doesn’t need to be done in such a situation. This is
ignored if VTK_RELOCATABLE_INSTALL is given (there’s no difference there
as VTK assumes that how VTK is used in such a case is handled by other
means).

	VTK_DLL_PATHS: A list of paths to give to Python to use when loading DLL
libraries.

	Python wrappers will now generate deprecation warnings when the underlying
VTK API is deprecated. Since Python silences DeprecationWarning by default,
the warnings must be allowed via:

import warnings
warnings.filterwarnings("default", category=DeprecationWarning)

	With Python 3.6 and newer, VTK APIs marked with attributes that indicate that
paths are expected will now support pathlike objects.

	Wrapped Python APIs now contain docstrings with type hints as described in
PEP 484 [https://www.python.org/dev/peps/pep-0484/]. This will help with IDE tab completion and hinting.

	VTK’s vtkmodules package and vtk module now provide __version__
attributes.

	The vtkmodules.web.render_window_serializer module may be used to
additionally serialize vtkPolyData, vtkImageData, and mergeToPolyData
optionally using the requested_fields=['*'] argument.

Qt

	VTK now supports Qt6 using the VTK_QT_VERSION variable. This may be set to
Auto in which case the first of Qt6 or Qt5 found will be used.

	The VTK::GUISupportQtQuick module has been added which supports the
necessary integration classes as well as the QML module infrastructure
required to import VTK into a QtQuick application.

Rendering

	The vtkOutlineGlowRenderPass renders a scene as a glowing outline. Combined
with layered renderers this creates a very visible highlight without altering
the highlighted object.

	VisRTX and OptiX now offer trace-level debugging information to determine why
they may not be available.

	vtkMultiBlockUnstructuredGridVolumeMapper has been added to volume render
the entirety of a multi-block unstructured grid without merging them.

	The physical-based render shader now supports anisotropic materials. This may
be modified using the Anisotropy and AnisotropyRotation properties.
Support for these values from a texture is also available.

	vtkBlockItem may now resize itself based on the label specified.
Additionally, options for the brush, pen, and text, padding, margins are
available.

	Multi-volume ray-casting now supports shading.

	vtkMatplotlibMathTextUtilities now supports multi-line (using \n) and
multi-column (using | separators) text. vtkTextProperty now has a
CellOffset property to control the spaces between columns (in pixels).

	The GPU-based ray-casting volume mapper now supports rendering non-uniform
rectilinear grids. Volume streaming via block partitioning is not yet
supported.

[image: Rectilinear-Grid-Volume]

	vtkOpenGLMovieSphere may be used to display spherical movies using OpenGL.
Both regular 360° video and stereo 360° video is supported where stereo
streams are split into left and right eye rendering passes. The video is sent
to the graphics card as YUV textures which are decoded to RGB in the
associated shaders.

	VTK’s VisRTX support is now compatible with OSPRay 2.0.

	The OpenGL vtkPolyData mappers now provide a way to handle jitter
introduced by rendering with single-precision vertex coordinates far from the
origin. The PauseShiftScale parameter may be used to suspend updates during
user interactions.

	vtkResliceCursorRepresentation::BoundPlane() is now offered to show the
entire resliced image when rotating.

	vtkOpenGLPolyDataMapper now supports a vtkSelection object to display
selected ids or values directly from the mapper itself. Selections are
rendered in a second pass as a wireframe using the
vtkProperty::SelectionColor color.

	The GPU-based ray-casting volume mapper now supports direct volume rendering
with the blanking of cells and points defined by individual ghost arrays.

	Uniform grid with blanking:

[image: Uniform-Grid-Blanking]

	Image data with ghost cells and points:

[image: ImageData-Ghost-Arrays]

	Volume rendering may now use independent scalar arrays for the x and y
dimensions of 2D transfer functions.

Web

	render_window_serializer.py now supports serialization of a
vtkRenderWindow that contains vtkVolume, vtkVolumeProperty, or
vtkVolumeMapper.

SMP

	vtkSMPTools::For() can now be used on iterators and ranges. This can be
especially useful for containers that are not indexed such as std::map and
std::set.

	vtkSMPTools::LocalScope may be used to call a vtkSMPTools method with a
specific configuration within a scope. The configuration structure takes a
maximum thread number and/or a backend.

	vtkSMPTools now has an STDThreads backend which uses C++’s std::thread.

	vtkSMPTools::Transform and vtkSMPTools::Fill may be used as replacements
for std::transform and std::fill.

	Multiple backends may now be compiled into VTK at build time rather than a
separate build per backend. The default may be selected using the
VTK_SMP_IMPLEMENTATION_TYPE CMake variable or the VTK_SMP_BACKEND_IN_USE
environment variable at runtime. Enabling a backend is controlled by the
VTK_SMP_ENABLE_<backend> CMake variable at build time.

	The VTK_SMP_MAX_THREADS environment variable is now available to limit the
number of threads any SMP task will use.

	vtkSMPTools now supports nested parallelism using the NestedParallelism
property (defaults to false) and the IsParallelScope query to detect such
scoping.

Wrapping

	Wrapped classes no longer require a vtk prefix.

	Hierarchy files are used exclusively for type checking.

	The wrapping tools now keep an internal cache of which header files exist
where on the system to avoid repeated lookups when resolving #include
search paths.

Module System

	The vtk_module_add_module(NOWRAP_HEADERS) argument may be used to list
public and installed headers which should not be exposed for wrapping
purposes.

	The vtk_module_add_module(NOWRAP_CLASSES) argument may be used to list
class names for which the headers are treated as NOWRAP_HEADERS arguments.

	The vtk_module_add_module(HEADER_DIRECTORIES) argument may be used to
indicate that the relative path of headers from the current source or binary
directory should be preserved upon installation.

	The vtk_module_install_headers(USE_RELATIVE_PATHS) argument may be used to
indicate that the relative path of headers from the current source or binary
directory should be preserved upon installation.

	The vtk_module_build, vtk_module_wrap_python, and vtk_module_wrap_java
APIs now support a UTILITY_TARGET argument. The target named using this
argument will be privately linked into every library created under these
APIs. This may be used to provide compile or link options to every target.
Note that the target given must be installed, but it may be installed with
the same export set given to any of these APIs.

	The module system now supports target-specific components using the
vtk_module_build(TARGET_SPECIFIC_COMPONENTS) argument.

Infrastructure

	VTK plans to hold to a new minor (or major) release every six months with
releases in or around April and October each year.

	VTK now uses GitLab-CI for testing.

	OSPRay support now detects Apple’s Rosetta translation environment and
refuses to run due to the environment not supporting instructions used within
OSPRay.

	vtkGetEnumMacro and vtkSetEnumMacro are now available to work with enum class properties.

	VTK now requires CMake 3.12 to build and to consume. This is mainly due to
the usage of SHELL: syntax to properly support some MPI use cases.

	vtkSOADataArrayTemplate compilation should use less memory now that its
template instantiations are split into separate TU compilations.

	The VTK_TARGET_SPECIFIC_COMPONENTS option may be specified to provide
target-specific installation components.

Third Party

	An external ioss library may now be provided to VTK’s build.

	An external pegtl library may now be provided to VTK’s build.

	exprtk is now included in VTK (an external copy is supported).

	fmt is now included in VTK (an external copy is supported, though VTK
requires patches which have been merged upstream [https://github.com/fmtlib/fmt/pull/2432] but not yet
released).

	VTK’s embedded third party packages have been updated:

	cli11 2.0.0

	eigen 3.3.9

	exodusII 2021-05-12

	expat 2.4.1

	freetype 2.11.0

	glew 2.2.0

	hdf5 1.12.1

	jpeg 2.1.0

	libxml2 2.9.12

	lz4 1.9.3

	lzma 5.2.5

	mpi4py 3.0.3

	netcdf 4.8.0

	ogg 1.3.5

	pugixml 1.11.4

	sqlite 3.36.0

	tiff 4.3.0

Deprecated and Removed Features

Legacy

Some APIs had been deprecated for a long time. The following APIs are now
removed.

	vtkDataArrayTemplate (deprecated since Dec 2015)

	vtkObjectBase::PrintRevisions and vtkObjectBase::CollectRevisions
(deprecated since 2012)

	VTK___INT64 and VTK_UNSIGNED___INT64 (deprecated since Mar 2017)

	vtkArrayCalculator::SetAttributeMode* and VTK_ATTRIBUTE_MODE_* macros
(deprecated in Jun 2017)

	vtkContourGrid::ComputeGradients (deprecated in Dec 2018)

	vtkSMPContourGridManyPieces, vtkSMPTransform,
vtkThreadedSynchronizedTemplates3D, and
vtkThreadedSynchronizedTemplatesCutter3D (deprecated in Sep 2017)

	vtkAbstractImageInterpolator::GetWholeExtent (deprecated in Mar 2016)

	vtkImageStencilData::InsertLine (an overload) (deprecated in Nov 2014)

	The RemoveBlockVisibilites method from vtkCompositeDataDisplayAttributes,
vtkCompositeDataDisplayAttributesLegacy, and vtkCompositePolyDataMapper2
(deprecated in Jul 2017)

	vtkOpenVRPropPicker (deprecated in Apr 2018)

Core

	vtkLegacy.h and VTK_LEGACY_REMOVE are now deprecated and
vtkDeprecation.h and its mechanisms should be used instead.

	Building with kits is no longer supported with static builds. Since the goal
of a kit build is to reduce the number of runtime libraries needed at
startup, a static kit build does not make much sense. Additionally, some
dependency setups could not be resolved in such a build (as witnessed by
ParaView) and a proper fix is not easy, so disabling the support makes more
sense at this time.

	The vtkToolkits.h header provided preprocessor definitions indicating some
features within VTK’s build. However, these were inaccurate in
single-configure builds since the information was not available when the
header was configured.

	VTK_USE_VIDEO_FOR_WINDOWS: now available in vtkIOMovieConfigure.h

	VTK_USE_VFW_CAPTURE: now available in vtkIOVideoConfigure.h as
VTK_USE_VIDEO_FOR_WINDOWS_CAPTURE, but the old name is given for
compatibility.

	vtkUnicodeString and vtkUnicodeStringArray are now deprecated since VTK,
since 8.2, has assumed UTF-8 for all string APIs. As such,
vtkUnicodeString and vtkUnicodeStringArray did not provide any additional
information. Users which used them to convert UTF-8 to UCS-2 for Windows API
usages should instead use VTK::vtksys’s SystemTools APIs for converting
such strings.

	vtkAtomic is removed in favor of std::atomic. As such, vtkAtomic.h and
vtkAtomicTypeConcepts.h are no longer provided.

	Threading-related classes are now deprecated in favor of C++11 standard
library mechanisms.

	vtkConditionVariable: std::condition_variable_any

	vtkCriticalSection: std::mutex

	vtkMutexLock: std::mutex

	vtkSimpleConditionVariable: std::condition_variable_any

	vtkSimpleCriticalSection: std::mutex

	vtkSimpleMutexLock: std::mutex

	vtkThreadMessanger: std::mutex and std::condition_variable_any

	vtkSetGet.h no longer includes <math.h>.

	vtkVariant.h methods Is__Int64 and IsUnsigned__Int64 were marked
deprecated, though they have been unconditionally returning false since 2015.

Filters

	vtkDataSetSurfaceFilter no longer supports generation of triangle strips.
The vtkStripper filter may be used to generate them if needed.

	vtkConfigure.h is now deprecated and split into more focused headers. The
headers which now contain the information:

	vtkBuild.h: VTK_BUILD_SHARED_LIBS

	vtkCompiler.h: Compiler detection and compatibility macros.

	vtkDebug.h: VTK_DEBUG_LEAKS and VTK_WARN_ON_DISPATCH_FAILURE

	vtkDebugRangeIterators.h: VTK_DEBUG_RANGE_ITERATORS and
VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS

	vtkEndian.h: VTK_WORDS_BIGENDIAN

	vtkFeatures.h: VTK_ALL_NEW_OBJECT_FACTORY and VTK_USE_MEMKIND

	vtkLegacy.h: VTK_LEGACY_REMOVE, VTK_LEGACY_SILENT, and VTK_LEGACY

	vtkOptions.h: VTK_USE_64BIT_IDS and VTK_USE_64BIT_TIMESTAMPS

	vtkPlatform.h: VTK_REQUIRE_LARGE_FILE_SUPPORT and VTK_MAXPATH

	vtkSMP.h: VTK_SMP_${backend} and VTK_SMP_BACKEND

	vtkThreads.h: VTK_USE_PTHREADS, VTK_USE_WIN32_THREADS,
VTK_MAX_THREADS

	Also includes VTK_THREAD_RETURN_VALUE and VTK_THREAD_RETURN_TYPE, but
vtkMultiThreader.h is guaranteed to provide this.

	Old ghost cell filters are deprecated in favor of vtkGhostCellsGenerator.

	vtkUnstructuredGridGhostCellsGenerator

	vtkPUnstructuredGridGhostDataGenerator

	vtkStructuredGridGhostDataGenerator

	vtkPStructuredGridGhostDataGenerator

	vtkUniformGridGhostDataGenerator

	vtkPUniformGridGhostDataGenerator

	vtkThreshold’s ThresholdByLower(), ThresholdByUpper(), and
ThresholdBetween() methods are deprecated in favor of
vtkThreshold::LowerThreshold, vtkThreshold::UpperThreshold, and
vtkThreshold::ThresholdFunction properties.

Python

	Python 2 support, which reached its end-of-life in January 2020 is
deprecated.

Soft deprecations

Some groundwork has been laid down to deprecate existing classes with new
features in this release, but have not been formally deprecated yet. Users are
encouraged to use the new APIs to help ensure that the transition when they are
deprecated is smoother.

	vtkMultiBlockDataGroupFilter usage should be replaced by
vtkGroupDataSetsFilter.

	vtkMultiBlockFromTimeSeriesFilter usage should be replaced by
vtkGroupDataSetsFilter.

	vtkExodusIIReader usage should be replaced by vtkIossReader.

	The random number APIs from vtkMath should be moved to
vtkGaussianRandomSequence or vtkMinimalStandardRandomSequence as needed.

Other Changes

 9.0

9.0

Released on 2020-05-01.

9.0.0

See Discourse [https://discourse.vtk.org/t/vtk-9-0-0/3205] for release notes.

9.0.2

VTK 9.0.2 collects fixes to 9.0.1 which have been made since its release. Of
particular interest are the fixes to macOS rendering, support for the macOS
arm64 platform, and updates for API changes in external libraries.

New classes

	Added a vtkImageProbeFilter which works like vtkProbeFilter, but for
vtkImageData

New support

	enum class setters and getters are now supported via
vtk{Get,Set}EnumMacro

Fixes

	The QVTKRenderWidget.h is now installed.

	vtk3DLinearGridPlaneCutter guards against nullptr points and cells

	The composite date mapper now iterates over data blocks properly

	vtkStringArray::Resize takes tuple elements into account

	vtkArrowSource now supports scalong and rotation around the origin or the
arrow’s center point

	The VTK::DomainsChemistryOpenGL2, VTK::RenderingContextOpenGL2, and
VTK::RenderingOpenGL2 modules are added to the Rendering group to avoid
missing implementations of rendering components

	vtkCutter enables point merging when requested through a
vtkPointLocator which merges points

	vtkAxesActor bounds calculations improved to avoid assumptions about
range values

	vtkWindowLevelLookupTable out-of-range colors are now initialized
properly

	vtkImageReslice::RequestInformation is refactored handle common image
information passing

	vtkImageReslice creates a new interpolator in ::GetInterpolator; this
new interpolator now uses the same interpolation mode as vtkImageReslice
itself

macOS

	macOS wheels are now built and uploaded by VTK’s CI

	Fixes for macOS OpenGL state tracking (related to GL_SCISSOR)

	Multisampling on macOS with Intel graphics turned off for volume rendering

	OpenGL state tracking on macOS with layers is improved (rather than using
the wrong context between layers)

	OSPRay is disabled when running under macOS Rosetta

Third Party

	HDF5 has been updated to address errors on newer Xcode compilers

	HDF5 macOS universal2 compilation fixes

	VTK::mpi now disables C++ bindings for SGI MPT as well

	Usage of numpy.character is removed (deprecated in NumPy 1.19)

	Avoidance of APIs deprecated in Python 3.9

	Compilation with newer libfreetype resolved (FT_CALLBACK_DEF usage
removed)

9.0.3

A minor patchset on top of 9.0.2 to fix problems with the new release process’
configuration when building the wheels.

