
VTK

VTK Developers

Apr 27, 2024

CONTENTS

1 About 3

2 Getting Started 7

3 Learning 13

4 Supported Data Formats 15

5 Supported Hardware 25

6 Modules 27

7 Building 49

8 API 59

9 Advanced Topics 217

10 Design Documents 263

11 Developer’s Guide 353

12 Resources 393

13 Release Details 395

Python Module Index 459

Index 461

i

ii

VTK

VTK is an open-source software system for image processing, 3D graphics, volume rendering, and visualization. Our
documentation is a comprehensive resource for both new and seasoned VTK users and includes tutorials, examples,
and best practices to help you unlock the full power of VTK’s advanced algorithms and rendering techniques.

We invite you to join the VTK community and explore our documentation to find out how you can use VTK to bring
your visions to life.

CONTENTS 1

VTK

2 CONTENTS

CHAPTER

ONE

ABOUT

1.1 Overview

The Visualization Toolkit (VTK) is a robust and open-source software system that provides advanced features in 3D
computer graphics, image processing, modeling, volume rendering, and scientific visualization. It offers threaded and
distributed-memory parallel processing for scalability and better performance.

VTK is a cross-platform library that can run on many operating systems, including Windows, macOS, Linux, and even
the web and mobile devices.

VTK is widely used in both academic and commercial settings, as well as in government institutions such as Los
Alamos National Lab and CINECA. The software was originally published in the textbook titled “The Visualization
Toolkit, an Object-Oriented Approach to 3D Graphics” and has grown significantly since its release in 1994 with an
extensive worldwide user base.

VTK maintains a high-quality software process, which includes CMake, CTest, CDash, and CPack. The software is
written in C++ with additional language bindings to reach a broader audience, with an excellent interoperability with
Python.

As open source software, VTK is free to use for any purpose. Technically, VTK has a BSD-style license, which imposes
minimal restrictions for both open and closed source applications.

If you’re interested in exploring the growth and usage patterns of VTK, we provide you with our statistics. The statistics
are available on Open Hub, a platform focused on community-driven software, and PyPI stats, which provides download
statistics for VTK packages. By analyzing these statistics, you can gain insights into the community’s size, VTK’s
adoption rates, and popularity. Check out the links below for more information:

• Open Hub

• PyPI stats

1.2 Features

VTK provides a comprehensive set of features that support visualization, modeling, and data analysis. Here are some
highlights:

Filters VTK’s filter-based architecture processes data by transforming and manipulating it through a pipeline of suc-
cessive filters. This approach produces derived data that can be rendered using VTK’s graphics system. Filters can be
combined into a dataflow network, which enables a flexibly configurable workflow.

Graphics System VTK provides a sophisticated rendering abstraction layer over the underlying graphics library
(OpenGL with experimental support for WebGL), simplifying the creation of engaging visualizations.

3

https://www.openhub.net/p/vtk
https://pypistats.org/packages/vtk

VTK

Data Model VTK’s core data model has the ability to represent almost any real-world problem related to physical
science. The fundamental data structures are particularly well-suited to medical imaging and engineering work that
involves finite difference and finite element solutions.

Data Interaction VTK provides several tools for interactive data exploration and analysis, including 3D widgets,
interactors, and 2D widget libraries integration like Qt. These enable powerful user interaction capabilities, making it
easier to understand the content, shape, and meaning of data.

2D Plots and Charts VTK supports a full set of 2D plot and chart types for tabular data visualization. It also includes
picking and selection capabilities, allowing users to query data interactively. VTK’s excellent interoperability with
Python and Matplotlib further increases its flexibility.

Parallel Processing VTK offers excellent support for scalable distributed-memory parallel processing under MPI.
VTK filters implement finer-grained parallelism using vtkSMP for coarse-grained threading and vtk-m for fine-grained
processing on many-core and GPU architectures. These parallel processing capabilities make VTK highly efficient and
suited for processing large data sets.

1.3 License

VTK is distributed under the OSI-approved BSD 3-clause License. See here for details.

1.4 Citing

When citing VTK in your scientific research, please mention the following work to support increased visibility and
dissemination of our software:

Schroeder, Will; Martin, Ken; Lorensen, Bill (2006), The Visualization Toolkit (4th ed.),
→˓ Kitware, ISBN 978-1-930934-19-1

For your convenience here is a bibtex entry:

@Book{vtkBook,
author = "Will Schroeder and Ken Martin and Bill Lorensen",
title = "The Visualization Toolkit (4th ed.)",
publisher = "Kitware",
year = "2006",
isbn = "978-1-930934-19-1",

}

To cite a specific filter, check for extra references in the included headers or the doxygen documentation of the filter.

1.5 History

2016 - Rendering Backend in ParaView 5.0

See Brand-New Rendering Backend in ParaView 5.0.

2014 - Transition from OpenGL to OpenGL2

See New OpenGL Rendering in VTK.

1993 - Origin

4 Chapter 1. About

https://gitlab.kitware.com/vtk/vtk/-/blob/master/Copyright.txt
https://vtk.org/doc/nightly/html
https://www.kitware.com/kitware-unleashes-brand-new-rendering-backend-in-paraview-5-0/
https://www.kitware.com/new-opengl-rendering-in-vtk

VTK

VTK was originally part of the textbook The Visualization Toolkit An Object-Oriented Approach to 3D Graphics.
Will Schroeder, Ken Martin, and Bill Lorensen—three graphics and visualization researchers—wrote the book and
companion software on their own time, beginning in December 1993, with legal permission from their then-employer,
GE R&D. The motivation for the book was to collaborate with other researchers and develop an open framework for
creating leading-edge visualization and graphics applications.

VTK grew out of the authors’ experiences at GE, particularly with the LYMB object-oriented graphics system. Other
influences included the VISAGE visualization system developed by Schroeder et. al; the Clockworks object-oriented
computer animation system developed at Rensselaer Polytechnic Institute; and the Object-Oriented Modeling and De-
sign book, which Bill Lorensen co-authored.

After the core of VTK was written, users and developers around the world began to improve and apply the system
to real-world problems. In particular, GE Medical Systems and other GE businesses contributed to the system, and
researchers such as Dr. Penny Rheinghans began to teach with the book. Other early advocates include Jim Ahrens at
Los Alamos National Laboratory and generous oil and gas supporters.

To address what was becoming a large, active, and world-wide community, Ken and Will—along with Lisa Avila,
Charles Law, and Bill Hoffman—left GE in 1998 to found Kitware, Inc. Since that time, hundreds of additional devel-
opers have turned VTK into what is now the premier visualization system in the world. Sandia National Laboratories,
for example, has been a strong supporter and co-developer, revamping 2D charting and information visualization in
VTK.

1.6 Acknowledgments

Many institutions have taken part in the development of VTK. Some of the most fundamental work came from the
following:

• Kitware

• Los Alamos National Lab (LANL)

• National Library of Medicine (NLM)

• Department of Energy (DOE) ASC Program

• Sandia National Laboratories

• Army Research Laboratory (ARL)

Special thanks to all the contributors !

1.7 Commercial Use

We invite commercial entities to use VTK.

VTK is part of Kitware’s collection of commercially supported open-source platforms for software development.

VTK’s License makes Commercial Use Available

• VTK is a free open source software distributed under a BSD style license.

• The license does not impose restrictions on the use of the software.

• VTK is NOT FDA approved. It is the users responsibility to ensure compliance with applicable rules and regu-
lations.

1.6. Acknowledgments 5

https://vtk.org/documentation/#textbook
https://www.kitware.com
http://www.lanl.gov
http://www.nlm.nih.gov
http://www.cio.energy.gov/high-performance-computing.htm
http://www.sandia.gov
http://www.arl.army.mil/www/default.htm
https://github.com/Kitware/VTK/graphs/contributors

VTK

1.8 Contact Us

We want to hear from you! If you have any questions, suggestions or bug reports regarding VTK, there are several
communication channels available for you:

VTK Forum

Visit the VTK Discourse forum for community-driven support, to share your experiences, exchange ideas and best
practices, and to discuss challenges.

Issue Tracker

Use our public issue tracker to report any bugs or request enhancements. This tracker is a ticket-based system that
allows you to keep track of your issues and follow up on their progress.

Commercial and Confidential Consulting

For commercial or confidential consulting related to VTK or any of our other products and services, please contact
Kitware’s advanced support team for personalized assistance.

6 Chapter 1. About

https://discourse.vtk.org
https://gitlab.kitware.com/vtk/vtk/-/issues
https://www.kitware.com/contact/advanced-support/

CHAPTER

TWO

GETTING STARTED

2.1 Introduction

Welcome to VTK! We recommend that you start by reading The VTK Book, a comprehensive guide to VTK that covers
all aspects of its functionality. Additionally, you may find it helpful to explore the VTK Examples, a collection of useful
reference materials that demonstrate how to use VTK’s different modules and features.

Before diving into VTK’s functionality, ensure that your system meets its system requirements. Depending on your
programming experience and needs, you can choose different programming languages to work with VTK. We have
documentation on how to use VTK with Python, Jupyter, C++ and CMake, Javascript, and WebAssembly.

Lastly, to help address your specific needs, you may also consider exploring existing free and open-source frameworks
or applications that already leverage VTK. These frameworks and applications can be extended and customized to
work for specific use cases and may provide ready-to-use solutions for your project.

2.2 System requirements

Runtime

• At least Python 3.x to use scripting capabilities

• Minimum macOS version 10.10.

• Minimum OpenGL version is 3.2 but a higher versions may be required for more advanced features.

Build-time

Check the build prerequisites.

2.3 Using Python

VTK is available on PyPI for Windows, macOS and Linux.

pip install vtk

or in a virtual environment if you want to install the package only locally instead of system-wide

7

https://book.vtk.org
https://examples.vtk.org
https://pypi.org/
https://docs.python.org/3/library/venv.html

VTK

Linux

python -m venv ./env
source ./env/bin/activate
pip install vtk

macOS

python -m venv ./env
source ./env/bin/activate
pip install vtk

Windows

Using PowerShell

python -m venv env
.\env\Activate.ps1
pip install vtk

or using cmd.exe

python -m venv env
.\env\activate.bat
pip install vtk

To verify the installation try to import vtk from an interactive python environment:

>>> import vtk
>>> print(vtk.__version__)
9.2.6

That’s it ! You may now try some of the tutorials, how to guides or examples.

If you are looking for a higher-level interface to VTK in Python, you may want to explore using PyVista as it exposes
VTK in a “Pythonic” manner.

2.4 Using Jupyter

When it comes to rendering with VTK in Jupyter, there are several options.

To harness the full power of VTK in Jupyter, you may want to leverage PyVista and Trame. PyVista exposes a high-level
interface to VTK for plotting and when combined with Trame, empowers users to bring the full power of VTK to a
Jupyter notebook. We have a post on the VTK discourse about this. See PyVista’s documentation for more information
on using PyVista’s wrappings of VTK in Jupyter.

itkwidgets is one example of a domain-specific Jupyter viewer built on VTK. To try out itkwidgets, check this example.

8 Chapter 2. Getting Started

https://kitware.github.io/vtk-examples/site/Python/#tutorial
https://kitware.github.io/vtk-examples/site/PythonHowTo
https://kitware.github.io/vtk-examples/site/Python
https://docs.pyvista.org
https://docs.pyvista.org/
https://kitware.github.io/trame/index.html
https://discourse.vtk.org/t/pyvista-trame-jupyter-3d-visualization/10610
https://itkwidgets.readthedocs.io/en/latest
https://colab.research.google.com/github/InsightSoftwareConsortium/itkwidgets/blob/main/examples/integrations/vtk/vtkImageData.ipynb

VTK

2.5 Using C++ and CMake

CMake is an open-source platform-independent build system that manages the entire software build process, from
source code to executable binary. If you’re new to CMake, you can find more information on the CMake website.

Installing a binary release

Pre-built VTK releases maintained by the community exist for a number of distributions, as shown in the following
table:

Operating System/ Package manager Package Name Version
Fedora Rawhide vtk-devel
Fedora 38 vtk-devel
Fedora 37 vtk-devel
Ubuntu 23.04 (lunar) libvtk9-dev
Ubuntu 22.10 (kinetic) libvtk9-dev
Ubuntu 22.04 (jammy) libvtk9-dev
Ubuntu 20.04 (focal) libvtk7-dev
Debian unstable libvtk9-devel
Debian testing libvtk9-devel
Debian stable libvtk9-devel
Gentoo vtk
homebrew vtk
vckpg vtk
spack vtk

Note that these packages may be lacking some optional features such as mpi, qt etc. or, they may not contain the latest
VTK features. Check the documentation of each package to verify that the build contains what you need. If what you
need is missing you will need to build vtk from scratch.