Wheels

	Disable VTK_DEBUG_LEAKS in wheel builds

	Remove long-deprecated API usage in the Python bindings

 8.2

8.2

Released on 2019-01-30.

Release notes for version 8.2 can be found at https://www.kitware.com/vtk-8-2-0.

 8.1

8.1

Released on 2017-12-22.

Release notes for version 8.1 can be found at https://www.kitware.com/vtk-8-1-0.

 8.0

8.0

Released on 2017-06-26.

Release notes for version 8.0 can be found at https://www.kitware.com/vtk-8-0-0.

 7.1

7.1

Released on 2016-11-14.

Release notes for version 7.1 can be found at https://www.kitware.com/vtk-7-1-0.

 7.0

7.0

Released on 2016-02-16.

Release notes for version 7.0 can be found at https://www.kitware.com/vtk-7-0-0.

 6.3

6.3

Released on 2015-08-31.

Release notes for version 6.3 can be found at https://www.kitware.com/vtk-6-3-0.

 6.2

6.2

Released on 2015-03-03.

Release notes for version 6.2 can be found at https://www.kitware.com/vtk-6-2-0.

 6.1

6.1

Released on 2014-01-22.

Release notes for version 6.1 can be found at https://www.kitware.com/vtk-6-1-0.

 6.0

6.0

Released on 2013-06-21.

Release notes for version 6.0 can be found at https://www.kitware.com/vtk-6-0-0.

 5.10

5.10

Released on 2012-05-14.

Release notes for version 5.10 can be found at https://www.kitware.com/vtk-5-10-now-available.

 5.8

5.8

Released on 2011-08-29.

Release notes for version 5.8 can be found at https://www.kitware.com/vtk-5-8-0.

 5.6

5.6

Released on 2010-05-28.

Release notes for version 5.6 can be found at https://itk.org/Wiki/VTK_5.6_Release_Planning.

 5.4

5.4

Released on 2009-03-20.

Release notes for version 5.4 can be found at https://www.kitware.com/vtk-5-4-released.

 5.2

5.2

Released on 2008-08-27.

Release notes for version 5.2 can be found at https://www.kitware.com/vtk-5-2-released.

 5.0

5.0

Released on 2005-12-15.

Release notes for version 5.0 can be found at https://www.kitware.com/vtk-5-0-released.

 Python Module Index

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vtkmodules	

 	
 	
 vtkmodules.generate_pyi	

 	
 	
 vtkmodules.gtk	

 	
 	
 vtkmodules.gtk.GtkGLExtVTKRenderWindow	

 	
 	
 vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor	

 	
 	
 vtkmodules.gtk.GtkVTKRenderWindow	

 	
 	
 vtkmodules.gtk.GtkVTKRenderWindowInteractor	

 	
 	
 vtkmodules.numpy_interface	

 	
 	
 vtkmodules.numpy_interface.algorithms	

 	
 	
 vtkmodules.numpy_interface.dataset_adapter	

 	
 	
 vtkmodules.numpy_interface.internal_algorithms	

 	
 	
 vtkmodules.qt	

 	
 	
 vtkmodules.qt.QVTKRenderWindowInteractor	

 	
 	
 vtkmodules.test	

 	
 	
 vtkmodules.test.BlackBox	

 	
 	
 vtkmodules.test.ErrorObserver	

 	
 	
 vtkmodules.test.rtImageTest	

 	
 	
 vtkmodules.test.Testing	

 	
 	
 vtkmodules.tk	

 	
 	
 vtkmodules.tk.vtkLoadPythonTkWidgets	

 	
 	
 vtkmodules.tk.vtkTkImageViewerWidget	

 	
 	
 vtkmodules.tk.vtkTkPhotoImage	

 	
 	
 vtkmodules.tk.vtkTkRenderWidget	

 	
 	
 vtkmodules.tk.vtkTkRenderWindowInteractor	

 	
 	
 vtkmodules.util	

 	
 	
 vtkmodules.util.colors	

 	
 	
 vtkmodules.util.data_model	

 	
 	
 vtkmodules.util.execution_model	

 	
 	
 vtkmodules.util.keys	

 	
 	
 vtkmodules.util.misc	

 	
 	
 vtkmodules.util.numpy_support	

 	
 	
 vtkmodules.util.pickle_support	

 	
 	
 vtkmodules.util.vtkAlgorithm	

 	
 	
 vtkmodules.util.vtkConstants	

 	
 	
 vtkmodules.util.vtkImageExportToArray	

 	
 	
 vtkmodules.util.vtkImageImportFromArray	

 	
 	
 vtkmodules.util.vtkMethodParser	

 	
 	
 vtkmodules.util.vtkVariant	

 	
 	
 vtkmodules.wx	

 	
 	
 vtkmodules.wx.wxVTKRenderWindow	

 	
 	
 vtkmodules.wx.wxVTKRenderWindowInteractor	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

_

 	
 	__all__ (in module vtkmodules)

 	(in module vtkmodules.gtk)

 	(in module vtkmodules.numpy_interface)

 	(in module vtkmodules.qt)

 	(in module vtkmodules.test)

 	(in module vtkmodules.tk)

 	(in module vtkmodules.util)

 	(in module vtkmodules.util.execution_model)

 	(in module vtkmodules.wx)

 	__array_finalize__() (vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	__array_wrap__() (vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	__call__() (vtkmodules.test.ErrorObserver.vtkErrorObserver method)

 	(vtkmodules.util.execution_model.Pipeline method)

 	(vtkmodules.util.execution_model.select_ports method)

 	__determine_arraynames() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	__getattr__() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.util.data_model.CompositeDataIterator method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	__getitem__() (vtkmodules.generate_pyi.Graph method)

 	(vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	__init_from_composite() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	__iter__() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator method)

 	(vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.util.data_model.CompositeDataIterator method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributesIterator method)

 	(vtkmodules.util.data_model.CompositeDataSetBase method)

 	__lt__() (vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrderKey method)

 	__new__() (vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKArrayMetaClass method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArrayMetaClass method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKNoneArrayMetaClass method)

 	__next__() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator method)

 	(vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator method)

 	(vtkmodules.util.data_model.CompositeDataIterator method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributesIterator method)

 	__rrshift__() (vtkmodules.util.execution_model.Pipeline method)

 	(vtkmodules.util.execution_model.select_ports method)

 	__rshift__() (vtkmodules.util.execution_model.Pipeline method)

 	(vtkmodules.util.execution_model.select_ports method)

 	__setitem__() (vtkmodules.generate_pyi.Graph method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	__sizeDict (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray attribute)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray attribute)

 	__str__() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	__typeDict (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray attribute)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray attribute)

 	__version__ (in module vtkmodules)

 	__vtkTypeNameDict (in module vtkmodules.util.vtkConstants)

 	_apply_func2() (in module vtkmodules.numpy_interface.algorithms)

 	_array_count() (in module vtkmodules.numpy_interface.algorithms)

 	_blackbox (vtkmodules.test.Testing.vtkTest attribute)

 	_call() (in module vtkmodules.util.execution_model)

 	_cell_derivatives() (in module vtkmodules.numpy_interface.internal_algorithms)

 	_cell_quality() (in module vtkmodules.numpy_interface.internal_algorithms)

 	_check() (vtkmodules.test.ErrorObserver.vtkErrorObserver method)

 	_clean_up_methods() (vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	_connect() (vtkmodules.util.execution_model.Pipeline method)

 	_CURSOR_MAP (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor attribute)

 	_CursorChangedEvent() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	_determine_type() (vtkmodules.util.execution_model.Pipeline method)

 	_get_event_pos() (in module vtkmodules.qt.QVTKRenderWindowInteractor)

 	_get_str_obj() (vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	_GetController() (in module vtkmodules.test.rtImageTest)

 	_GetCtrlShift() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	_GetKeyCharAndKeySym() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	_getPixelRatio() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor static method)

 	_getTempImagePath() (in module vtkmodules.test.Testing)

 	_global_func() (in module vtkmodules.numpy_interface.algorithms)

 	_global_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	_GrabFocus() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	_handleFailedImage() (in module vtkmodules.test.Testing)

 	_initialize_methods() (vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	_INTERACT (in module vtkmodules.test.Testing)

 	_keysyms (in module vtkmodules.qt.QVTKRenderWindowInteractor)

 	_keysyms_for_ascii (in module vtkmodules.qt.QVTKRenderWindowInteractor)

 	_load_vtkmodules_static() (in module vtkmodules)

 	_local_array_count() (in module vtkmodules.numpy_interface.algorithms)

 	_lookup_mpi_type() (in module vtkmodules.numpy_interface.algorithms)

 	_make_dfunc() (in module vtkmodules.numpy_interface.algorithms)

 	_make_dsfunc() (in module vtkmodules.numpy_interface.algorithms)

 	_make_dsfunc2() (in module vtkmodules.numpy_interface.algorithms)

 	
 	_make_tensor_array_contiguous() (in module vtkmodules.numpy_interface.dataset_adapter)

 	_make_ufunc() (in module vtkmodules.numpy_interface.algorithms)

 	_matrix_math_filter() (in module vtkmodules.numpy_interface.internal_algorithms)

 	_metaclass() (in module vtkmodules.numpy_interface.dataset_adapter)

 	_NO_IMAGE (in module vtkmodules.test.Testing)

 	_numeric_op() (vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	_OnButtonDown() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	_OnButtonUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	_OnEnterWindow() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	_OnLeaveWindow() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	_OnSize() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	_op() (vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray method)

 	_printCDashImageError() (in module vtkmodules.test.Testing)

 	_printCDashImageNotFoundError() (in module vtkmodules.test.Testing)

 	_printCDashImageSuccess() (in module vtkmodules.test.Testing)

 	_reduce_dims() (in module vtkmodules.numpy_interface.algorithms)

 	_reverse_numeric_op() (vtkmodules.numpy_interface.dataset_adapter.VTKArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	_setEventInformation() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	_testBoolean() (vtkmodules.test.Testing.vtkTest method)

 	_testGetSet() (vtkmodules.test.Testing.vtkTest method)

 	_testParse() (vtkmodules.test.Testing.vtkTest method)

 	_useCapture (in module vtkmodules.wx.wxVTKRenderWindow)

 	(in module vtkmodules.wx.wxVTKRenderWindowInteractor)

 	_variant_check_map (in module vtkmodules.util.vtkVariant)

 	_variant_method_map (in module vtkmodules.util.vtkVariant)

 	_variant_type_map (in module vtkmodules.util.vtkVariant)

 	_VERBOSE (in module vtkmodules.test.Testing)

 	_VTK_FLOAT_MAX (in module vtkmodules.util.vtkConstants)

 	_VTK_INT_MAX (in module vtkmodules.util.vtkConstants)

 	
 _vtk_json_bool

 	command

 	
 _vtk_json_string_list

 	command

 	
 _vtk_module_add_file_set

 	command

 	
 _vtk_module_add_header_tests

 	command

 	
 _vtk_module_apply_properties

 	command

 	
 _vtk_module_check_destinations

 	command

 	
 _vtk_module_debug

 	command, [1]

 	
 _vtk_module_default_library_name

 	command

 	
 _vtk_module_depfile_args

 	command

 	
 _vtk_module_export_properties

 	command

 	
 _vtk_module_generate_spdx

 	command

 	
 _vtk_module_get_module_property

 	command

 	
 _vtk_module_graphviz_module_node

 	command

 	
 _vtk_module_install

 	command

 	
 _vtk_module_mark_third_party

 	command

 	
 _vtk_module_optional_dependency_exists

 	command

 	
 _vtk_module_parse_kit_args

 	command

 	
 _vtk_module_parse_module_args

 	command, [1]

 	
 _vtk_module_real_target

 	command, [1]

 	
 _vtk_module_real_target_kit

 	command, [1]

 	
 _vtk_module_set_module_property

 	command

 	
 _vtk_module_split_module_name

 	command

 	
 _vtk_module_standard_includes

 	command

 	
 _vtk_module_target_function

 	command

 	
 _vtk_module_verify_enable_value

 	command

 	
 _vtk_module_wrap_java_library

 	command

 	
 _vtk_module_wrap_java_sources

 	command

 	
 _vtk_module_wrap_python_library

 	command

 	
 _vtk_module_wrap_python_sources

 	command

 	
 _vtk_module_write_import_prefix

 	command

 	
 _vtk_module_write_wrap_hierarchy

 	command

 	
 _vtk_private_kit_link_target

 	command

 	
 _vtk_test_parse_args

 	command

 	
 _vtk_test_set_options

 	command

 	_windows_dll_path() (in module vtkmodules)

A

 	
 	abs (in module vtkmodules.numpy_interface.algorithms)

 	abs() (in module vtkmodules.numpy_interface.internal_algorithms)

 	add (in module vtkmodules.numpy_interface.algorithms)

 	add_indent() (in module vtkmodules.generate_pyi)

 	AddInputConnection() (vtkmodules.util.execution_model.select_ports method)

 	ALGORITHM (vtkmodules.util.execution_model.Pipeline attribute)

 	alice_blue (in module vtkmodules.util.colors)

 	alizarin_crimson (in module vtkmodules.util.colors)

 	all() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	annotation_text() (in module vtkmodules.generate_pyi)

 	antique_white (in module vtkmodules.util.colors)

 	append() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	(vtkmodules.util.data_model.vtkPartitionedDataSet method)

 	apply_dfunc() (in module vtkmodules.numpy_interface.algorithms)

 	apply_ufunc() (in module vtkmodules.numpy_interface.algorithms)

 	aquamarine (in module vtkmodules.util.colors)

 	aquamarine_medium (in module vtkmodules.util.colors)

 	arccos (in module vtkmodules.numpy_interface.algorithms)

 	
 	arccosh (in module vtkmodules.numpy_interface.algorithms)

 	arcsin (in module vtkmodules.numpy_interface.algorithms)

 	arcsinh (in module vtkmodules.numpy_interface.algorithms)

 	arctan (in module vtkmodules.numpy_interface.algorithms)

 	arctan2 (in module vtkmodules.numpy_interface.algorithms)

 	arctanh (in module vtkmodules.numpy_interface.algorithms)

 	area (in module vtkmodules.numpy_interface.algorithms)

 	area() (in module vtkmodules.numpy_interface.internal_algorithms)

 	ArrayAssociation (class in vtkmodules.numpy_interface.dataset_adapter)

 	Arrays (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray attribute)

 	aspect (in module vtkmodules.numpy_interface.algorithms)

 	aspect() (in module vtkmodules.numpy_interface.internal_algorithms)

 	aspect_gamma (in module vtkmodules.numpy_interface.algorithms)

 	aspect_gamma() (in module vtkmodules.numpy_interface.internal_algorithms)

 	assertImageMatch() (vtkmodules.test.Testing.vtkTest method)

 	astype() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray method)

 	AtomData (vtkmodules.numpy_interface.dataset_adapter.Molecule attribute)

 	aureoline_yellow (in module vtkmodules.util.colors)

 	azure (in module vtkmodules.util.colors)

B

 	
 	banana (in module vtkmodules.util.colors)

 	baseClass (in module vtkmodules.wx.wxVTKRenderWindow)

 	(in module vtkmodules.wx.wxVTKRenderWindowInteractor)

 	beige (in module vtkmodules.util.colors)

 	BindEvents() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	BindTkImageViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	BindTkRenderWidget() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	bisque (in module vtkmodules.util.colors)

 	bitwise_or() (in module vtkmodules.numpy_interface.algorithms)

 	black (in module vtkmodules.util.colors)

 	blanched_almond (in module vtkmodules.util.colors)

 	
 	blue (in module vtkmodules.util.colors)

 	blue_light (in module vtkmodules.util.colors)

 	blue_medium (in module vtkmodules.util.colors)

 	blue_violet (in module vtkmodules.util.colors)