Building an executable

Once VTK is installed using either of the methods above you can use it in your project utilizing the find_package
infrastructure of cmake:

find_package(VTK
COMPONENTS
.. list of vtk modules to link to

)

your executable
add_executable(testExample ...)

link to required VTK libraries
target_link_libraries(testExample
PRIVATE
${VTK_LIBRARIES}

)

vtk_module_autoinit(
TARGETS testExample
MODULES ${VTK_LIBRARIES}

)

2.5. Using C++ and CMake 9

https://cmake.org
https://repology.org/project/vtk/versions
https://cmake.org/cmake/help/latest/command/find_package.html

VTK

vtk_module_autoinit() is responsible for triggering static code construction required for some VTK classes. For
more details regarding the autoinit system of VTK see here.

The list of required vtk modules depends on the files #included in your code. The module a header file belongs to
is determined in most cases by its location in the VTK source tree. For, example vtkXMLPolyDataReader is located
under IO/XML so it belongs to the IOXML module, to verify check the accompanying vtk.module file in the same
directory.

The above method works in most cases but it does not express the dependencies that some module have. A better (and
easier) way to find the required modules is the VTKModulesForCxx script.

For example, running the script on the CylinderExample we get the following suggestion:

find_package(VTK
COMPONENTS

CommonColor
CommonCore
FiltersSources
RenderingCore
#
These modules are suggested since they implement an existing module.
You may need to uncomment one or more of these.
If vtkRenderWindow is used and you want to use OpenGL,
you also need the RenderingOpenGL2 module.
If vtkRenderWindowInteractor is used,
uncomment RenderingUI and possibly InteractionStyle.
If text rendering is used, uncomment RenderingFreeType
#
InteractionStyle # implements VTK::RenderingCore
RenderingCellGrid # implements VTK::RenderingCore
RenderingFreeType # implements VTK::RenderingCore
RenderingOpenGL2 # implements VTK::RenderingCore
RenderingUI # implements VTK::RenderingCore

)

Based on the suggestions of the script and the template above the relevant sections of the CMakeLists.txt are:

...
find_package(VTK COMPONENTS
CommonColor
CommonCore
FiltersSources
InteractionStyle
RenderingContextOpenGL2
RenderingCore
RenderingFreeType
RenderingGL2PSOpenGL2
RenderingOpenGL2

)

add_executable(CylinderExample CylinderExample.cxx)
target_link_libraries(CylinderExample PRIVATE ${VTK_LIBRARIES})
vtk_module_autoinit is needed
vtk_module_autoinit(
TARGETS CylinderExample

(continues on next page)

10 Chapter 2. Getting Started

https://gitlab.kitware.com/vtk/vtk/-/blob/master/IO/XML/vtk.module
https://examples.vtk.org/site/Python/Utilities/VTKModulesForCxx
https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample

VTK

(continued from previous page)

MODULES ${VTK_LIBRARIES}
)

The full source of the example can be found here.

To build the example:

mkdir build
cd build
ccmake ../ # or cmake-gui if on Windows

Hit C if using ccmake or the configure button if using cmake-gui. If VTK was built from scratch you will need to
set VTK_DIR to the installation path. If ccmake/cmake-gui reports no errors quit ccmake/cmake-gui and build the
project as follows:

cmake --build .

To run the example

./CylinderExample

For more examples check the tutorials, how to guides or examples sections of the vtk examples website.

2.6 Using Javascript

vtk.js is an implementation of VTK in JavaScript that consists of an ES6 class library which can be integrated into any
web application. See here to learn more about the differences between VTK C++ and vtk.js.

2.7 Using WebAssembly

VTK-Wasm is a prototype infrastructure that enables the compilation of VTK C++ code to WebAssembly via Em-
scripten. This feature is still under active development.

To learn more about VTK-Wasm and its capabilities, please take a look at the following resources:

• Examples of WebAssembly applications that use VTK for rendering.

• A collection of VTK web-based benchmark applications.

• A guide on using the experimental WebGPU feature in VTK-Wasm..

• Instructions for building VTK using Emscripten for WebAssembly.

• vtk-wasm-docker for building and publishing the kitware/vtk-wasm docker images.

• Deep dive into WebAssembly & WebGPU in VTK: presentation from April 28th, 2023. This presentation covers
topics such as Emscripten, VTK-wasm Docker image, WASM Dev tools, VTK and WebGPU: PolyData Mapper,
API inspection with RenderDoc, and performance profiles.

We welcome your feedback and contributions to this project. Feel free to share your experiences, questions, and ideas
in the web/vtk-wasm category of the VTK Discourse forum. Stay tuned for updates and new developments!

2.6. Using Javascript 11

https://examples.vtk.org/site/Cxx/GeometricObjects/CylinderExample/
https://kitware.github.io/vtk-examples/site/Cxx/#tutorial
https://kitware.github.io/vtk-examples/site/CxxHowTo
https://kitware.github.io/vtk-examples/site/Cxx
https://kitware.github.io/vtk-js/docs/
https://kitware.github.io/vtk-js/docs/#What-is-the-difference-with-VTK-C
https://gitlab.kitware.com/vtk/vtk/-/tree/master/Examples/Emscripten/Cxx
https://github.com/Kitware/vtkWasmBenchmarks
https://discourse.vtk.org/t/guide-how-do-i-use-vtk-wasm-webgpu-experimental-feature/11164
https://gitlab.kitware.com/vtk/vtk-wasm-docker
https://hub.docker.com/r/kitware/vtk-wasm
https://docs.google.com/presentation/d/1Nl0TVa55616QKCSHP54BoYBvByMKe6lIUl6IFZqSeJo/edit#slide=id.p
https://discourse.vtk.org/c/web/vtk-wasm/12

VTK

2.8 Using existing frameworks and applications

There are many VTK-based, free, open-source applications for scientific, bio-medical and medical image visualization
and processing; several of them are extensible frameworks that can be customized for particular use cases. ParaView,
Trame, PyVista, and 3D Slicer are examples. Therefore, it is worth evaluating if any of these would allow you to address
your challenges. This would save time by avoiding redeveloping everything from scratch and by capitalizing on large
communities with thousands of experts.

Generally, the default (complex, but powerful) user interface of these applications allows one to figure out the complete
workflow. Once one knows exactly what and how to do it, they can create a small Python scripted module that automates
most of the steps and provides a simplified user interface.

12 Chapter 2. Getting Started

https://paraview.org
https://kitware.github.io/trame/index.html
https://docs.pyvista.org
https://www.slicer.org/

CHAPTER

THREE

LEARNING

The VTK textbook offers thorough descriptions of important visualization algorithms and techniques that can be found
in VTK along with some examples.

More examples and how-to guides can be found at the examples website. Check also this script for getting examples
focused around specific classes.

Community discussion takes place on the VTK Discourse forum.

Commercial support and training are available from Kitware.

There is also a collection of technical guides related to VTK that have been published as blog-posts in the past:

• Improved VTK - numpy integration (part 1)

• Improved VTK - numpy integration (part 2)

• Improved VTK - numpy integration (part 3)

• Improved VTK - numpy integration (part 4)

• Improved VTK - numpy integration (part 5)

• vtkProgrammableFilter

• vtkPythonAlgorithm

• A VTK pipeline primer (part 1)

• A VTK pipeline primer (part 2)

• A VTK pipeline primer (part 3)

• Streaming in VTK: Time

• Streaming in VTK: Spatial

• Spatial Streaming and Compositing

For more posts related to VTK see here.

13

https://book.vtk.org
https://examples.vtk.org/site
https://examples.vtk.org/site/Python/Utilities/SelectExamples
https://discourse.vtk.org
https://kitware.com/support
https://kitware.com
https://www.kitware.com/improved-vtk-numpy-integration
https://www.kitware.com/improved-vtk-numpy-integration-part-2
https://www.kitware.com/improved-vtk-numpy-integration-part-3
https://www.kitware.com/improved-vtk-numpy-integration-part-4
https://www.kitware.com/improved-vtk-numpy-integration-part-5
https://www.kitware.com/vtkprogrammablefilter-aint-so-bad
https://www.kitware.com//vtkpythonalgorithm-is-great
https://www.kitware.com/a-vtk-pipeline-primer-part-1/
https://www.kitware.com/a-vtk-pipeline-primer-part-2/
https://www.kitware.com/a-vtk-pipeline-primer-part-3/
https://www.kitware.com/streaming-in-vtk-time/
https://www.kitware.com/streaming-in-vtk-spatial/
https://www.kitware.com/spatial-streaming-and-compositing/
https://www.kitware.com/tag/vtk

VTK

14 Chapter 3. Learning

CHAPTER

FOUR

SUPPORTED DATA FORMATS

Below is a list of all available readers and writers in VTK sorted by extension. Note that for the same extension it could
be more than one matching reader/writer since the same extensions are often used across different formats. The list is
generated based on a yaml file that contains all the relevant information.

To enable a reader/writer you need to enable the associated module during configuration:

cmake -DVTK_MODULE_ENABLE_<module name>=WANT ...

or setting the flag value via ccmake/cmake-qt.

For example to enable vtkPNGWriter which belongs to VTK::IOImage

cmake -DVTK_MODULE_ENABLE_VTK_IOImage=WANT ...

For more details on enabling module see the module system api.

Warning: the list is incomplete, this is work in progress

• Stanford Exploration Project files reader:

– Extension: .H

– reader: vtkSEPReader

– module: VTK::IOImage

• Alembic scene format:

– Extension: .abc

– writer: vtkAlembicExporter

– module: VTK::IOAlembic

• AVI video files (Windows only):

– Extension: .avi

– writer: vtkAVIWriter

– module: VTK::IOMovie

• LIDAR data using PDAL:

– Extensions: .bin, .bpf, .csd, .csv, .greyhound, .gpkg, .icebride, .las, .laz, .mat, .nitf, .nsf, .ntf, .pcd, .ply, .pts,
.qi, .rxp, .sbet, .sqlite, .sid, .tindex, .txt, .h5

– reader: vtkPDALReader

15

https://vtk.org/doc/nightly/html/classvtkSEPReader.html
http://www.alembic.io/
https://vtk.org/doc/nightly/html/classvtkAlembicExporter.html
https://vtk.org/doc/nightly/html/classvtkAVIWriter.html
https://pdal.io/en/latest/stages/readers.html
https://vtk.org/doc/nightly/html/classvtkPDALReader.html

VTK

– module: VTK::IOPDAL

• Windows BMP file:

– Extension: .bmp

– reader: vtkBMPReader

– writer: vtkBMPWriter

– module: VTK::IOImage

• FLUENT native format:

– Extensions: .cas, .dat

– reader: vtkFLUENTReader

– module: VTK::IOGeometry

• MotionFX motion definitions cfg files:

– Extension: .cfg

– reader: vtkMotionFXCFGReader

– module: VTK::IOMotionFX

• Computer Graphics Metafile:

– Extension: .cgm

– writer: vtkCGMWriter

– module: VTK::IOGeometry

• CONVERGE CFD CGNS format:

– Extension: .cgns

– reader: vtkCONVERGECFDCGNSReader

– module: VTK::IOCGNSReader

• CGNS format:

– Extension: .cgns

– reader: vtkCGNSReader

– module: VTK::IOCGNSReader

• LS-Dyna databases:

– Extension: .d3plot

– reader: vtkLSDynaReader

– module: VTK::IOLSDyna

• Tabulat data in Tecplot ascii format:

– Extensions: .dat, .DAT

– reader: vtkTecplotTableReader

– module: VTK::IOTecplotTable

• FLUENT CFF format:

– Extensions: .dat.h5, .cas.h5

16 Chapter 4. Supported Data Formats

https://vtk.org/doc/nightly/html/classvtkBMPReader.html
https://vtk.org/doc/nightly/html/classvtkBMPWriter.html
https://vtk.org/doc/nightly/html/classvtkFLUENTReader.html
https://vtk.org/doc/nightly/html/classvtkMotionFXCFGReader.html
https://vtk.org/doc/nightly/html/classvtkCGMWriter.html
https://convergecfd.com
https://vtk.org/doc/nightly/html/classvtkCONVERGECFDCGNSReader.html
https://cgns.github.io/cgns-modern.github.io/index.html
https://vtk.org/doc/nightly/html/classvtkCGNSReader.html
https://www.oasys-software.com/dyna/
https://vtk.org/doc/nightly/html/classvtkLSDynaReader.html
https://vtk.org/doc/nightly/html/classvtkTecplotTableReader.html