 	BondData (vtkmodules.numpy_interface.dataset_adapter.Molecule attribute)

 	brick (in module vtkmodules.util.colors)

 	brown (in module vtkmodules.util.colors)

 	brown_madder (in module vtkmodules.util.colors)

 	brown_ochre (in module vtkmodules.util.colors)

 	build_graph() (in module vtkmodules.generate_pyi)

 	burlywood (in module vtkmodules.util.colors)

 	burnt_sienna (in module vtkmodules.util.colors)

 	burnt_umber (in module vtkmodules.util.colors)

C

 	
 	cadet (in module vtkmodules.util.colors)

 	cadmium_lemon (in module vtkmodules.util.colors)

 	cadmium_orange (in module vtkmodules.util.colors)

 	cadmium_red_deep (in module vtkmodules.util.colors)

 	cadmium_red_light (in module vtkmodules.util.colors)

 	cadmium_yellow (in module vtkmodules.util.colors)

 	cadmium_yellow_light (in module vtkmodules.util.colors)

 	calldata_type() (in module vtkmodules.util.misc)

 	carrot (in module vtkmodules.util.colors)

 	ceil (in module vtkmodules.numpy_interface.algorithms)

 	CELL (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation attribute)

 	cell_data (vtkmodules.util.data_model.CompositeDataSetBase property)

 	(vtkmodules.util.data_model.DataSet property)

 	CellData (class in vtkmodules.util.data_model)

 	(vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet attribute)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSet attribute)

 	(vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid attribute)

 	CellLocations (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid attribute)

 	Cells (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid attribute)

 	cells (vtkmodules.util.data_model.vtkUnstructuredGrid property)

 	CellTypes (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid attribute)

 	cerulean (in module vtkmodules.util.colors)

 	chartreuse (in module vtkmodules.util.colors)

 	check_error() (vtkmodules.test.ErrorObserver.vtkErrorObserver method)

 	check_warning() (vtkmodules.test.ErrorObserver.vtkErrorObserver method)

 	chocolate (in module vtkmodules.util.colors)

 	chrome_oxide_green (in module vtkmodules.util.colors)

 	cinnabar_green (in module vtkmodules.util.colors)

 	class_pyi() (in module vtkmodules.generate_pyi)

 	clean_get_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	clean_get_set() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	clean_state_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	clean_up_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	closeEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	
 CMAKE_BINARY_DIR

 	variable

 	cobalt (in module vtkmodules.util.colors)

 	cobalt_green (in module vtkmodules.util.colors)

 	cobalt_violet_deep (in module vtkmodules.util.colors)

 	cold_grey (in module vtkmodules.util.colors)

 	
 command

 	_vtk_json_bool

 	_vtk_json_string_list

 	_vtk_module_add_file_set

 	_vtk_module_add_header_tests

 	_vtk_module_apply_properties

 	_vtk_module_check_destinations

 	_vtk_module_debug, [1]

 	_vtk_module_default_library_name

 	_vtk_module_depfile_args

 	_vtk_module_export_properties

 	_vtk_module_generate_spdx

 	_vtk_module_get_module_property

 	_vtk_module_graphviz_module_node

 	_vtk_module_install

 	_vtk_module_mark_third_party

 	_vtk_module_optional_dependency_exists

 	_vtk_module_parse_kit_args

 	_vtk_module_parse_module_args, [1]

 	_vtk_module_real_target, [1]

 	_vtk_module_real_target_kit, [1]

 	_vtk_module_set_module_property

 	_vtk_module_split_module_name

 	_vtk_module_standard_includes

 	_vtk_module_target_function

 	_vtk_module_verify_enable_value

 	_vtk_module_wrap_java_library

 	_vtk_module_wrap_java_sources

 	_vtk_module_wrap_python_library

 	_vtk_module_wrap_python_sources

 	_vtk_module_write_import_prefix

 	_vtk_module_write_wrap_hierarchy

 	_vtk_private_kit_link_target

 	_vtk_test_parse_args

 	_vtk_test_set_options

 	vtk_add_test_cxx, [1]

 	vtk_add_test_mangling

 	vtk_add_test_module_javascript_node

 	vtk_add_test_mpi, [1]

 	vtk_add_test_python, [1]

 	vtk_add_test_python_mpi

 	vtk_module_add_executable, [1], [2]

 	vtk_module_add_module, [1], [2], [3], [4], [5], [6]

 	vtk_module_add_python_module

 	vtk_module_add_python_package, [1]

 	vtk_module_autoinit, [1], [2], [3], [4]

 	vtk_module_build, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 	vtk_module_build call, [1]

 	vtk_module_compile_features, [1], [2]

 	vtk_module_compile_options, [1], [2]

 	vtk_module_definitions, [1], [2]

 	vtk_module_depend, [1], [2]

 	vtk_module_export_find_packages, [1]

 	vtk_module_find_kits, [1], [2]

 	vtk_module_find_modules, [1], [2]

 	vtk_module_find_package, [1], [2], [3], [4]

 	vtk_module_get_property, [1], [2], [3]

 	vtk_module_graphviz

 	vtk_module_include, [1], [2]

 	vtk_module_install_headers, [1]

 	vtk_module_json

 	vtk_module_link, [1], [2]

 	vtk_module_link_options, [1], [2]

 	vtk_module_python_default_destination, [1]

 	vtk_module_scan, [1], [2], [3], [4], [5], [6], [7], [8]

 	vtk_module_set_properties, [1], [2]

 	vtk_module_set_property, [1], [2]

 	vtk_module_sources

 	vtk_module_test_data

 	vtk_module_test_executable

 	vtk_module_third_party, [1], [2]

 	vtk_module_third_party_external, [1], [2], [3]

 	vtk_module_third_party_internal, [1], [2]

 	vtk_module_wrap_java, [1], [2]

 	vtk_module_wrap_python, [1]

 	vtk_module_wrap_python function

 	vtk_test_cxx_executable

 	vtk_test_mpi_executable

 	
 	compareImage() (in module vtkmodules.test.Testing)

 	compareImageWithSavedImage() (in module vtkmodules.test.Testing)

 	CompositeDataIterator (class in vtkmodules.numpy_interface.dataset_adapter)

 	(class in vtkmodules.util.data_model)

 	CompositeDataSet (class in vtkmodules.numpy_interface.dataset_adapter)

 	CompositeDataSetAttributes (class in vtkmodules.numpy_interface.dataset_adapter)

 	(class in vtkmodules.util.data_model)

 	CompositeDataSetAttributesIterator (class in vtkmodules.util.data_model)

 	CompositeDataSetBase (class in vtkmodules.util.data_model)

 	condition (in module vtkmodules.numpy_interface.algorithms)

 	condition() (in module vtkmodules.numpy_interface.internal_algorithms)

 	ConfigureEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	ConnectSignals() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	convert_to_unstructured_grid() (vtkmodules.util.data_model.DataSet method)

 	ConvertIntToUnsignedShortOff() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	ConvertIntToUnsignedShortOn() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	ConvertUnsignedShortToIntOff() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	ConvertUnsignedShortToIntOn() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	coral (in module vtkmodules.util.colors)

 	coral_light (in module vtkmodules.util.colors)

 	cornflower (in module vtkmodules.util.colors)

 	cornsilk (in module vtkmodules.util.colors)

 	cos (in module vtkmodules.numpy_interface.algorithms)

 	cosh (in module vtkmodules.numpy_interface.algorithms)

 	count_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	create_vtk_array() (in module vtkmodules.util.numpy_support)

 	Created() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	CreateTimer() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	cross (in module vtkmodules.numpy_interface.algorithms)

 	cross() (in module vtkmodules.numpy_interface.internal_algorithms)

 	curl (in module vtkmodules.numpy_interface.algorithms)

 	curl() (in module vtkmodules.numpy_interface.internal_algorithms)

 	CursorChangedEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	cyan (in module vtkmodules.util.colors)

 	cyan_white (in module vtkmodules.util.colors)

D

 	
 	dark_orange (in module vtkmodules.util.colors)

 	DATA (vtkmodules.util.execution_model.Pipeline attribute)

 	DataObject (class in vtkmodules.numpy_interface.dataset_adapter)

 	DataSet (class in vtkmodules.numpy_interface.dataset_adapter)

 	(class in vtkmodules.util.data_model)

 	(vtkmodules.numpy_interface.dataset_adapter.VTKArray property)

 	DataSetAttributes (class in vtkmodules.numpy_interface.dataset_adapter)

 	(class in vtkmodules.util.data_model)

 	DataSetAttributesBase (class in vtkmodules.util.data_model)

 	DEBUG (in module vtkmodules.util.vtkMethodParser)

 	debug() (in module vtkmodules.util.vtkMethodParser)

 	deep_ochre (in module vtkmodules.util.colors)

 	deep_pink (in module vtkmodules.util.colors)

 	DestroyTimer() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	
 	det (in module vtkmodules.numpy_interface.algorithms)

 	det() (in module vtkmodules.numpy_interface.internal_algorithms)

 	determinant (in module vtkmodules.numpy_interface.algorithms)

 	determinant() (in module vtkmodules.numpy_interface.internal_algorithms)

 	diagonal (in module vtkmodules.numpy_interface.algorithms)

 	diagonal() (in module vtkmodules.numpy_interface.internal_algorithms)

 	dim_grey (in module vtkmodules.util.colors)

 	divergence (in module vtkmodules.numpy_interface.algorithms)

 	divergence() (in module vtkmodules.numpy_interface.internal_algorithms)

 	divide (in module vtkmodules.numpy_interface.algorithms)

 	dl (vtkmodules.test.Testing.vtkTest attribute)

 	dodger_blue (in module vtkmodules.util.colors)

 	dot (in module vtkmodules.numpy_interface.algorithms)

 	dot() (in module vtkmodules.numpy_interface.internal_algorithms)

E

 	
 	EdgeData (vtkmodules.numpy_interface.dataset_adapter.Graph attribute)

 	eggshell (in module vtkmodules.util.colors)

 	eigenvalue (in module vtkmodules.numpy_interface.algorithms)

 	eigenvalue() (in module vtkmodules.numpy_interface.internal_algorithms)

 	eigenvector (in module vtkmodules.numpy_interface.algorithms)

 	eigenvector() (in module vtkmodules.numpy_interface.internal_algorithms)

 	emerald_green (in module vtkmodules.util.colors)

 	EndMotion() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	EndQueryInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	EndWindowLevelInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	
 	english_red (in module vtkmodules.util.colors)

 	Enter() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	enterEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	EnterEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	EnterTkViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	error_message (vtkmodules.test.ErrorObserver.vtkErrorObserver property)

 	EventTimer (class in vtkmodules.wx.wxVTKRenderWindowInteractor)

 	exp (in module vtkmodules.numpy_interface.algorithms)

 	expand_dims (in module vtkmodules.numpy_interface.algorithms)

 	Expose() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	ExposeEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	ExposeTkImageViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

F

 	
 	FIELD (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation attribute)

 	field_data (vtkmodules.util.data_model.CompositeDataSetBase property)

 	FieldData (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet attribute)

 	(vtkmodules.numpy_interface.dataset_adapter.DataObject attribute)

 	FieldDataBase (class in vtkmodules.util.data_model)

 	FillInputPortInformation() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm method)

 	FillOutputPortInformation() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm method)

 	
 	Finalize() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	firebrick (in module vtkmodules.util.colors)

 	fix_annotations() (in module vtkmodules.generate_pyi)

 	flatnonzero (in module vtkmodules.numpy_interface.algorithms)

 	flesh (in module vtkmodules.util.colors)

 	flesh_ochre (in module vtkmodules.util.colors)

 	floor (in module vtkmodules.numpy_interface.algorithms)

 	floral_white (in module vtkmodules.util.colors)

 	forest_green (in module vtkmodules.util.colors)

G

 	
 	gainsboro (in module vtkmodules.util.colors)

 	geranium_lake (in module vtkmodules.util.colors)

 	get_array() (vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	get_attributes() (vtkmodules.util.data_model.CompositeDataSetBase method)

 	get_constructors() (in module vtkmodules.generate_pyi)

 	get_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	(vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	get_numpy_array_type() (in module vtkmodules.util.numpy_support)

 	get_set_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	(vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	get_signatures() (in module vtkmodules.generate_pyi)

 	get_vtk_array_type() (in module vtkmodules.util.numpy_support)

 	get_vtk_to_numpy_typemap() (in module vtkmodules.util.numpy_support)

 	getAbsImagePath() (in module vtkmodules.test.Testing)

 	GetArray() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	(vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetArrays() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	GetAtomData() (vtkmodules.numpy_interface.dataset_adapter.Molecule method)

 	GetAttributes() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataObject method)

 	GetBondData() (vtkmodules.numpy_interface.dataset_adapter.Molecule method)

 	GetCellData() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid method)

 	GetCellLocations() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid method)

 	GetCells() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid method)

 	GetCellTypes() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid method)

 	GetConvertIntToUnsignedShort() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetConvertUnsignedShortToInt() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	GetCurrentCamera() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	GetCurrentRenderer() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	GetDataExtent() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetDataOrigin() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetDataSpacing() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetDesiredUpdateRate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	GetDisplayId() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	GetEdgeData() (vtkmodules.numpy_interface.dataset_adapter.Graph method)

 	GetFieldData() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataObject method)

 	GetImageViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	GetInput() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	GetInputData() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	GetInputPortInformation() (vtkmodules.util.execution_model.select_ports method)

 	GetNumberOfCells() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	GetNumberOfElements() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	GetNumberOfPoints() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	
 	GetOutput() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetOutputData() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	GetOutputPort() (vtkmodules.util.execution_model.select_ports method)

 	(vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	GetPicker() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	GetPointData() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSet method)

 	GetPoints() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.PointSet method)

 	GetPolygons() (vtkmodules.numpy_interface.dataset_adapter.PolyData method)

 	GetRenderer() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	GetRenderWindow() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	GetRowData() (vtkmodules.numpy_interface.dataset_adapter.Table method)

 	GetSize() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray method)

 	GetStillUpdateRate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	GetVertexData() (vtkmodules.numpy_interface.dataset_adapter.Graph method)

 	GetZoomFactor() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	ghost_white (in module vtkmodules.util.colors)

 	gold (in module vtkmodules.util.colors)

 	gold_ochre (in module vtkmodules.util.colors)

 	goldenrod (in module vtkmodules.util.colors)

 	goldenrod_dark (in module vtkmodules.util.colors)

 	goldenrod_light (in module vtkmodules.util.colors)

 	goldenrod_pale (in module vtkmodules.util.colors)

 	gradient (in module vtkmodules.numpy_interface.algorithms)

 	gradient() (in module vtkmodules.numpy_interface.internal_algorithms)

 	Graph (class in vtkmodules.generate_pyi)

 	(class in vtkmodules.numpy_interface.dataset_adapter)

 	green (in module vtkmodules.util.colors)

 	green_dark (in module vtkmodules.util.colors)

 	green_pale (in module vtkmodules.util.colors)

 	green_yellow (in module vtkmodules.util.colors)

 	greenish_umber (in module vtkmodules.util.colors)

 	grey (in module vtkmodules.util.colors)

 	GtkGLExtVTKRenderWindow (class in vtkmodules.gtk.GtkGLExtVTKRenderWindow)

 	GtkGLExtVTKRenderWindowBase (class in vtkmodules.gtk.GtkGLExtVTKRenderWindow)

 	GtkGLExtVTKRenderWindowInteractor (class in vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor)

 	GtkVTKRenderWindow (class in vtkmodules.gtk.GtkVTKRenderWindow)

 	GtkVTKRenderWindowBase (class in vtkmodules.gtk.GtkVTKRenderWindow)

 	GtkVTKRenderWindowInteractor (class in vtkmodules.gtk.GtkVTKRenderWindowInteractor)

H

 	
 	handle_static() (in module vtkmodules.generate_pyi)

 	has_self (in module vtkmodules.generate_pyi)

 	HasAttributes() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataObject method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSet method)

 	(vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid method)

 	(vtkmodules.numpy_interface.dataset_adapter.Table method)

 	
 	HideCursor() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	honeydew (in module vtkmodules.util.colors)

 	hot_pink (in module vtkmodules.util.colors)

 	HyperTreeGrid (class in vtkmodules.numpy_interface.dataset_adapter)

 	hypot (in module vtkmodules.numpy_interface.algorithms)

I

 	
 	identifier (in module vtkmodules.generate_pyi)

 	in1d (in module vtkmodules.numpy_interface.algorithms)

 	indent (in module vtkmodules.generate_pyi)

 	indian_red (in module vtkmodules.util.colors)

 	indigo (in module vtkmodules.util.colors)

 	Initialize() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm method)

 	initialize_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	interact() (in module vtkmodules.test.Testing)

 	inv (in module vtkmodules.numpy_interface.algorithms)

 	
 	inv() (in module vtkmodules.numpy_interface.internal_algorithms)

 	inverse (in module vtkmodules.numpy_interface.algorithms)

 	inverse() (in module vtkmodules.numpy_interface.internal_algorithms)

 	isclass (in module vtkmodules.generate_pyi)

 	isenum() (in module vtkmodules.generate_pyi)

 	isInteractive() (in module vtkmodules.test.Testing)

 	ismethod (in module vtkmodules.generate_pyi)

 	isnamespace() (in module vtkmodules.generate_pyi)

 	isnan (in module vtkmodules.numpy_interface.algorithms)

 	isvtkmethod() (in module vtkmodules.generate_pyi)

 	ivory (in module vtkmodules.util.colors)

 	ivory_black (in module vtkmodules.util.colors)

J

 	
 	jacobian (in module vtkmodules.numpy_interface.algorithms)

 	
 	jacobian() (in module vtkmodules.numpy_interface.internal_algorithms)

K

 	
 	keychar (in module vtkmodules.generate_pyi)

 	keyPressEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	KeyPressEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	keyReleaseEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	KeyReleaseEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	
 	keys() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	khaki (in module vtkmodules.util.colors)

 	khaki_dark (in module vtkmodules.util.colors)

L

 	
 	lamp_black (in module vtkmodules.util.colors)

 	laplacian (in module vtkmodules.numpy_interface.algorithms)

 	laplacian() (in module vtkmodules.numpy_interface.internal_algorithms)

 	lavender (in module vtkmodules.util.colors)

 	lavender_blush (in module vtkmodules.util.colors)

 	lawn_green (in module vtkmodules.util.colors)

 	Leave() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	leaveEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	LeaveEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	LeaveTkViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	LeftButtonPressEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	LeftButtonReleaseEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	lemon_chiffon (in module vtkmodules.util.colors)

 	
 	light_beige (in module vtkmodules.util.colors)

 	light_goldenrod (in module vtkmodules.util.colors)

 	light_grey (in module vtkmodules.util.colors)

 	light_salmon (in module vtkmodules.util.colors)

 	lime_green (in module vtkmodules.util.colors)

 	linen (in module vtkmodules.util.colors)

 	ln (in module vtkmodules.numpy_interface.algorithms)

 	ln() (in module vtkmodules.numpy_interface.internal_algorithms)

 	log (in module vtkmodules.numpy_interface.algorithms)

 	log() (in module vtkmodules.numpy_interface.internal_algorithms)

 	log10 (in module vtkmodules.numpy_interface.algorithms)

 	log10() (in module vtkmodules.numpy_interface.internal_algorithms)

 	logical_not (in module vtkmodules.numpy_interface.algorithms)

M

 	
 	madder_lake_deep (in module vtkmodules.util.colors)

 	mag (in module vtkmodules.numpy_interface.algorithms)

 	mag() (in module vtkmodules.numpy_interface.internal_algorithms)

 	magenta (in module vtkmodules.util.colors)

 	main() (in module vtkmodules.generate_pyi)

 	(in module vtkmodules.gtk.GtkGLExtVTKRenderWindow)

 	(in module vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor)

 	(in module vtkmodules.gtk.GtkVTKRenderWindow)

 	(in module vtkmodules.gtk.GtkVTKRenderWindowInteractor)

 	(in module vtkmodules.test.rtImageTest)

 	(in module vtkmodules.test.Testing)

 	make_cell_mask_from_NaNs() (in module vtkmodules.numpy_interface.algorithms)

 	make_mask_from_NaNs() (in module vtkmodules.numpy_interface.algorithms)

 	make_point_mask_from_NaNs() (in module vtkmodules.numpy_interface.algorithms)

 	make_vector() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	MakeKey() (in module vtkmodules.util.keys)

 	manganese_blue (in module vtkmodules.util.colors)

 	maroon (in module vtkmodules.util.colors)

 	mars_orange (in module vtkmodules.util.colors)

 	mars_yellow (in module vtkmodules.util.colors)

 	matmul (in module vtkmodules.numpy_interface.algorithms)

 	matmul() (in module vtkmodules.numpy_interface.internal_algorithms)

 	max() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	max_angle (in module vtkmodules.numpy_interface.algorithms)

 	max_angle() (in module vtkmodules.numpy_interface.internal_algorithms)

 	max_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	mean() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	mean_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	melon (in module vtkmodules.util.colors)

 	MiddleButtonPressEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	MiddleButtonReleaseEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	midnight_blue (in module vtkmodules.util.colors)

 	min() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	min_angle (in module vtkmodules.numpy_interface.algorithms)

 	min_angle() (in module vtkmodules.numpy_interface.internal_algorithms)

 	min_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	mint (in module vtkmodules.util.colors)

 	mint_cream (in module vtkmodules.util.colors)

 	misty_rose (in module vtkmodules.util.colors)

 	moccasin (in module vtkmodules.util.colors)

 	mod (in module vtkmodules.numpy_interface.algorithms)

 	modified() (vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	
 module

 	vtkmodules

 	vtkmodules.generate_pyi

 	vtkmodules.gtk

 	vtkmodules.gtk.GtkGLExtVTKRenderWindow

 	vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

 	vtkmodules.gtk.GtkVTKRenderWindow

 	vtkmodules.gtk.GtkVTKRenderWindowInteractor

 	vtkmodules.numpy_interface

 	vtkmodules.numpy_interface.algorithms

 	vtkmodules.numpy_interface.dataset_adapter

 	vtkmodules.numpy_interface.internal_algorithms

 	vtkmodules.qt

 	vtkmodules.qt.QVTKRenderWindowInteractor

 	vtkmodules.test

 	vtkmodules.test.BlackBox

 	vtkmodules.test.ErrorObserver

 	vtkmodules.test.rtImageTest

 	vtkmodules.test.Testing

 	vtkmodules.tk

 	vtkmodules.tk.vtkLoadPythonTkWidgets

 	vtkmodules.tk.vtkTkImageViewerWidget

 	vtkmodules.tk.vtkTkPhotoImage

 	vtkmodules.tk.vtkTkRenderWidget

 	vtkmodules.tk.vtkTkRenderWindowInteractor

 	vtkmodules.util

 	vtkmodules.util.colors

 	vtkmodules.util.data_model

 	vtkmodules.util.execution_model

 	vtkmodules.util.keys

 	vtkmodules.util.misc

 	vtkmodules.util.numpy_support

 	vtkmodules.util.pickle_support

 	vtkmodules.util.vtkAlgorithm

 	vtkmodules.util.vtkConstants

 	vtkmodules.util.vtkImageExportToArray

 	vtkmodules.util.vtkImageImportFromArray

 	vtkmodules.util.vtkMethodParser

 	vtkmodules.util.vtkVariant

 	vtkmodules.wx

 	vtkmodules.wx.wxVTKRenderWindow

 	vtkmodules.wx.wxVTKRenderWindowInteractor

 	
 	module_pyi() (in module vtkmodules.generate_pyi)

 	Molecule (class in vtkmodules.numpy_interface.dataset_adapter)

 	mouseMoveEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	MouseMoveEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	mousePressEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	mouseReleaseEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	MouseWheelBackwardEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	MouseWheelEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	MouseWheelForwardEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	MultiCompositeDataIterator (class in vtkmodules.numpy_interface.dataset_adapter)

 	multiply (in module vtkmodules.numpy_interface.algorithms)

N

 	
 	namespace_pyi() (in module vtkmodules.generate_pyi)

 	naples_yellow_deep (in module vtkmodules.util.colors)

 	navajo_white (in module vtkmodules.util.colors)

 	navy (in module vtkmodules.util.colors)

 	negative (in module vtkmodules.numpy_interface.algorithms)

 	next() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator method)

 	(vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator method)

 	(vtkmodules.util.data_model.CompositeDataIterator method)

 	(vtkmodules.util.data_model.CompositeDataSetAttributesIterator method)

 	
 	Node (class in vtkmodules.generate_pyi)

 	NoneArray (in module vtkmodules.numpy_interface.dataset_adapter)

 	nonzero (in module vtkmodules.numpy_interface.algorithms)

 	norm (in module vtkmodules.numpy_interface.algorithms)

 	norm() (in module vtkmodules.numpy_interface.internal_algorithms)

 	Notify() (vtkmodules.wx.wxVTKRenderWindowInteractor.EventTimer method)

 	numpy_to_vtk() (in module vtkmodules.util.numpy_support)

 	numpy_to_vtkIdTypeArray() (in module vtkmodules.util.numpy_support)

 	numpyTovtkDataArray() (in module vtkmodules.numpy_interface.dataset_adapter)

O

 	
 	old_lace (in module vtkmodules.util.colors)

 	olive (in module vtkmodules.util.colors)

 	olive_drab (in module vtkmodules.util.colors)

 	olive_green_dark (in module vtkmodules.util.colors)

 	OnButtonDown() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnButtonUp() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnChar() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnConfigure() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnDestroy() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnEnter() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnEnterWindow() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnExpose() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnKeyDown() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnKeyPress() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	
 	OnKeyRelease() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnKeyUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnKillFocus() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnLeave() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnLeaveWindow() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnLeftDown() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnLeftUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnMiddleDown() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnMiddleUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnMotion() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnMouseCaptureLost() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnMouseMove() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnMouseWheel() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnMove() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnPaint() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	OnRealize() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	OnRightDown() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnRightUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnSetFocus() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	OnSize() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	orange (in module vtkmodules.util.colors)

 	orange_red (in module vtkmodules.util.colors)

 	orchid (in module vtkmodules.util.colors)

 	orchid_dark (in module vtkmodules.util.colors)

 	orchid_medium (in module vtkmodules.util.colors)

 	Output (class in vtkmodules.util.execution_model)

 	output (vtkmodules.util.execution_model.Output property)

P

 	
 	paintEngine() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	paintEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	Pan() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	papaya_whip (in module vtkmodules.util.colors)

 	parse_error() (in module vtkmodules.generate_pyi)

 	parse_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	(vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	parseCmdLine() (in module vtkmodules.test.Testing)

 	PassData() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes method)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	pathToData() (vtkmodules.test.Testing.vtkTest method)

 	pathToValidatedOutput() (vtkmodules.test.Testing.vtkTest method)

 	peach_puff (in module vtkmodules.util.colors)

 	peacock (in module vtkmodules.util.colors)

 	permanent_green (in module vtkmodules.util.colors)

 	permanent_red_violet (in module vtkmodules.util.colors)

 	peru (in module vtkmodules.util.colors)

 	PickActor() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	pink (in module vtkmodules.util.colors)

 	pink_light (in module vtkmodules.util.colors)

 	Pipeline (class in vtkmodules.util.execution_model)

 	PIPELINE (vtkmodules.util.execution_model.Pipeline attribute)

 	
 	plum (in module vtkmodules.util.colors)

 	POINT (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation attribute)

 	point_data (vtkmodules.util.data_model.CompositeDataSetBase property)

 	(vtkmodules.util.data_model.DataSet property)

 	PointData (class in vtkmodules.util.data_model)

 	(vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet attribute)

 	(vtkmodules.numpy_interface.dataset_adapter.DataSet attribute)

 	Points (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet attribute)

 	(vtkmodules.numpy_interface.dataset_adapter.PointSet attribute)

 	points (vtkmodules.util.data_model.CompositeDataSetBase property)

 	(vtkmodules.util.data_model.PointSet property)

 	PointSet (class in vtkmodules.numpy_interface.dataset_adapter)

 	(class in vtkmodules.util.data_model)

 	PolyData (class in vtkmodules.numpy_interface.dataset_adapter)

 	Polygons (vtkmodules.numpy_interface.dataset_adapter.PolyData attribute)

 	polygons (vtkmodules.util.data_model.vtkPolyData property)

 	powder_blue (in module vtkmodules.util.colors)

 	power (in module vtkmodules.numpy_interface.algorithms)

 	prepareTestImage() (vtkmodules.test.Testing.vtkTest method)

 	processCmdLine() (in module vtkmodules.test.Testing)

 	ProcessRequest() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm method)

 	purple (in module vtkmodules.util.colors)

 	purple_medium (in module vtkmodules.util.colors)

 	push_signature() (in module vtkmodules.generate_pyi)

 	PutImageSlice() (vtkmodules.tk.vtkTkPhotoImage.vtkTkPhotoImage method)

 	PyQtImpl (in module vtkmodules.qt)

Q

 	
 	QVTKRenderWidgetConeExample() (in module vtkmodules.qt.QVTKRenderWindowInteractor)

 	QVTKRenderWindowInteractor (class in vtkmodules.qt.QVTKRenderWindowInteractor)

 	
 	QVTKRWIBase (in module vtkmodules.qt)

 	(in module vtkmodules.qt.QVTKRenderWindowInteractor)

R

 	
 	raspberry (in module vtkmodules.util.colors)

 	raw_sienna (in module vtkmodules.util.colors)

 	raw_umber (in module vtkmodules.util.colors)

 	reciprocal (in module vtkmodules.numpy_interface.algorithms)

 	red (in module vtkmodules.util.colors)

 	remainder (in module vtkmodules.numpy_interface.algorithms)

 	Render() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	(vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	RequestData() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	RequestDataObject() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	RequestInformation() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	
 	RequestUpdateExtent() (vtkmodules.util.vtkAlgorithm.VTKAlgorithm method)

 	(vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase method)

 	Reset() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	reset() (vtkmodules.test.ErrorObserver.vtkErrorObserver method)

 	Reset() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	ResetTkImageViewer() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	reshape_append_ones() (in module vtkmodules.numpy_interface.dataset_adapter)

 	resizeEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	RightButtonPressEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	RightButtonReleaseEvent() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor method)

 	rint (in module vtkmodules.numpy_interface.algorithms)

 	rose_madder (in module vtkmodules.util.colors)

 	rosy_brown (in module vtkmodules.util.colors)

 	Rotate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	ROW (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation attribute)

 	RowData (vtkmodules.numpy_interface.dataset_adapter.Table attribute)

 	royal_blue (in module vtkmodules.util.colors)

S

 	
 	saddle_brown (in module vtkmodules.util.colors)

 	salmon (in module vtkmodules.util.colors)

 	sandy_brown (in module vtkmodules.util.colors)

 	sap_green (in module vtkmodules.util.colors)

 	saw_error (vtkmodules.test.ErrorObserver.vtkErrorObserver property)

 	saw_warning (vtkmodules.test.ErrorObserver.vtkErrorObserver property)

 	sea_green (in module vtkmodules.util.colors)

 	sea_green_dark (in module vtkmodules.util.colors)

 	sea_green_light (in module vtkmodules.util.colors)

 	sea_green_medium (in module vtkmodules.util.colors)

 	seashell (in module vtkmodules.util.colors)

 	select_ports (class in vtkmodules.util.execution_model)

 	sepia (in module vtkmodules.util.colors)

 	serialize_VTK_data_object() (in module vtkmodules.util.pickle_support)

 	set_array() (vtkmodules.util.data_model.CompositeDataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	set_size_request() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	set_usize() (vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor method)

 	SetArray() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	SetCells() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid method)

 	SetConvertIntToUnsignedShort() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	SetConvertUnsignedShortToInt() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	SetDataExtent() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	SetDataOrigin() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	SetDataSpacing() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	setDebug() (vtkmodules.test.BlackBox.Tester method)

 	SetDesiredUpdateRate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	SetInputConnection() (vtkmodules.util.execution_model.select_ports method)