VTK

– reader: vtkFLUENTCFFReader

– module: VTK::IOFLUENTCFF

• DICOM medical images:

– Extension: .dcm

– reader: vtkDICOMImageReader

– module: VTK::IOImage

• Digital Elevation Map File:

– Extension: .dem

– reader: vtkDEMReader

– module: VTK::IOImage

• Movie.BYU files:

– Extension: .g

– reader: vtkBYUReader

– writer: vtkBYUWriter

– module: VTK::IOGeometry

• IOSS (Sierra IO System), writer supports only Exodus files:

– Extension: .g .e .h .gc .ex2 .ex2v2 .exo .gen .par .exoII .exii .ex-timeseries .cgns

– reader: vtkIOSSReader

– writer: vtkIOSSWriter

– module: VTK::IOIOSS

• Chaco graph partitioning output files:

– Extensions: .graph, .coords

– reader: vtkChacoReader

– module: VTK::IOGeometry

• VERAout-tools:

– Extension: .h5

– reader: vtkVeraOutReader

– module: VTK::IOVeraOut

• CONVERGE CFD format:

– Extension: .h5

– reader: vtkCONVERGECFDReader

– module: VTK::IOCONVERGECFD

• H5Part particle files:

– Extension: .h5part

– reader: vtkH5PartReader

– module: VTK::IOH5Part

17

https://vtk.org/doc/nightly/html/classvtkFLUENTCFFReader.html
https://vtk.org/doc/nightly/html/classvtkDICOMImageReader.html
https://vtk.org/doc/nightly/html/classvtkDEMReader.html
https://vtk.org/doc/nightly/html/classvtkBYUReader.html
https://vtk.org/doc/nightly/html/classvtkBYUWriter.html
https://vtk.org/doc/nightly/html/classvtkIOSSReader.html
https://vtk.org/doc/nightly/html/classvtkIOSSWriter.html
https://vtk.org/doc/nightly/html/classvtkChacoReader.html
https://github.com/palmtag/VERAout-tools
https://vtk.org/doc/nightly/html/classvtkVeraOutReader.html
https://convergecfd.com
https://vtk.org/doc/nightly/html/classvtkCONVERGECFDReader.html
https://vtk.org/doc/nightly/html/classvtkH5PartReader.html

VTK

• hdf files generated from xRage, a LANL physics code:

– Extension: .h5rage

– reader: vtkH5RageReader

– module: VTK::IOH5Rage

• GE TRUCHAS format:

– Extensions: .hdf5, .h5

– reader: vtkTRUCHASReader

– module: VTK::IOTRUCHAS

• Radiance HDR file:

– Extension: .hdr

– reader: vtkHDRReader

– module: VTK::IOImage

• AVS UCD Binary/ASCII Files:

– Extension: .inp

– reader: vtkAVSucdReader

– module: VTK::IOGeometry

• JPEG Files:

– Extensions: .jpg, .jpeg

– reader: vtkJPEGReader

– writer: vtkJPEGWriter

– module: VTK::IOImage

• LIDAR data in LAS format:

– Extension: .las

– reader: vtkLASReader

– module: VTK::IOLAS

• binary UNC meta image data:

– Extensions: .mhd, .mha

– reader: vtkMetaImageReader

– writer: vtkMetaImageWriter

– module: VTK::IOImage

• NetCDF-based medical image developed at [BIC:

– Extension: .mnc

– reader: vtkMINCImageReader

– writer: vtkMINCImageWriter

– module: VTK::IOMINC

• H.264-encoded MP4 files (Windows only):

18 Chapter 4. Supported Data Formats

https://vtk.org/doc/nightly/html/classvtkH5RageReader.html
https://vtk.org/doc/nightly/html/classvtkTRUCHASReader.html
https://vtk.org/doc/nightly/html/classvtkHDRReader.html
https://vtk.org/doc/nightly/html/classvtkAVSucdReader.html
https://vtk.org/doc/nightly/html/classvtkJPEGReader.html
https://vtk.org/doc/nightly/html/classvtkJPEGWriter.html
https://vtk.org/doc/nightly/html/classvtkLASReader.html
https://vtk.org/doc/nightly/html/classvtkMetaImageReader.html
https://vtk.org/doc/nightly/html/classvtkMetaImageWriter.html
https://vtk.org/doc/nightly/html/classvtkMINCImageReader.html
https://vtk.org/doc/nightly/html/classvtkMINCImageWriter.html

VTK

– Extension: .mp4

– writer: vtkMP4Writer

– module: VTK::IOMovie

• MRC Image Files:

– Extensions: .mrc, .ali, .st, .rec

– reader: vtkMRCReader

– module: VTK::IOImage

• NetCDF UGRID file:

– Extensions: .nc, .ncdf

– reader: vtkNetCDFUGRIDReader

– module: VTK::IONetCDF

• CAM NetCDF (Unstructured):

– Extensions: .nc, .ncdf

– reader: vtkNetCDFCAMReader

– module: VTK::IONetCDF

• netCDF files generic and CF conventions:

– Extensions: .nc, .ncdf

– reader: vtkNetCDFReader

– writer: vtkNetCDFCFWriter

– module: VTK::IONetCDF

• UGRID NetCDF (Unstructured):

– Extensions: .nc, .ncdf

– reader: vtkNetCDFUGRIDReader

– module: VTK::IONetCDF

• MPAS NetCDF (Unstructured):

– Extensions: .nc, .ncdf

– reader: vtkMPASReader

– module: VTK::IONetCDF

• SLAC Data Reader:

– Extensions: .nc, .ncdf

– reader: vtkSLACReader

– module: VTK::IONetCDF

• Particle data file used at SLAC:

– Extensions: .ncdf, .netcdf

– reader: vtkSLACParticleReader

– module: VTK::IONetCDF

19

https://vtk.org/doc/nightly/html/classvtkMP4Writer.html
http://bio3d.colorado.edu/imod/doc/mrc_format.txt
https://vtk.org/doc/nightly/html/classvtkMRCReader.html
https://ugrid-conventions.github.io/ugrid-conventions
https://vtk.org/doc/nightly/html/classvtkNetCDFUGRIDReader.html
https://vtk.org/doc/nightly/html/classvtkNetCDFCAMReader.html
https://vtk.org/doc/nightly/html/classvtkNetCDFReader.html
https://vtk.org/doc/nightly/html/classvtkNetCDFCFWriter.html
https://vtk.org/doc/nightly/html/classvtkNetCDFUGRIDReader.html
https://vtk.org/doc/nightly/html/classvtkMPASReader.html
https://www6.slac.stanford.edu
https://vtk.org/doc/nightly/html/classvtkSLACReader.html
https://ugrid-conventions.github.io/ugrid-conventions
https://vtk.org/doc/nightly/html/classvtkSLACParticleReader.html