 	(vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	SetInputData() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray method)

 	SetPicker() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor method)

 	SetPoints() (vtkmodules.numpy_interface.dataset_adapter.PointSet method)

 	SetRenderWhenDisabled() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	SetStillUpdateRate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	SetZoomFactor() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	shape() (in module vtkmodules.numpy_interface.algorithms)

 	shear (in module vtkmodules.numpy_interface.algorithms)

 	shear() (in module vtkmodules.numpy_interface.internal_algorithms)

 	ShowCursor() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	(vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor method)

 	
 	sienna (in module vtkmodules.util.colors)

 	sin (in module vtkmodules.numpy_interface.algorithms)

 	sinh (in module vtkmodules.numpy_interface.algorithms)

 	size (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray attribute)

 	sizeHint() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	skew (in module vtkmodules.numpy_interface.algorithms)

 	skew() (in module vtkmodules.numpy_interface.internal_algorithms)

 	skip() (in module vtkmodules.test.Testing)

 	sky_blue (in module vtkmodules.util.colors)

 	sky_blue_deep (in module vtkmodules.util.colors)

 	sky_blue_light (in module vtkmodules.util.colors)

 	slate_blue (in module vtkmodules.util.colors)

 	slate_blue_dark (in module vtkmodules.util.colors)

 	slate_blue_light (in module vtkmodules.util.colors)

 	slate_blue_medium (in module vtkmodules.util.colors)

 	slate_grey (in module vtkmodules.util.colors)

 	slate_grey_dark (in module vtkmodules.util.colors)

 	slate_grey_light (in module vtkmodules.util.colors)

 	snow (in module vtkmodules.util.colors)

 	sorted_graph() (in module vtkmodules.generate_pyi)

 	sorted_graph_helper() (in module vtkmodules.generate_pyi)

 	spring_green (in module vtkmodules.util.colors)

 	spring_green_medium (in module vtkmodules.util.colors)

 	sqrt (in module vtkmodules.numpy_interface.algorithms)

 	square (in module vtkmodules.numpy_interface.algorithms)

 	StartMotion() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	StartQueryInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	StartWindowLevelInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	state_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	(vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	std() (in module vtkmodules.numpy_interface.algorithms)

 	steel_blue (in module vtkmodules.util.colors)

 	steel_blue_light (in module vtkmodules.util.colors)

 	strain (in module vtkmodules.numpy_interface.algorithms)

 	strain() (in module vtkmodules.numpy_interface.internal_algorithms)

 	string (in module vtkmodules.generate_pyi)

 	subtract (in module vtkmodules.numpy_interface.algorithms)

 	sum() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	sum_per_block() (in module vtkmodules.numpy_interface.algorithms)

 	Surface() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	surface_normal (in module vtkmodules.numpy_interface.algorithms)

 	surface_normal() (in module vtkmodules.numpy_interface.internal_algorithms)

T

 	
 	Table (class in vtkmodules.numpy_interface.dataset_adapter)

 	tan (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.util.colors)

 	tanh (in module vtkmodules.numpy_interface.algorithms)

 	template (in module vtkmodules.generate_pyi)

 	terre_verte (in module vtkmodules.util.colors)

 	test() (in module vtkmodules.test.Testing)

 	(vtkmodules.test.BlackBox.Tester method)

 	testBoolean() (vtkmodules.test.BlackBox.Tester method)

 	Tester (class in vtkmodules.test.BlackBox)

 	testGetSet() (vtkmodules.test.BlackBox.Tester method)

 	testParse() (vtkmodules.test.BlackBox.Tester method)

 	thistle (in module vtkmodules.util.colors)

 	TimerEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	
 	titanium_white (in module vtkmodules.util.colors)

 	toggle_methods() (vtkmodules.util.vtkMethodParser.VtkDirMethodParser method)

 	(vtkmodules.util.vtkMethodParser.VtkPrintMethodParser method)

 	tomato (in module vtkmodules.util.colors)

 	topologically_sorted_items() (in module vtkmodules.generate_pyi)

 	trace (in module vtkmodules.numpy_interface.algorithms)

 	trace() (in module vtkmodules.numpy_interface.internal_algorithms)

 	turquoise (in module vtkmodules.util.colors)

 	turquoise_blue (in module vtkmodules.util.colors)

 	turquoise_dark (in module vtkmodules.util.colors)

 	turquoise_medium (in module vtkmodules.util.colors)

 	turquoise_pale (in module vtkmodules.util.colors)

 	typename() (in module vtkmodules.generate_pyi)

 	typename_forward() (in module vtkmodules.generate_pyi)

 	types (in module vtkmodules.generate_pyi)

U

 	
 	ultramarine (in module vtkmodules.util.colors)

 	ultramarine_violet (in module vtkmodules.util.colors)

 	UNKNOWN (vtkmodules.util.execution_model.Pipeline attribute)

 	unserialize_VTK_data_object() (in module vtkmodules.util.pickle_support)

 	unstructured_from_composite_arrays() (in module vtkmodules.numpy_interface.algorithms)

 	UnstructuredGrid (class in vtkmodules.numpy_interface.dataset_adapter)

 	update() (vtkmodules.util.execution_model.Pipeline method)

 	(vtkmodules.util.execution_model.select_ports method)

 	
 	Update() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray method)

 	UpdateQueryInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	UpdateRenderer() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	UpdateWindowLevelInteraction() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget method)

 	usage() (in module vtkmodules.test.Testing)

 	USE_STEREO (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor attribute)

V

 	
 	values() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes method)

 	(vtkmodules.util.data_model.FieldDataBase method)

 	van_dyke_brown (in module vtkmodules.util.colors)

 	var() (in module vtkmodules.numpy_interface.algorithms)

 	(in module vtkmodules.numpy_interface.internal_algorithms)

 	
 variable

 	CMAKE_BINARY_DIR

 	venetian_red (in module vtkmodules.util.colors)

 	vertex_normal (in module vtkmodules.numpy_interface.algorithms)

 	vertex_normal() (in module vtkmodules.numpy_interface.internal_algorithms)

 	VertexData (vtkmodules.numpy_interface.dataset_adapter.Graph attribute)

 	violet (in module vtkmodules.util.colors)

 	violet_dark (in module vtkmodules.util.colors)

 	violet_red (in module vtkmodules.util.colors)

 	violet_red_medium (in module vtkmodules.util.colors)

 	violet_red_pale (in module vtkmodules.util.colors)

 	viridian_light (in module vtkmodules.util.colors)

 	volume (in module vtkmodules.numpy_interface.algorithms)

 	volume() (in module vtkmodules.numpy_interface.internal_algorithms)

 	vorticity (in module vtkmodules.numpy_interface.algorithms)

 	vorticity() (in module vtkmodules.numpy_interface.internal_algorithms)

 	
 vtk_add_test_cxx

 	command, [1]

 	
 vtk_add_test_mangling

 	command

 	
 vtk_add_test_module_javascript_node

 	command

 	
 vtk_add_test_mpi

 	command, [1]

 	
 vtk_add_test_python

 	command, [1]

 	
 vtk_add_test_python_mpi

 	command

 	VTK_ARIAL (in module vtkmodules.util.vtkConstants)

 	VTK_BASELINE_PATHS (in module vtkmodules.test.Testing)

 	VTK_BASELINE_ROOT (in module vtkmodules.test.Testing)

 	VTK_BIQUADRATIC_QUAD (in module vtkmodules.util.vtkConstants)

 	VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_BIQUADRATIC_QUADRATIC_WEDGE (in module vtkmodules.util.vtkConstants)

 	VTK_BIT (in module vtkmodules.util.vtkConstants)

 	VTK_BIT_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_BIT_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_CHAR (in module vtkmodules.util.vtkConstants)

 	VTK_CHAR_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_CHAR_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_COLOR_MODE_DEFAULT (in module vtkmodules.util.vtkConstants)

 	VTK_COLOR_MODE_MAP_SCALARS (in module vtkmodules.util.vtkConstants)

 	VTK_COMPOSITE_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_CONVEX_POINT_SET (in module vtkmodules.util.vtkConstants)

 	VTK_COURIER (in module vtkmodules.util.vtkConstants)

 	VTK_DATA_OBJECT (in module vtkmodules.util.vtkConstants)

 	VTK_DATA_PATHS (in module vtkmodules.test.Testing)

 	VTK_DATA_ROOT (in module vtkmodules.test.Testing)

 	VTK_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_DOUBLE (in module vtkmodules.util.vtkConstants)

 	VTK_DOUBLE_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_DOUBLE_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_EMPTY_CELL (in module vtkmodules.util.vtkConstants)

 	VTK_ERROR (in module vtkmodules.util.vtkConstants)

 	VTK_FLOAT (in module vtkmodules.util.vtkConstants)

 	VTK_FLOAT_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_FLOAT_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_GENERIC_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_GRAPH (in module vtkmodules.util.vtkConstants)

 	VTK_HEXAGONAL_PRISM (in module vtkmodules.util.vtkConstants)

 	VTK_HEXAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_HIERARCHICAL_BOX_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_HIERARCHICAL_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_EDGE (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_HEXAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_POLYGON (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_PYRAMID (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_QUAD (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_TETRAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_TRIANGLE (in module vtkmodules.util.vtkConstants)

 	VTK_HIGHER_ORDER_WEDGE (in module vtkmodules.util.vtkConstants)

 	VTK_HYPER_OCTREE (in module vtkmodules.util.vtkConstants)

 	VTK_ID_TYPE (in module vtkmodules.util.vtkConstants)

 	VTK_ID_TYPE_SIZE (in module vtkmodules.util.numpy_support)

 	VTK_IMAGE_DATA (in module vtkmodules.util.vtkConstants)

 	VTK_INT (in module vtkmodules.util.vtkConstants)

 	VTK_INT_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_INT_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_LINE (in module vtkmodules.util.vtkConstants)

 	VTK_LINEAR_INTERPOLATION (in module vtkmodules.util.vtkConstants)

 	VTK_LONG (in module vtkmodules.util.vtkConstants)

 	VTK_LONG_LONG (in module vtkmodules.util.vtkConstants)

 	VTK_LONG_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_LONG_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_LONG_TYPE_SIZE (in module vtkmodules.util.numpy_support)

 	VTK_LUMINANCE (in module vtkmodules.util.vtkConstants)

 	VTK_LUMINANCE_ALPHA (in module vtkmodules.util.vtkConstants)

 	VTK_MAX_VRCOMP (in module vtkmodules.util.vtkConstants)

 	
 vtk_module_add_executable

 	command, [1], [2]

 	
 vtk_module_add_module

 	command, [1], [2], [3], [4], [5], [6]

 	
 vtk_module_add_python_module

 	command

 	
 vtk_module_add_python_package

 	command, [1]

 	
 vtk_module_autoinit

 	command, [1], [2], [3], [4]

 	
 vtk_module_build

 	command, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]

 	
 vtk_module_build call

 	command, [1]

 	
 vtk_module_compile_features

 	command, [1], [2]

 	
 vtk_module_compile_options

 	command, [1], [2]

 	
 vtk_module_definitions

 	command, [1], [2]

 	
 vtk_module_depend

 	command, [1], [2]

 	
 vtk_module_export_find_packages

 	command, [1]

 	
 vtk_module_find_kits

 	command, [1], [2]

 	
 vtk_module_find_modules

 	command, [1], [2]

 	
 vtk_module_find_package

 	command, [1], [2], [3], [4]

 	
 vtk_module_get_property

 	command, [1], [2], [3]

 	
 vtk_module_graphviz

 	command

 	
 vtk_module_include

 	command, [1], [2]

 	
 vtk_module_install_headers

 	command, [1]

 	
 vtk_module_json

 	command

 	
 vtk_module_link

 	command, [1], [2]

 	
 vtk_module_link_options

 	command, [1], [2]

 	
 vtk_module_python_default_destination

 	command, [1]

 	
 vtk_module_scan

 	command, [1], [2], [3], [4], [5], [6], [7], [8]

 	
 vtk_module_set_properties

 	command, [1], [2]

 	
 vtk_module_set_property

 	command, [1], [2]

 	
 vtk_module_sources

 	command

 	
 vtk_module_test_data

 	command

 	
 vtk_module_test_executable

 	command

 	
 vtk_module_third_party

 	command, [1], [2]

 	
 vtk_module_third_party_external

 	command, [1], [2], [3]

 	
 vtk_module_third_party_internal

 	command, [1], [2]

 	
 vtk_module_wrap_java

 	command, [1], [2]

 	
 vtk_module_wrap_python

 	command, [1]

 	
 vtk_module_wrap_python function

 	command

 	VTK_MULTIBLOCK_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_MULTIGROUP_DATA_SET (in module vtkmodules.util.vtkConstants)

 	VTK_NEAREST_INTERPOLATION (in module vtkmodules.util.vtkConstants)

 	VTK_OBJECT (in module vtkmodules.util.vtkConstants)

 	VTK_OK (in module vtkmodules.util.vtkConstants)

 	VTK_OPAQUE (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_CURVE (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_HEX_REGION (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_QUAD_SURFACE (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_SURFACE (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_TETRA_REGION (in module vtkmodules.util.vtkConstants)

 	VTK_PARAMETRIC_TRI_SURFACE (in module vtkmodules.util.vtkConstants)

 	VTK_PENTAGONAL_PRISM (in module vtkmodules.util.vtkConstants)

 	VTK_PIECEWISE_FUNCTION (in module vtkmodules.util.vtkConstants)

 	VTK_PIXEL (in module vtkmodules.util.vtkConstants)

 	VTK_POINT_SET (in module vtkmodules.util.vtkConstants)

 	VTK_POLY_DATA (in module vtkmodules.util.vtkConstants)

 	VTK_POLY_LINE (in module vtkmodules.util.vtkConstants)

 	VTK_POLY_VERTEX (in module vtkmodules.util.vtkConstants)

 	VTK_POLYGON (in module vtkmodules.util.vtkConstants)

 	VTK_PYRAMID (in module vtkmodules.util.vtkConstants)

 	
 	VTK_QUAD (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_EDGE (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_HEXAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_LINEAR_QUAD (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_LINEAR_WEDGE (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_PYRAMID (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_QUAD (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_TETRA (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_TRIANGLE (in module vtkmodules.util.vtkConstants)

 	VTK_QUADRATIC_WEDGE (in module vtkmodules.util.vtkConstants)

 	VTK_RECTILINEAR_GRID (in module vtkmodules.util.vtkConstants)

 	VTK_RGB (in module vtkmodules.util.vtkConstants)

 	VTK_RGBA (in module vtkmodules.util.vtkConstants)

 	VTK_SELECTION (in module vtkmodules.util.vtkConstants)

 	VTK_SHORT (in module vtkmodules.util.vtkConstants)

 	VTK_SHORT_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_SHORT_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_SIGNED_CHAR (in module vtkmodules.util.vtkConstants)

 	VTK_STRING (in module vtkmodules.util.vtkConstants)

 	VTK_STRUCTURED_GRID (in module vtkmodules.util.vtkConstants)

 	VTK_STRUCTURED_POINTS (in module vtkmodules.util.vtkConstants)

 	VTK_TABLE (in module vtkmodules.util.vtkConstants)

 	VTK_TEMP_DIR (in module vtkmodules.test.Testing)

 	VTK_TEMPORAL_DATA_SET (in module vtkmodules.util.vtkConstants)

 	
 vtk_test_cxx_executable

 	command

 	
 vtk_test_mpi_executable

 	command

 	VTK_TETRA (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_BOTTOM (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_CENTERED (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_GLOBAL_ANTIALIASING_ALL (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_GLOBAL_ANTIALIASING_NONE (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_GLOBAL_ANTIALIASING_SOME (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_LEFT (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_RIGHT (in module vtkmodules.util.vtkConstants)

 	VTK_TEXT_TOP (in module vtkmodules.util.vtkConstants)

 	VTK_TIMES (in module vtkmodules.util.vtkConstants)

 	vtk_to_numpy() (in module vtkmodules.util.numpy_support)

 	VTK_TREE (in module vtkmodules.util.vtkConstants)

 	VTK_TRIANGLE (in module vtkmodules.util.vtkConstants)

 	VTK_TRIANGLE_STRIP (in module vtkmodules.util.vtkConstants)

 	VTK_TRIQUADRATIC_HEXAHEDRON (in module vtkmodules.util.vtkConstants)

 	VTK_UNIFORM_GRID (in module vtkmodules.util.vtkConstants)

 	VTK_UNKNOWN_FONT (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_CHAR (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_CHAR_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_CHAR_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_INT (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_LONG (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_LONG_LONG (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_SHORT (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_SHORT_MAX (in module vtkmodules.util.vtkConstants)

 	VTK_UNSIGNED_SHORT_MIN (in module vtkmodules.util.vtkConstants)

 	VTK_UNSTRUCTURED_GRID (in module vtkmodules.util.vtkConstants)

 	VTK_VARIANT (in module vtkmodules.util.vtkConstants)

 	VTK_VERTEX (in module vtkmodules.util.vtkConstants)

 	VTK_VOID (in module vtkmodules.util.vtkConstants)

 	VTK_VOXEL (in module vtkmodules.util.vtkConstants)

 	VTK_WEDGE (in module vtkmodules.util.vtkConstants)

 	VTKAlgorithm (class in vtkmodules.util.vtkAlgorithm)

 	VTKArray (class in vtkmodules.numpy_interface.dataset_adapter)

 	VTKArrayMetaClass (class in vtkmodules.numpy_interface.dataset_adapter)

 	VTKCompositeDataArray (class in vtkmodules.numpy_interface.dataset_adapter)

 	VTKCompositeDataArrayMetaClass (class in vtkmodules.numpy_interface.dataset_adapter)

 	vtkDataArrayToVTKArray() (in module vtkmodules.numpy_interface.dataset_adapter)

 	VtkDirMethodParser (class in vtkmodules.util.vtkMethodParser)

 	vtkErrorObserver (class in vtkmodules.test.ErrorObserver)

 	vtkFieldData (class in vtkmodules.util.data_model)

 	vtkGetDataRoot() (in module vtkmodules.util.misc)

 	vtkGetTempDir() (in module vtkmodules.util.misc)

 	vtkImageData (class in vtkmodules.util.data_model)

 	vtkImageExportToArray (class in vtkmodules.util.vtkImageExportToArray)

 	vtkImageImportFromArray (class in vtkmodules.util.vtkImageImportFromArray)

 	vtkImageScalarTypeNameMacro() (in module vtkmodules.util.vtkConstants)

 	vtkLoadPythonTkWidgets() (in module vtkmodules.tk.vtkLoadPythonTkWidgets)

 	vtkmethod (in module vtkmodules.generate_pyi)

 	
 vtkmodules

 	module

 	
 vtkmodules.generate_pyi

 	module

 	
 vtkmodules.gtk

 	module

 	
 vtkmodules.gtk.GtkGLExtVTKRenderWindow

 	module

 	
 vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

 	module

 	
 vtkmodules.gtk.GtkVTKRenderWindow

 	module

 	
 vtkmodules.gtk.GtkVTKRenderWindowInteractor

 	module

 	
 vtkmodules.numpy_interface

 	module

 	
 vtkmodules.numpy_interface.algorithms

 	module

 	
 vtkmodules.numpy_interface.dataset_adapter

 	module

 	
 vtkmodules.numpy_interface.internal_algorithms

 	module

 	
 vtkmodules.qt

 	module

 	
 vtkmodules.qt.QVTKRenderWindowInteractor

 	module

 	
 vtkmodules.test

 	module

 	
 vtkmodules.test.BlackBox

 	module

 	
 vtkmodules.test.ErrorObserver

 	module

 	
 vtkmodules.test.rtImageTest

 	module

 	
 vtkmodules.test.Testing

 	module

 	
 vtkmodules.tk

 	module

 	
 vtkmodules.tk.vtkLoadPythonTkWidgets

 	module

 	
 vtkmodules.tk.vtkTkImageViewerWidget

 	module

 	
 vtkmodules.tk.vtkTkPhotoImage

 	module

 	
 vtkmodules.tk.vtkTkRenderWidget

 	module

 	
 vtkmodules.tk.vtkTkRenderWindowInteractor

 	module

 	
 vtkmodules.util

 	module

 	
 vtkmodules.util.colors

 	module

 	
 vtkmodules.util.data_model

 	module

 	
 vtkmodules.util.execution_model

 	module

 	
 vtkmodules.util.keys

 	module

 	
 vtkmodules.util.misc

 	module

 	
 vtkmodules.util.numpy_support

 	module

 	
 vtkmodules.util.pickle_support

 	module

 	
 vtkmodules.util.vtkAlgorithm

 	module

 	
 vtkmodules.util.vtkConstants

 	module

 	
 vtkmodules.util.vtkImageExportToArray

 	module

 	
 vtkmodules.util.vtkImageImportFromArray

 	module

 	
 vtkmodules.util.vtkMethodParser

 	module

 	
 vtkmodules.util.vtkVariant

 	module

 	
 vtkmodules.wx

 	module

 	
 vtkmodules.wx.wxVTKRenderWindow

 	module

 	
 vtkmodules.wx.wxVTKRenderWindowInteractor

 	module

 	VTKNoneArray (class in vtkmodules.numpy_interface.dataset_adapter)

 	VTKNoneArrayMetaClass (class in vtkmodules.numpy_interface.dataset_adapter)

 	VTKObjectWrapper (class in vtkmodules.numpy_interface.dataset_adapter)

 	vtkPartitionedDataSet (class in vtkmodules.util.data_model)

 	vtkPolyData (class in vtkmodules.util.data_model)

 	VtkPrintMethodParser (class in vtkmodules.util.vtkMethodParser)

 	VTKPythonAlgorithmBase (class in vtkmodules.util.vtkAlgorithm)

 	VTKPythonAlgorithmBase.InternalAlgorithm (class in vtkmodules.util.vtkAlgorithm)

 	vtkRegressionTestImage() (in module vtkmodules.util.misc)

 	vtkRenderWidgetConeExample() (in module vtkmodules.tk.vtkTkRenderWidget)

 	vtkRenderWindowInteractorConeExample() (in module vtkmodules.tk.vtkTkRenderWindowInteractor)

 	vtkTest (class in vtkmodules.test.Testing)

 	vtkTkImageViewerWidget (class in vtkmodules.tk.vtkTkImageViewerWidget)

 	vtkTkPhotoImage (class in vtkmodules.tk.vtkTkPhotoImage)

 	vtkTkRenderWidget (class in vtkmodules.tk.vtkTkRenderWidget)

 	vtkTkRenderWindowInteractor (class in vtkmodules.tk.vtkTkRenderWindowInteractor)

 	vtkUnstructuredGrid (class in vtkmodules.util.data_model)

 	vtkVariantCast() (in module vtkmodules.util.vtkVariant)

 	vtkVariantCreate() (in module vtkmodules.util.vtkVariant)

 	vtkVariantEqual() (in module vtkmodules.util.vtkVariant)

 	vtkVariantExtract() (in module vtkmodules.util.vtkVariant)

 	vtkVariantLessThan() (in module vtkmodules.util.vtkVariant)

 	vtkVariantStrictEquality() (in module vtkmodules.util.vtkVariant)

 	vtkVariantStrictWeakOrder() (in module vtkmodules.util.vtkVariant)

 	vtkVariantStrictWeakOrderKey (class in vtkmodules.util.vtkVariant)

W

 	
 	warm_grey (in module vtkmodules.util.colors)

 	warning_message (vtkmodules.test.ErrorObserver.vtkErrorObserver property)

 	wheat (in module vtkmodules.util.colors)

 	wheelEvent() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor method)

 	where (in module vtkmodules.numpy_interface.algorithms)

 	white (in module vtkmodules.util.colors)

 	white_smoke (in module vtkmodules.util.colors)

 	Wireframe() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 	
 	WrapDataObject() (in module vtkmodules.numpy_interface.dataset_adapter)

 	wxVTKRenderWindow (class in vtkmodules.wx.wxVTKRenderWindow)

 	wxVTKRenderWindowConeExample() (in module vtkmodules.wx.wxVTKRenderWindow)

 	wxVTKRenderWindowInteractor (class in vtkmodules.wx.wxVTKRenderWindowInteractor)

 	wxVTKRenderWindowInteractorConeExample() (in module vtkmodules.wx.wxVTKRenderWindowInteractor)

Y

 	
 	yellow (in module vtkmodules.util.colors)

 	yellow_green (in module vtkmodules.util.colors)

 	
 	yellow_light (in module vtkmodules.util.colors)

 	yellow_ochre (in module vtkmodules.util.colors)

Z

 	
 	zinc_white (in module vtkmodules.util.colors)

 	Zoom() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow method)

 	(vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow method)

 	(vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget method)

 	(vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow method)

 Building

Building

This page describes how to build and install VTK. It covers building for
development, on both Unix-type systems (Linux, HP-UX, Solaris, macOS), and
Windows. Note that Unix-like environments such as Cygwin and MinGW are not
officially supported. However, patches to fix problems with these platforms
will be considered for inclusion. It is recommended that users which require
VTK to work on these platforms to submit nightly testing results for them.

A full-featured build of VTK depends on several open source tools and libraries
such as Python, Qt, CGNS, HDF5, etc. Some of these are included in the VTK
source itself (e.g., HDF5), while others are expected to be present on the
machine on which VTK is being built (e.g., Python, Qt).

VTK supports all of the common generators supported by CMake. The Ninja,
Makefiles, and Visual Studio generators are the most well-tested however.

Note that VTK does not support in-source builds, so you must have a build tree
that is not the source tree.

Obtaining the sources

There are two approaches:

Release Download

	Download the source release VTK-X.Y.Z.tar.gz from https://vtk.org/download/.

	Create a folder for VTK.

	Extract the contents of the VTK folder in the downloaded archive to the subfolder called source

Git Clone
To obtain VTK’s sources locally, clone the VTK repository using Git [https://git-scm.org].

Open Git Bash on Windows or a terminal on Linux and macOS and
execute the following:

mkdir -p ~/vtk
git clone --recursive https://gitlab.kitware.com/vtk/vtk.git ~/vtk/source

To use the latest features being developed or to make changes and
contribute to VTK, download the source using Git Clone.

Prerequisites

VTK only requires a few packages in order to build in general, however
specific features may require additional packages to be provided to VTK’s
build configuration.

Required:

	CMake [https://cmake.org]

	Version 3.12 or newer, however, the latest version is always recommended.
If the system package management utilities do not offer cmake or if the offered version is too old
Precompiled binaries available on CMake’s download page [https://cmake.org/download].

	Supported compiler

	GCC 4.8 or newer

	Clang 3.3 or newer

	Apple Clang 7.0 (from Xcode 7.2.1) or newer

	Microsoft Visual Studio 2015 or newer

	Intel 14.0 or newer

Optional Additions

	ffmpeg
When the ability to write .avi files is desired, and writing these files is
not supported by the OS, VTK can use the ffmpeg library. This is generally
true for Unix-like operating systems. Source code for ffmpeg can be obtained
from the website [https://ffmpeg.org].

	MPI
To run VTK in parallel, an MPI [https://www.mcs.anl.gov/research/projects/mpi] implementation is required. If an MPI
implementation that exploits special interconnect hardware is provided on your
system, we suggest using it for optimal performance. Otherwise, on Linux/Mac,
we suggest either OpenMPI [https://www.open-mpi.org] or MPICH [https://www.mpich.org]. On Windows, Microsoft
MPI [https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi] is required.

	Python
In order to use scripting, Python [https://python.org] is required. The minimum supported version is 3.4.
The instructions are using the system Python. On Ubuntu/Debian the required package is
python3-dev. If you use a different Python
implementation or a virtual environment make sure the environment you use is
activated. On Ubuntu/Debian the required package for creating virtual environments is
python3-venv.

	Qt5
VTK uses Qt as its GUI library (if the relevant modules are enabled).
Precompiled binaries are available on Qt’s website [https://download.qt.io/official_releases/qt].
Note that on Windows, the compiler used for building VTK must match the
compiler version used to build Qt. Version 5.9 or newer is required.

	OSMesa
Off-screen Mesa can be used as a software-renderer for running VTK on a server
without hardware OpenGL acceleration. This is usually available in system
packages on Linux. For example, the libosmesa6-dev package on Debian and
Ubuntu. However, for older machines, building a newer version of Mesa is
likely necessary for bug fixes and support. Its source and build instructions
can be found on its website [https://www.mesa3d.org].

Creating the Build Environment

Windows

	Install CMake

	Install Visual Studio Community Edition [https://visualstudio.microsoft.com/vs]

	During installation select the “desktop development with C++” workload.

	Use “x64 Native Tools Command Prompt” for the installed Visual Studio
version to configure with CMake and to build with ninja.

	Get ninja [https://ninja-build.org]. Unzip the binary and put it in PATH. Note that newer
Visual Studio releases come with a version of ninja already and should
already exist in PATH within the command prompt.

Linux (Ubuntu/Debian)
Install the following packages:

$ sudo apt install \
build-essential \
cmake \
cmake-curses-gui \
mesa-common-dev \
mesa-utils \
freeglut3-dev \
ninja-build

macOS

	Install CMake

	Install XCode

	Ensure XCode command line tools are installed:

xcode-select --install

Note

ninja is a more efficient alternative to Makefiles or Visual Studio solution files. The
speed increase is the most noticeable when doing incremental build.

Configure

In order to build, CMake requires two steps, configure and build. VTK itself
does not support what are known as in-source builds, so the first step is to
create a build directory.

Windows (Ninja)
Open “x64 Native Tools Command Prompt” for the installed Visual Studio:

ccmake -GNinja -S %HOMEPATH%\vtk\source -B %HOMEPATH%\vtk\build

Note that CMake GUI must also be launched from the “Native Tools Command Prompt”.

Windows (Visual Studio)
Use CMake to generate a Visual Studio solution file (.sln).

	Open CMake GUI, either by typing cmake-gui on the command prompt or from the start-menu.

	Enter the source and build directories

	Click [Configure]

	You will now get a selection screen in which you can specify your “generator”. Select the one you need.

	We are now presented with a few options that can be turned on or off as desired.

	Click [Configure] to apply the changes.

	Click [Generate]. This will populate the “build” sub-folder.

	Finally, click [Open Project] to open the generated solution in Visual Studio.

Linux/macOS
mkdir -p ~/vtk/build
cd ~/vtk/build
ccmake -GNinja ../path/to/vtk/source

The parameter -GNinja may be skipped to use the default generator (e.g Unix Makefiles).

Missing dependencies

CMake may not find all dependencies automatically in all cases. The steps
needed to find any given package depends on the package itself.

For general assistance, please see the documentation for
find_package’s search procedure [https://cmake.org/cmake/help/latest/command/find_package.html#search-procedure] and
the relevant Find module [https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find-modules] (as available).

Hint

Different features can be enabled/disabled by setting the Build Settings during the configure stage.

Building

To build VTK:

Windows (Ninja)
cmake --build %HOMEPATH%\vtk\build --config Release

Windows (Visual Studio)
Open the generated solution file.

	Set the configuration to “Release”

	On the menu bar, choose Build, and then choose Build Solution.

Linux/macOS
cmake --build ~/vtk/build

 Quick Start Guide

Quick Start Guide

This is a quick start guide so that you can start contributing to VTK easily.
To understand the process more deeply, you can jump to the workflow
section.

Initial Setup

Before you begin, perform your initial setup using the following steps:

	Register GitLab Access [https://gitlab.kitware.com/users/sign_in] to create an account and select a user name.

	Fork VTK [https://gitlab.kitware.com/vtk/vtk/-/forks/new] into your user’s namespace on GitLab.

	Follow the download instructions to create a
local clone of the main VTK repository:

$ git clone --recursive https://gitlab.kitware.com/vtk/vtk.git VTK

The main repository will be configured as your origin remote.

	Run the developer setup script [https://gitlab.kitware.com/vtk/vtk/Utilities/SetupForDevelopment.sh] to prepare your VTK work tree and
create Git command aliases used below:

$./Utilities/SetupForDevelopment.sh

This will prompt you for your GitLab username and configure a remote
called gitlab to refer to your fork. It will also setup a data directory for you.
No need to do anything else.