VTK

• GAMBIT GAMBIT ASCII format:

– Extension: .neu

– reader: vtkGAMBITReader

– module: VTK::IOGeometry

• NIfTI-1 and NIfTI-2 medical image files:

– Extensions: .nii, .img, .hdr

– reader: vtkNIFTIImageReader

– writer: vtkNIFTIImageWriter

– module: VTK::IOImage

• Nrrd Raw Image Files:

– Extensions: .nrrd, .nhdr

– reader: vtkNrrdReader

– module: VTK::IOImage

• MNI surface mesh files:

– Extension: .obj

– reader: vtkMNIObjectReader

– writer: vtkMNIObjectWriter

– module: VTK::IOMINC

• OggTheora:

– Extension: .ogv

– writer: vtkOggTheoraWriter

– module: VTK::IOOggTheora

• OME TIFF files:

– Extensions: .ome.tif, .ome.tiff

– reader: vtkOMETIFFReader

– module: VTK::IOImage

• OMF:

– Extension: .omf

– reader: vtkOMRReader

– module: VTK::IOOMF

• PIO (Parallel Input Output) data files:

– Extension: .pio

– reader: vtkPIOReader

– module: VTK::IOPIO

• Stanford University PLY format:

– Extension: .ply

20 Chapter 4. Supported Data Formats

https://vtk.org/doc/nightly/html/classvtkGAMBITReader.html
https://nifti.nimh.nih.gov/
https://vtk.org/doc/nightly/html/classvtkNIFTIImageReader.html
https://vtk.org/doc/nightly/html/classvtkNIFTIImageWriter.html
https://vtk.org/doc/nightly/html/classvtkNrrdReader.html
https://github.com/BIC-MNI
https://vtk.org/doc/nightly/html/classvtkMNIObjectReader.html
https://vtk.org/doc/nightly/html/classvtkMNIObjectWriter.html
https://www.theora.org/
https://vtk.org/doc/nightly/html/classvtkOggTheoraWriter.html
https://docs.openmicroscopy.org/ome-model/5.6.3/ome-tiff/specification.html#ome-tiff-specification
https://vtk.org/doc/nightly/html/classvtkOMETIFFReader.html
https://omf.readthedocs.io/en/stable/index.html
https://vtk.org/doc/nightly/html/classvtkOMRReader.html
https://vtk.org/doc/nightly/html/classvtkPIOReader.html

VTK

– reader: vtkPLYReader

– writer: vtkPLYWriter

– module: VTK::IOPLY

• PNG file:

– Extension: .png

– reader: vtkPNGReader

– writer: vtkPNGWriter

– module: VTK::IOImage

• pnm (i.e., portable anymap) file:

– Extensions: .pnm, .pgm, .ppm

– reader: vtkPNMReader

– writer: vtkPNMWriter

– module: VTK::IOImage

• POP Ocean NetCDF (Rectilinear):

– Extension: .pop.ncdf .pop.nc

– reader: vtkNetCDFPOPReader

– module: VTK::IONetCDF

• PostScript file:

– Extension: .ps

– writer: vtkPostScriptWriter

– module: VTK::IOImage

• SEG-Y:

– Extensions: .sgy, .segy

– reader: vtkSegYReader

– module: VTK::IOSegY

• SLC volume file:

– Extension: .slc

– reader: vtkSLCReader

– module: VTK::IOImage

• VTK Reader for STEP and IGES files using OpenCASCADE:

– Extensions: .step, .iges

– reader: vtkOCCTReader

– module: VTK::IOOCCT

• MNI tag files:

– Extension: .tag

– reader: vtkMNITagPointReader

21

https://vtk.org/doc/nightly/html/classvtkPLYReader.html
https://vtk.org/doc/nightly/html/classvtkPLYWriter.html
https://vtk.org/doc/nightly/html/classvtkPNGReader.html
https://vtk.org/doc/nightly/html/classvtkPNGWriter.html
https://vtk.org/doc/nightly/html/classvtkPNMReader.html
https://vtk.org/doc/nightly/html/classvtkPNMWriter.html
https://vtk.org/doc/nightly/html/classvtkNetCDFPOPReader.html
https://vtk.org/doc/nightly/html/classvtkPostScriptWriter.html
https://en.wikipedia.org/wiki/SEG-Y
https://vtk.org/doc/nightly/html/classvtkSegYReader.html
https://vtk.org/doc/nightly/html/classvtkSLCReader.html
https://vtk.org/doc/nightly/html/classvtkOCCTReader.html
https://github.com/BIC-MNI
https://vtk.org/doc/nightly/html/classvtkMNITagPointReader.html

VTK

– writer: vtkMNITagPointWriter

– module: VTK::IOMINC

• Targa files:

– Extension: .tga

– reader: vtkTGAReader

– module: VTK::IOImage

• Tiff image format:

– Extensions: .tif, .tiff

– reader: vtkTIFFReader

– writer: vtkTIFFWriter

– module: VTK::IOImage

• OpenVDB:

– Extension: .vdb

– reader: vtkOpenVDBReader

– writer: vtkOpenVDBWriter

– module: VTK::IOOpenVDB

• VPIC:

– Extension: .vpc

– reader: vtkVPCIReader

– module: VTK::IOVPIC

• MNI transformation files:

– Extension: .xfm

– reader: vtkMNITransformReader

– writer: vtkMNITransformWriter

– module: VTK::IOMINC

• GE Signa ximg files:

– Extension: .ximg

– reader: vtkGESignaReader

– module: VTK::IOImage

• XDMF (eXtensible Data Model and Format):

– Extensions: .xmf, .xdmf, .xmf2, .xdmf2

– reader: vtkXdmfReader

– writer: vtkXdmfWriter

– module: VTK::IOXdmf2

• XDMF (eXtensible Data Model and Format):

– Extensions: .xmf, .xdmf, .xmf3, .xdmf3

22 Chapter 4. Supported Data Formats

https://vtk.org/doc/nightly/html/classvtkMNITagPointWriter.html
https://en.wikipedia.org/wiki/Truevision_TGA
https://vtk.org/doc/nightly/html/classvtkTGAReader.html
https://vtk.org/doc/nightly/html/classvtkTIFFReader.html
https://vtk.org/doc/nightly/html/classvtkTIFFWriter.html
https://www.openvdb.org/
https://vtk.org/doc/nightly/html/classvtkOpenVDBReader.html
https://vtk.org/doc/nightly/html/classvtkOpenVDBWriter.html
https://github.com/lanl/vpic
https://vtk.org/doc/nightly/html/classvtkVPCIReader.html
https://github.com/BIC-MNI
https://vtk.org/doc/nightly/html/classvtkMNITransformReader.html
https://vtk.org/doc/nightly/html/classvtkMNITransformWriter.html
https://vtk.org/doc/nightly/html/classvtkGESignaReader.html
https://www.xdmf.org
https://vtk.org/doc/nightly/html/classvtkXdmfReader.html
https://vtk.org/doc/nightly/html/classvtkXdmfWriter.html
https://www.xdmf.org

VTK

– reader: vtkXdmf3Reader

– writer: vtkXdmf3Writer

– module: VTK::IOXdmf3

23

https://vtk.org/doc/nightly/html/classvtkXdmf3Reader.html
https://vtk.org/doc/nightly/html/classvtkXdmf3Writer.html

VTK

24 Chapter 4. Supported Data Formats

CHAPTER

FIVE

SUPPORTED HARDWARE

VTK can integrate with a number of specialized visualization hardware including:

• Looking Glass, see the latest blog post here. The integration is achieved using an external vtk module that
leverages the display’s SDK.

• Virtual Reality headsets like Oculus and VIVE as described in this post via the VTK::RenderingOpenVR module.

• Augmented Reality headsets like Hololens as demonstrated here via the VTK::RenderingOpenXRRemoting
module.

• Augmented Reality displays like ZSpace via its ParaView integration as demonstrated here.

25

https://lookingglassfactory.com/
https://www.kitware.com/looking-glass-factory-expands-reach-into-rd-labs-with-new-holographic-kitware-integrations
https://github.com/Kitware/LookingGlassVTKModule
https://www.oculus.com
https://www.vive.com
https://www.kitware.com/using-virtual-reality-devices-with-vtk
https://www.microsoft.com/en-us/hololens
https://www.kitware.com/stream-vtk-to-the-hololens-2
https://zspace.com/
https://www.kitware.com/zspace-device-support-coming-to-paraview

VTK

26 Chapter 5. Supported Hardware

CHAPTER

SIX

MODULES

6.1 VTK::DomainsMicroscopy

6.1.1 vtkOpenSlideReader

• A new image reader for vtk

• Wraps open source openslide library which implements read support for many whole slide image formats

• Mainly from microscopy domain

• Requires openslide libraries for building

6.1.2 Known issues

• Ubuntu 14.04 contains incorrectly patched version of openjpeg (dependency of openslide), and thus openslide
is unable to decode certain .svs files. This issue is not present in later versions of ubuntu or fedora 23.

6.2 VTK::FiltersOpenTURNS

This module is based on the OpenTURNS library, which is LGPL licensed. There are some dependencies of Open-
TURNS under the GPL license, namely:

• the optional hmat library, under GPL but with an explicit exception for its use within OpenTURNS. This depen-
dency can be deactivated as no part of OpenTURNS used by the VTK module depends on hmat. By the way, the
authors of hmat are in the exact same department as the authors of OpenTURNS coming from Airbus

• the poissoninv set of functions for the efficient computation of the Poisson quantile function. This dependency
is mandatory and is used within OpenTURNS with a written exception to the GPL license from the author

• the KolmogorovSmirnovDist set of functions for the efficient computation of the exact Kolmogorov-Smirnov
distribution. This dependency is mandatory and is used within OpenTURNS with a written exception to the
GPL license from the author.

This module (and VTK) cannot be considered to be under the GPL license when using OpenTURNS through the API,
since it is an LGPL library which has solved the issue of merging GPL and LGPL code. Thanks to the authors of these
dependencies, they are NOT under GPL when used by OpenTURNS!

27

https://github.com/openslide/openslide

VTK

6.3 VTK::GUISupportQt

There are no restrictions for using this Qt code in any project. To make changes to this code requires Qt 4.5.0 as this
was the first version of Qt to be covered under the more liberal LGPL license.

6.4 VTK::IOADIOS2

6.4.1 Goal

Provide readers to data produced by the Adaptable Input Output System version 2, ADIOS2.

Currently used on Paraview Application Server Manager development

Extensions:

• .h = header declaration

• .inl = generic inline template implementations

• .txx = specialized template implementations

• .cxx = implementation

##Public VTK classes:

• vtkADIOS2ImageCoreReader.h/.cxx : a generic multiblock reader for image data developed at Kitware Inc. It
will use existing arrays to populate dimension of the image, adding timesteps info, point and cell data accordingly.
No predefined schema is needed. It can work in serial or MPI mode.

• vtkADIOS2VTXReader .h/.cxx : multiblock reader for ImageData and UnstructuredData types using VTK
ADIOS2 Readers (VTX) implementation developed at Oak Ridge National Laboratory (ORNL). Reads bp
files/streams with a vtk.xml attribute schema the reuses the VTK XML file formats schemas. For more com-
prehensive documentation refer to this section in the ADIOS2 User Guide.

6.4.2 Core: VTK ADIOS2 CORE READERS

Developed at Kitware Inc

• vtkADIOS2CoreTypeTraits.h TypeTraits from adios2 type to vtk type

6.4.3 VTX: VTK ADIOS2 READERS

Developed at Oak Ridge National Laboratory. Reads node (image and unstructured) and cell (unstructured) centered
data.