Development

Create a local branch for your changes:

git checkout -b your_branch

Make the needed changes in VTK and use git locally to create logically separated commits.
There is no strict requirements regarding git commit messages syntax but a good rule of
thumb to follow is: General domain: reason for change, General domain being a class, a module
, a specific system like build or CI.

git commit -m "General domain: Short yet informative reason for the change"

Build VTK following the guide and fix any build warnings or issues that arise and seems related to your changes.

Add/Improve tests in order to ensure your changes are tested. Take a look in the Testing directory
of the module you are making changes in to see how the tests are currently built and try to follow the same paradigms.
Run your test locally from your build directory and check that they pass:

cmake . && cmake --build .
ctest -VV -R yourTest

Upload

Push your changes to the GitLab fork that you created in the initial setup stage:

git push gitlab

Data

If your test uses new data or baselines, you will need to add it to your fork.
For data, add the file names to the list in your module yourModule/Testing/CMakeLists.txt and drop the files in Testing/Data/.
For baselines, just drop the file in yourModule/Testing/Data/Baselines and run the following commands from your build directory:

cmake . && cmake --build .

This will transform your files into .sha512 files. Check your test is passing by running from your build directory:

ctest -VV -R yourTest

If it passes, add these .sha512 files and commit them, then push with:

git gitlab-push

Create a Merge Request

Once you are happy with the state of your development on your fork, the next step is to create a merge request back into the main VTK repository.

Open [https://gitlab.kitware.com/username/vtk/-/merge_requests/new] in a browser, select your branch in the list and create a Merge Request against master.

In the description, write an informative explanation of your added features or bugfix. If there is an associated issue, link it with the #number in the description.

Tag some VTK maintainers in the description to ensure someone will see it, see here for the complete list.

Robot Checks

Once the MR is created, our GitLab robot will check multiple things and make automated suggestions. Please read them and try to follow the instructions.
The two standard suggestions are related to formatting errors and adding markdown changelog.

To fix the formatting, just add a comment containing:

Do: reformat

Then, once the robot has fixed the formatting, fetch the changes locally (this will remove any local changes to your branch)

git fetch gitlab
git reset --hard gitlab/your_branch

To fix the changelog warning, create, add, commit and push a markdown (.md) file in Documentation/release/dev folder.
In this file, write a small markdown paragraph describing the development.
See other .md files in this folder for examples. It may look like this:

Development title

A new feature that does this and that has been introduced.
This specific issue has been fixed in this particular way.

Suggestions and best practices on writing the changelog can be found in the Documentation/release/dev/0-sample-topic.md file.
This is an optional step but recommended to do for any new feature and user facing issues.

Reviews

VTK maintainers and developers will review your MR by leaving comments on it. Try to follow their instructions and be patient.
It can take a while to get a MR into mergeable form. This is a mandatory step, and it is absolutely normal to get change requests.

Review comments can be resolved, please resolve a comment once you’ve taken it into account and pushed related changes
or once you’ve reached an agreement with the commenter that nothing should be changed.

Once a reviewer is happy with your changes, they will add a +X comment. You need at least one +2 or higher to consider
merging the MR. Two +1s do not equal a +2. If a reviewer leave a -1 comment, please discuss with them to understand what is the issue and how it could be fixed.

Once you have pushed new changes, please tag reviewers again so that they can take a look.
If you do not tag reviewers, they may not know to revisit your changes. Do not hesitate to tag them and ask for help.

Continuous Integration

Before merging a MR, the VTK continuous integration (CI) needs to run and be green.
For CI to be functional, please read and follow this guide [https://discourse.vtk.org/t/the-ultimate-how-to-make-ci-work-with-my-fork-guide/7581].

To run the CI:

	Click on the Pipelines Tab

	Click on the last pipeline status badge

	Press the Play all manual arrows on top of the Build and Test stages

Do not hesitate to tag a VTK developer for help if needed.

You then need to wait for CI to run, it can take a while, up to a full day.

A successful CI should be fully green. If that is so, then your MR is ready !

If not, you need to analyse the issues and fix them. Recover the failure information this way:

Click on the pipelines tab, then on the last status badge, then on the cdash-commit job.
It will take you to the related CDash report where you will find all information.

Everything in the CDash report should be green except the NotRun and Time column. Take a look into each issue and fix them locally.
If there are issues in the pipeline but nothing is visible in the CDash, please ask a maintainer for help to figure out if anything should be done.
You can always try to rerun the failed job by clicking on the arrow of the job in the pipeline.

Once you have fixed some issues locally, commit and push them to gitlab, run the CI again and tag reviewers again for follow-up reviews.

Merging

Once the MR has green CI and you have at least one +2, you can ask for a merge. Before that please make sure that:

	Your commit history is logical (or squashed into a single commit) and cleaned up with good commit messages

	You are rebased on a fairly recent version of master

If that is not the case, please rebase on master using the following commands:

git fetch origin
git rebase -i origin/master
git push gitlab -f

The interactive rebase will let you squash commits, reorganize commits and edit commit messages.

After the force push, make sure to run CI again.

Once all is done, tag a VTK developer so that they can perform the merge command.

Congratulations ! You just contributed to VTK !

 VTK Git Usage

VTK Git Usage

VTK version tracking and development is hosted by Git [http://git-scm.com].
Please select a task for further instructions:

Main Tasks

	Install Git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
Git 1.7.2 or greater is preferred (required for development)

	Download VTK - Users start here

	Develop VTK - Contributors start here

Other Tasks

	Review Changes [https://gitlab.kitware.com/vtk/vtk/-/merge_requests] -
VTK GitLab Merge Requests

	Test VTK - CDash client setup

	Learn Git [http://public.kitware.com/Wiki/Git/Resources] -
Third-party documentation

Branches

The upstream VTK repository has the following branches:

	master: Development (default)

	release: Maintenance of latest release

	nightly-master: Follows master, updated at 01:00 UTC

	hooks: Local commit hooks
(placed [http://public.kitware.com/Wiki/Git/Hooks#Local] in .git/hooks)

	dashboard: Dashboard script (setup a CDash client)

 Download VTK with Git

Download VTK with Git

This page documents how to download VTK source code through Git [http://git-scm.com].
See the README for more information.

Clone

Clone VTK using the commands:

$ git clone https://gitlab.kitware.com/vtk/vtk.git VTK
$ cd VTK
$ git submodule update --init

Update

Users that have made no local changes and simply want to update a
clone with the latest changes may run:

$ git pull

Avoid making local changes unless you have read our developer instructions.

Release

After cloning your local repository will be configured to follow the upstream
master branch by default. One may create a local branch to track the
upstream release branch instead, which should guarantee only bug fixes to
the functionality available in the latest release:

$ git checkout --track -b release origin/release

This local branch will always follow the latest release.
Use the above instructions to update it.
Alternatively one may checkout a specific release tag:

$ git checkout v6.2.0

Release tags never move. Repeat the command with a different tag to get a
different release. One may list available tags:

$ git tag

and then checkout any tag listed.

 System requirements

System requirements

Runtime

	At least Python 3.x to use scripting capabilities

	Minimum macOS version 10.10.

	Minimum OpenGL version is 3.2 but a higher versions may be required for more advanced features.

Build-time

Check the build prerequisites.

 Using C++ and CMake

Using C++ and CMake

CMake is an open-source platform-independent build system that manages the
entire software build process, from source code to executable binary. If you’re
new to CMake, you can find more information on the CMake website [https://cmake.org].

Installing a binary release

Pre-built VTK releases maintained by the community exist for a number of
distributions, as shown in the following table:

	Operating System/ Package manager

	Package Name

	Version

	Fedora Rawhide

	vtk-devel

	[image: Fedora rawhide package]

	Fedora 38

	vtk-devel

	[image: Fedora 38 package]

	Fedora 37

	vtk-devel

	[image: Fedora 37 package]

	Ubuntu 23.04 (lunar)

	libvtk9-dev

	[image: Ubuntu lunar package]

	Ubuntu 22.10 (kinetic)

	libvtk9-dev

	[image: Ubuntu kinetic package]

	Ubuntu 22.04 (jammy)

	libvtk9-dev

	[image: Ubuntu jammy package]

	Ubuntu 20.04 (focal)

	libvtk7-dev

	[image: Ubuntu focal package]

	Debian unstable

	libvtk9-devel

	[image: Debian unstable package]

	Debian testing

	libvtk9-devel

	[image: Debian testing package]

	Debian stable

	libvtk9-devel

	[image: Debian stable package]

	Gentoo

	vtk

	[image: Gentoo package] [https://repology.org/project/vtk/versions]

	homebrew

	vtk

	[image: homebrew version]

	vckpg

	vtk

	[image: Vcpkg]

	spack

	vtk

	[image: Spack]

Note that these packages may be lacking some optional features such as mpi, qt
etc. or, they may not contain the latest VTK features. Check the documentation
of each package to verify that the build contains what you need. If what you
need is missing you will need to build vtk from scratch.

Building an executable

Once VTK is installed using either of the methods above you can use it in your
project utilizing the
find_package [https://cmake.org/cmake/help/latest/command/find_package.html]
infrastructure of cmake:

find_package(VTK
 COMPONENTS
 .. list of vtk modules to link to
)

your executable
add_executable(testExample ...)

link to required VTK libraries
target_link_libraries(testExample
 PRIVATE
 ${VTK_LIBRARIES}
)

vtk_module_autoinit(
 TARGETS testExample
 MODULES ${VTK_LIBRARIES}
)

vtk_module_autoinit() is responsible for triggering static code construction required for some VTK classes.
For more details regarding the autoinit system of VTK see here.

The list of required vtk modules depends on the files #included in your code. The module a header file belongs to is determined
in most cases by its location in the VTK source tree. For, example vtkXMLPolyDataReader is located under IO/XML so it belongs to the IOXML module,
to verify check the accompanying vtk.module [https://gitlab.kitware.com/vtk/vtk/-/blob/master/IO/XML/vtk.module] file in the same directory.

The above method works in most cases but it does not express the dependencies that some module have. A better (and easier) way to
find the required modules is the VTKModulesForCxx [https://examples.vtk.org/site/Python/Utilities/VTKModulesForCxx] script.

For example, running the script on the CylinderExample [https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample]
we get the following suggestion:

find_package(VTK
 COMPONENTS
 CommonColor
 CommonCore
 FiltersSources
 RenderingCore
 #
 # These modules are suggested since they implement an existing module.
 # You may need to uncomment one or more of these.
 # If vtkRenderWindow is used and you want to use OpenGL,
 # you also need the RenderingOpenGL2 module.
 # If vtkRenderWindowInteractor is used,
 # uncomment RenderingUI and possibly InteractionStyle.
 # If text rendering is used, uncomment RenderingFreeType
 #
 # InteractionStyle # implements VTK::RenderingCore
 # RenderingCellGrid # implements VTK::RenderingCore
 # RenderingFreeType # implements VTK::RenderingCore
 # RenderingOpenGL2 # implements VTK::RenderingCore
 # RenderingUI # implements VTK::RenderingCore
)

Based on the suggestions of the script and the template above the relevant sections of the CMakeLists.txt are:

...
find_package(VTK COMPONENTS
 CommonColor
 CommonCore
 FiltersSources
 InteractionStyle
 RenderingContextOpenGL2
 RenderingCore
 RenderingFreeType
 RenderingGL2PSOpenGL2
 RenderingOpenGL2
)

add_executable(CylinderExample CylinderExample.cxx)
target_link_libraries(CylinderExample PRIVATE ${VTK_LIBRARIES})
vtk_module_autoinit is needed
vtk_module_autoinit(
 TARGETS CylinderExample
 MODULES ${VTK_LIBRARIES}
)

The full source of the example can be found here [https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample/].

To build the example:

mkdir build
cd build
ccmake ../ # or cmake-gui if on Windows

Hit C if using ccmake or the configure button if using cmake-gui.
If VTK was built from scratch you will need to set VTK_DIR to the installation path.
If ccmake/cmake-gui reports no errors quit ccmake/cmake-gui and build the project as follows:

cmake --build .

To run the example

./CylinderExample

For more examples check the
tutorials [https://kitware.github.io/vtk-examples/site/Cxx/#tutorial],
how to guides [https://kitware.github.io/vtk-examples/site/CxxHowTo] or
examples [https://kitware.github.io/vtk-examples/site/Cxx] sections of the vtk examples website.

 Using existing frameworks and applications

Using existing frameworks and applications

There are many VTK-based, free, open-source applications for scientific,
bio-medical and medical image visualization and processing; several of them are
extensible frameworks that can be customized for particular use cases.
ParaView [https://paraview.org], Trame [https://kitware.github.io/trame/index.html],
PyVista [https://docs.pyvista.org], and 3D Slicer [https://www.slicer.org/]
are examples. Therefore, it is worth
evaluating if any of these would allow you to address your challenges. This
would save time by avoiding redeveloping everything from scratch and by
capitalizing on large communities with thousands of experts.

Generally, the default (complex, but powerful) user interface of these applications
allows one to figure out the complete workflow. Once one knows exactly what and how
to do it, they can create a small Python scripted module that automates most of the
steps and provides a simplified user interface.

 Using Javascript

Using Javascript

vtk.js [https://kitware.github.io/vtk-js/docs/] is an implementation of VTK in JavaScript that consists of an ES6 class library which can be integrated into any web application. See here [https://kitware.github.io/vtk-js/docs/#What-is-the-difference-with-VTK-C] to learn more about the differences between VTK C++ and vtk.js.

 Using Jupyter

Using Jupyter

When it comes to rendering with VTK in Jupyter, there are several options.

To harness the full power of VTK in Jupyter, you may want to leverage
PyVista [https://docs.pyvista.org/] and Trame [https://kitware.github.io/trame/index.html].
PyVista exposes a high-level interface to VTK for plotting and when combined
with Trame, empowers users to bring the full power of VTK to a Jupyter
notebook. We have
a post on the VTK discourse about this [https://discourse.vtk.org/t/pyvista-trame-jupyter-3d-visualization/10610]. See PyVista’s documentation
for more information on using PyVista’s wrappings of VTK in Jupyter.

itkwidgets [https://itkwidgets.readthedocs.io/en/latest] is one example of
a domain-specific Jupyter viewer built on VTK. To try out itkwidgets, check
this example [https://colab.research.google.com/github/InsightSoftwareConsortium/itkwidgets/blob/main/examples/integrations/vtk/vtkImageData.ipynb].

 Using Python

Using Python

VTK is available on PyPI [https://pypi.org/] for Windows, macOS and Linux.

pip install vtk

or in a virtual environment [https://docs.python.org/3/library/venv.html] if you want to install the package only locally instead of system-wide

Linux
python -m venv ./env
source ./env/bin/activate
pip install vtk

macOS
python -m venv ./env
source ./env/bin/activate
pip install vtk

Windows
Using PowerShell

python -m venv env
.\env\Activate.ps1
pip install vtk

or using cmd.exe

python -m venv env
.\env\activate.bat
pip install vtk

To verify the installation try to import vtk from an interactive python environment:

>>> import vtk
>>> print(vtk.__version__)
9.2.6

That’s it ! You may now try some of the
tutorials [https://kitware.github.io/vtk-examples/site/Python/#tutorial],
how to guides [https://kitware.github.io/vtk-examples/site/PythonHowTo] or
examples [https://kitware.github.io/vtk-examples/site/Python].

If you are looking for a higher-level interface to VTK in Python, you may want
to explore using PyVista [https://docs.pyvista.org] as it exposes VTK in a
“Pythonic” manner.

 Using WebAssembly

Using WebAssembly

VTK-Wasm is a prototype infrastructure that enables the compilation of VTK C++ code to WebAssembly via Emscripten. This feature is still under active development.

To learn more about VTK-Wasm and its capabilities, please take a look at the following resources:

	Examples of WebAssembly applications that use VTK for rendering. [https://gitlab.kitware.com/vtk/vtk/-/tree/master/Examples/Emscripten/Cxx]

	A collection of VTK web-based benchmark applications. [https://github.com/Kitware/vtkWasmBenchmarks]

	A guide on using the experimental WebGPU feature in VTK-Wasm. [https://discourse.vtk.org/t/guide-how-do-i-use-vtk-wasm-webgpu-experimental-feature/11164].

	Instructions for building VTK using Emscripten for WebAssembly.

	vtk-wasm-docker [https://gitlab.kitware.com/vtk/vtk-wasm-docker] for building and publishing the kitware/vtk-wasm [https://hub.docker.com/r/kitware/vtk-wasm] docker images.

	Deep dive into WebAssembly & WebGPU in VTK: presentation from April 28th, 2023 [https://docs.google.com/presentation/d/1Nl0TVa55616QKCSHP54BoYBvByMKe6lIUl6IFZqSeJo/edit#slide=id.p]. This presentation covers topics such as Emscripten, VTK-wasm Docker image, WASM Dev tools, VTK and WebGPU: PolyData Mapper, API inspection with RenderDoc, and performance profiles.

We welcome your feedback and contributions to this project. Feel free to share your experiences, questions, and ideas in the web/vtk-wasm [https://discourse.vtk.org/c/web/vtk-wasm/12] category of the VTK Discourse forum. Stay tuned for updates and new developments!

_images/AMRDetonationVelodyne.png

_images/Doxygen_CrossReference_Examples.png
VTK: vikRenderer Class Reference X +

4 b C 0 © locathost o »

@© MySaves [Kiware [KWProjects [Photography [DIV [Android [DellVostro [Ford Taurus [] Gardening [Git Workflow

device). Certain advanced rendering features such as two-sided lighting can also be controlled

See also
vtkRenderWindow vtkActor vtkCamera vtkLight vtkVolume

Events:
vtkCommand::ActiveCameraEvent vtkCommand::ComputeVisiblePropBoundsEvent vtkCommand::CreateCameraEvent vtkCommand::EndEvent
vtkCommand::ResetCameraClippingRangeEvent vtkCommand::ResetCameraEvent vtkCommand:: StartEvent

Examples:
VtkRenderer (Examples)

Online Examples:

DrawShapes

hitps//kitware github.io/vtk-examples/site/Cxx/Images/DrawShapes »

_static/plus.png

_static/file.png

_static/minus.png

_static/vtk_favicon.png

_images/TestGPURayCastVolumeUniformGridBlanking.png

_images/TestOSPRayBoxWidget2.png

_images/TestGPURayCastMapperRectilinearGrid.png

_images/TestGPURayCastVolumeGhostArrays.png

_images/TestOSPRayPointHandleRepresentation3D.png

_images/TestOSPRaySplineWidget2.png

_images/TestOSPRayImplicitPlaneWidget2.png
%

_images/TestOSPRayPointGaussianMapper.png

_images/add-radial-gradient-background.png

_images/camera_widget.png
camerawidget

_images/chartBalls.jpg
Algorithm:
vtkMomentInvariants

Similarity

Algorithm:
vtkSimilarityBalls

v

Local Maxima Solid Balls Hollow Spheres

'
kA

nav.xhtml

 Table of Contents

 		
 Welcome to VTK’s documentation!

 		
 About

 		
 Overview

 		
 Features

 		
 License

 		
 Citing

 		
 History

 		
 Acknowledgments

 		
 Commercial Use

 		
 Contact Us

 		
 Getting Started

 		
 Introduction

 		
 System requirements

 		
 Using Python

 		
 Using Jupyter

 		
 Using C++ and CMake

 		
 Using Javascript

 		
 Using WebAssembly

 		
 Using existing frameworks and applications

 		
 Learning

 		
 Supported Data Formats

 		
 Supported Hardware

 		
 Modules

 		
 Enabling or Disabling Modules

 		
 Available Modules

 		
 Building

 		
 Obtaining the sources

 		
 Prerequisites

 		
 Optional Additions

 		
 Creating the Build Environment

 		
 Configure

 		
 Building

 		
 API

 		
 C++

 		
 Python

 		
 Native Python documentation

 		
 Doxygen-style documentation

 		
 CMake

 		
 Advanced Topics

 		
 Additional Python Wheels

 		
 SPDX & SBOM

 		
 Overview

 		
 Frequently Asked Questions

 		
 Examples

 		
 Resources

 		
 Building Python Wheels

 		
 Modifying Version and/or Distribution Name

 		
 Building using emscripten for WebAssembly

 		
 Introduction

 		
 Prerequisites

 		
 Build project

 		
 Verify installation

 		
 Cross-compiling for Mobile devices

 		
 Building documentation

 		
 User and developer guides

 		
 C++ API documentation

 		
 Targets

 		
 Marshalling Hints

 		
 Classes

 		
 Properties

 		
 Custom get/set functions

 		
 Object manager

 		
 Serialization

 		
 Deserialization

 		
 Blobs

 		
 Dependencies

 		
 Auto serialization

 		
 Automated code generation

 		
 Marshal hint macro

 		
 Convenient script to annotate headers and module

 		
 Python Wrappers

 		
 Introduction

 		
 Background

 		
 Installation

 		
 Importing

 		
 VTK Classes and Objects

 		
 Method Calls

 		
 Observer Callbacks

 		
 Other Wrapped Entities

 		
 Docstrings

 		
 Internals and Advanced Topics

 		
 Experimental Features

 		
 Wrapping Tools

 		
 The C++ Parser

 		
 Parser Utilities

 		
 Wrapper Utilities

 		
 Python-Specific Utilities

 		
 Python Wrapper Executables

 		
 Java Wrapper Executables

 		
 Other Executables

 		
 Rebuilding the Parser

 		
 Migration Guides

 		
 Module Migration from VTK 8.2 to 9+

 		
 Design Documents

 		
 VTK File Formats

 		
 Simple Legacy Formats

 		
 XML File Formats

 		
 VTKHDF File Format

 		
 Parallel Processing with VTK’s SMP Framework

 		
 Contributors

 		
 Introduction

 		
 Concepts

 		
 Implementation Overview

 		
 Implementation Examples

 		
 Tips

 		
 Parallel Is Not Always Faster

 		
 vtkArrayDispatch and Related Tools

 		
 Background

 		
 Terminology

 		
 Best Practices for vtkDataArray Post-7.1

 		
 vtkGenericDataArray

 		
 vtkTypeList

 		
 vtkArrayDownCast

 		
 vtkDataArrayAccessor

 		
 VTK_ASSUME

 		
 vtkArrayDispatch

 		
 Advanced Usage

 		
 Putting It All Together

 		
 Data Assembly

 		
 Data Model

 		
 Design Implications

 		
 VTK Legacy Reader/Writer Information Format

 		
 Overview

 		
 Array Metadata Blocks

 		
 VTK XML Reader/Writer Information Format

 		
 Overview

 		
 Array Information

 		
 Field Data as Time Meta-Data in VTK XML File Formats

 		
 MomentInvariants Architecture

 		
 Rotation-invariant Pattern Detection

 		
 Extensions

 		
 Developer’s Guide

 		
 Develop

 		
 Workflow

 		
 Update

 		
 Create a Topic

 		
 Guidelines for Commit logs

 		
 Share a Topic

 		
 Create a Merge Request

 		
 Guidelines for Merge Requests

 		
 Review a Merge Request

 		
 Revise a Topic

 		
 Merge a Topic

 		
 Delete a Topic

 		
 Regression Testing

 		
 Testing and dashboard submitter setup

 		
 Run-time environment of tests using ctest

 		
 Adding Tests

 		
 Setup

 		
 Workflow

 		
 Building

 		
 Discussion

 		
 Dashboard Scripts

 		
 Using the Dashboard Scripts

 		
 Changing the Dashboard Scripts

 		
 Updating Third Party Projects

 		
 Updating a Project Upstream

 		
 Updating the Import

 		
 Updating a Project into VTK

 		
 Porting a Project

 		
 Process

 		
 Imported Third Party Projects

 		
 Using the update.sh framework

 		
 Using git submodule

 		
 Using copy

 		
 Deprecation Process

 		
 Deprecating classes and methods

 		
 Using VTK_DEPRECATION_LEVEL

 		
 Release Process

 		
 Overview

 		
 Branching Scheme

 		
 Steps

 		
 GitLab and Releases

 		
 Coding Conventions

 		
 General

 		
 Specific C++ Language Guidelines

 		
 About this documentation

 		
 Quick Start Guide

 		
 Initial Setup

 		
 Development

 		
 Upload

 		
 Data

 		
 Create a Merge Request

 		
 Robot Checks

 		
 Reviews

 		
 Continuous Integration

 		
 Merging

 		
 Resources

 		
 Links

 		
 Python

 		
 Docker

 		
 Release Details

 		
 9.3

 		
 9.3.0 Release Notes

 		
 9.2

 		
 9.2.0 Release Notes

 		
 9.1

 		
 9.1.0 Release Notes

 		
 9.0

 		
 9.0.0

 		
 9.0.2

 		
 New classes

 		
 New support

 		
 Fixes

 		
 9.0.3

 		
 8.2

 		
 8.1

 		
 8.0

 		
 7.1

 		
 7.0

 		
 6.3

 		
 6.2

 		
 6.1

 		
 6.0

 		
 5.10

 		
 5.8

 		
 5.6

 		
 5.4

 		
 5.2

 		
 5.0

_images/chartReconstructPattern.jpg
Pattern

Algorithm:
vtkMomentInvariants

Normalized

Normalized Pattern
Pattern
Moments Moments
Moments

Algorithm: Algorithm:
vtkReconstructFromMoments vtkReconstructFromMoments

Reconstructed
Normalized
Pattern

Reconstructed
Pattern

_images/chartTypes.jpg
Dataset Grid
2D or 3D vtklImageData with vtklmageData with the

pointData of scalars, vectors, or locations on which the moments
matrices in which the pattern are computet, ususally a subset
shall be detected/ of Dataset, can be Dataset itslef.

Algorithm:

vtkComputeMoments
1
Moments

vtkImageData with the extent of Grid
contains pointData arrays with scalar values.
The number of arrays depends on the type of

Pattern data, order, and radii.

vtkImageData that will
be looked for by the Algorithm:
algorithm. Dimension vtkMomentInvariants

and type must coincide 1
with the Dataset. Similarity

vtkImageData with the extent of Grid
contains one scalar field as pointdata per
radius of which moments were computed and
with the maximum over all radii.

_images/chartOverview.jpg
Dataset

Algorithm:
ComputeMoments
Moments

Pattern

¥
Algorithm:
MomentInvariants

Similarity

_images/chartReconstructField.jpg
Coarse Grid

Algorithm:
vtkComputeMoments

Algorithm:
vtkReconstructFromMoments

Reconstructed
Dataset

_images/coordinateFrameWidget.png

_images/interactive_2d_after.png
ace

File Edit View Sources Filters Extractors Tools Catalyst Macros Help
ERSLTT DDO » FEZ AP P Ttmep
= v X ®E 3 Y 1AP 2PA 3.1.LAO30 3.2.LA045 3.3LAO60 4.1.RAO30 4.2.RA045 4.3.RAO60 SRL
2 Gk oF W {.}
Pipeline Browser B8 | M Layout #1® | [Layout #2
[i] bmltln.: FIEIER 3 LineChartview1 A=
test_sin_data.csv
© equalizerFiltert o T
004
@ Normalized Spectrum
002
o
002
-004
-006
Properties | Information 008
Properties o8|
* Delete | 7
012
earch . (use Esc to clear text)
300 300 3d00 3500 3600 3800 3900 200 2200 2300 2400 2500 2600 70 2800 %0
= Properties (RIS
3 teractiveLineChartView1 (m
v Visibility
save Load Reset — 90000003
09
sampling 1000 . A
Frequency, Hz
v/ All Columns 07 \
Spectrum Gain, dB = - o 0
= Display (XYC c|® 05
Attribute Type | [Row Data =
04
X Axis Parameters
Use Index For XAxis 03
X Array Name | Frequency - 02
Series Parameters o
a Variable ||®
o
v o -9.0000e-03 % . 0 20 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 abo ado B

_images/interactive_2d_before.png
ace

File Edit View Sources Filters Extractors Tools Catalyst Macros Help
ERSLTT DDO » FEZ AP P Ttmep
= v X ®E 3 Y 1AP 2PA 3.1.LAO30 3.2.LA045 3.3LAO60 4.1.RAO30 4.2.RA045 4.3.RAO60 SRL
2 Gk oF W {.}
Pipeline Browser O Miayout#1®m | [Mlayout#2® | +
[i] bmltln.: FIEIER 3 LineChartview1 A=
test_sin_data.csv
© equalizerFiltert o T
004
@ Normalized Spectrum
002
o
002
-004
-006
Properties | Information 008
Properties o8|
* Delete | 7
012
earch . (use Esc to clear text)
300 300 3d00 3500 3600 3700 3800 3900 2000 200 2200 2300 2400 2500 2600 70 2800 %0
= Properties (RIS
8 = g 3 teractiveLineChartView1 0=
v Visibility
save Load Reset 2000503]
09
pamitng 1000 08
Frequency, Hz
v All Columns. 07
Spectrum Gain, dB = - o 0
= Display (XYC c|® 05
Attribute Type | [Row Data =
04
X Axis Parameters
Use Index For XAxis 03
X Array Name | Frequency - 02
Series Parameters o
a Variable ||® N
o "
v o -9.0000e-03 % . 0 20 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 40 440 abo ado 500

_images/orientation_widget_demo.gif

_images/poly_data_hdf_schema.png
NumberOfPoints

Points

VTKHDF
Version, Type

FieldData
Scalars,...

PointData
Scalars,...

CellData
Scalars,...

ArrayName

ArrayName

ArrayName

[Vertices I [Lines ’ ‘

Polygons] | Strips]

NumberOfConnectivitylds

|

Connectivity

Offsets

NumberOfCells

_images/poly_data_hdf_schema1.png
NumberOfPoints

Points

VTKHDF
Version, Type

FieldData
Scalars,...

PointData
Scalars,...

CellData
Scalars,...

ArrayName

ArrayName

ArrayName

[Vertices I [Lines ’ ‘

Polygons] | Strips]

NumberOfConnectivitylds

|

Connectivity

Offsets

NumberOfCells

_images/orientation_widget_states.gif

_images/partitioned_dataset_collection_hdf_schema.png
D > symbolic link

VTKHDF
Version, Type

Assembly BlockName0 BlockNamel BlockNameN
Index, Version, Index, Version, Index, Version,
Type, ... Type, ... Type, ...

x %

GroupName0 BlockName0

gedapm T Each one of the "Block" groups should
describe a valid VTKHDF root node for
VTKHDF supported data types that aren't
composite types themselves.

BlockNamel

_images/transient_hdf_schema.png
Steps
[Optional]
NSteps

PartOffsets
(dims = NSteps)

NumberOfParts
(dims = NSteps)
[Optional]

Values
(dims = NSteps)

ConnectivityldOffsets
(dims = (NSteps,
NTopologies))

PointDataOffsets
[Optional]

CellDataOffsets
[Optional]

ArrayName
(dims = NSteps)

ArrayName
(dims = NSteps)

CellOffsets
(dims = (NSteps,
NTopologies))

PointOffsets
(dims = NSteps)

FieldDataSizes
[Optional]

VTKHDF
Version, Type

Here the format of the data set should look
exactly as it does for no time steps except
that the main dimensions of the datasets
incorporate the potentially evolving time
data as well. Individual time steps can be

FieldDataOffsets

= ArrayName
[Optional]

(dims = NSteps)

accessed in these flattened arrays through
the offset information in the “Steps’ group

ArrayName
(dims = NSteps)

by slicing the data. Offset patterns can be
repeated for static data.

_images/transient_hdf_schema1.png
Steps
[Optional]
NSteps

VTKHDE
Version, Type

PartOffsets
(dims = NSteps)

PointOffsets
dims = NSteps)

CellOffsets
(dims = (NSteps,
NTopologies))

PointDataOffsets

ArrayName
(dims = NSteps)

Values
(dims = NSteps)

Connecivityldoffsets
(dims = (NSteps,

FieldDataOffsets

CellDataOffsets [Optional]
[Optional]
ArrayN