• common/VTXDataArray .h/.cxx : wrapper around vtkDataArray with adios2-related relevant information

• common/VTXHelper .h/.inl/.txx/.cxx : collection of helper functions used privately in *.cxx

• common/VTXTypes.h : header only types definitions including MACROS

• VTXSchemaManager : reusable class that manages a reader that is a derived type of VTXSchema

• schema/VTXSchema .h/.txx/.cxx : abstract base class for supported schema

– schema/vtk/VTXvtkBase : Base class for VTK formats

– schema/vtk/VTXvtkVTI : ImageData VTK format

28 Chapter 6. Modules

https://adios2.readthedocs.io/en/latest/
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://adios2.readthedocs.io/en/latest/ecosystem/visualization.html

VTK

– schema/vtk/VTXvtkVTU : Unstructured VTK format

6.5 VTK::IOCesium3DTiles

6.5.1 vtk3DTilesWriter - Convert a multiblock dataset to the 3D Tiles format.

Currently, to create a valid 3D Tiles dataset we may need additional conversions: from GLTF to GLB and from GLB
to B3DM. We can use JavaScript tools to do these conversions.

Install conversion and validation scripts

• Using node and npm installed on Ubuntu 20.04:

• cd ~/external/3d-tiles-tools/;npm install 3d-tiles-tools. Help at: https://github.com/
AnalyticalGraphicsInc/3d-tiles-tools/tree/master/tools

• cd ~/external/gltf-pipeline;npm install gltf-pipeline. Help at: https://github.com/CesiumGS/
gltf-pipeline

• Clone https://github.com/CesiumGS/3d-tiles-samples. and then npm install.

• Clone https://github.com/KhronosGroup/glTF-Validator and then follow Building section.

Convert data to GLB or B3DM - Optional

See Testing/Cxx/Test3DTilesWriter for conversions of Jacksonville data stored in OBJs and or Berlin data stored in
CityGML. Note that the test saves the 3D Tiles data using GLTF files. If needed, you can use GLB or B3DM,
but you’ll need to do the following conversions manually: cd ~/projects/VTK/build/Testing/Temporary/
jacksonville-3dtiles/ cd ~/projects/VTK/build/Testing/Temporary/berlin-3dtiles/

• Convert gltf to glb

find . -name '*.gltf' -exec bash -c 'nodejs ~/external/gltf-pipeline/bin/gltf-pipeline.
→˓js -i ${0} -o ${0%.*}.glb' {} \;
find . -name '*.gltf' -exec rm {} \;
find . -name '*.bin' -exec rm {} \;

• Check glb validity

~/external/glTF-Validator/build/bin/gltf_validator Testing/Temporary/TestGLTFWriter.glb

• Convert glb to b3dm

find . -name '*.glb' -exec bash -c 'nodejs ~/external/3d-tiles-tools/tools/bin/3d-tiles-
→˓tools.js glbToB3dm ${0} ${0%.*}.b3dm' {} \;
find . -name '*.glb' -exec rm {} \;

6.5. VTK::IOCesium3DTiles 29

https://github.com/AnalyticalGraphicsInc/3d-tiles-tools/tree/master/tools
https://github.com/AnalyticalGraphicsInc/3d-tiles-tools/tree/master/tools
https://github.com/CesiumGS/gltf-pipeline
https://github.com/CesiumGS/gltf-pipeline
https://github.com/CesiumGS/3d-tiles-samples
https://github.com/KhronosGroup/glTF-Validator

VTK

View in Cesium

1. Use 3d-tiles-samples

• Link the tileset created for previous set: cd ~/external/3d-tiles-samples/tilesets; ln
-s ~/projects/VTK/build/Testing/Temporary/jacksonville-3dtiles cd ~/external/
3d-tiles-samples/tilesets; ln -s ~/projects/VTK/build/Testing/Temporary/
berlin-3dtiles

• Start web server: cd ..;npm start

2. google-chrome jacksonville-3dtiles.html;google-chrome berlin-3dtiles.html

Test the tilesets using 3d-tiles-validator

cd ~/external/3d-tiles-validator/validator/
node ./bin/3d-tiles-validator.js -i ~/projects/VTK/build/Testing/Temporary/jacksonville-
→˓3dtiles-points/tileset.json
node ./bin/3d-tiles-validator.js -i ~/projects/VTK/build/Testing/Temporary/jacksonville-
→˓3dtiles-colorpoints/tileset.json

6.6 VTK::IOFLUENTCFF

This page describes the Fluent CFF IO functionality.

6.6.1 vtkFLUENTCFFReader

Provide a reader for the FluentCFF file format. Provide the Fluent CFF Reader (Common Fluid Format).

The reader supports cartesian grid, unstructured grid (poly, tetra, . . .), 3D/2D, double and single precision files.

Similarly to the legacy reader (vtkFLUENTReader), the Fluent CFF reader requires two files: the case file (.cas.h5)
and the data file (.dat.h5).

The Fluent CFF readers uses the HDF library.

It is worth noting that the Fluent CFF file format is the default format in the latest Fluent version and that ANSYS no
longer uses the legacy binary or ASCII formats.

Developed by Arthur Piquet and based on the vtkFLUENTReader class from Brian W. Dotson &

6.6.2 Acknowledgments

Developed by Arthur Piquet and based on the vtkFLUENTReader class originally developed from Brian W. Dotson &
Terry E. Jordan (Department of Energy, National Energy Technology Laboratory) and Douglas McCorkle (Iowa State
University).

30 Chapter 6. Modules

VTK

6.7 VTK::IOOCCT

The vtkOCCT module was initially developed by Michael Miggliore and Mathieu Westphal in the F3D project, under
BSD 3-Clause License. Copyright: Michael Migliore and Mathieu Westphal

6.8 VTK::IOXDMF2

The IO/Xdmf2 directory contains a reduced distribution of the xdmf2/vtk (pv branch) source tree with only the library
source code needed by VTK. It is not a submodule; the actual content is part of our source tree and changes can be
made and committed directly.

We update from upstream using Git’s “subtree” merge strategy. A special branch contains commits of upstream
xdmf2/vtk snapshots and nothing else. No Git ref points explicitly to the head of this branch, but it is merged into
our history.

Update xdmf2/vtk from upstream as follows. Create a local branch to explicitly reference the upstream snapshot branch
head:

git branch xdmf2vtk-upstream f40916ae

Use a temporary directory to checkout the branch:

mkdir xdmf2vtk-tmp cd xdmf2vtk-tmp git init git pull .. xdmf2vtk-upstream rm -rf *

Now place the (reduced) xdmf2/vtk content in this directory. See instructions shown by

git log f40916ae

for help extracting the content from the upstream tarball. Then run the following commands to commit the new version.
Substitute the appropriate date and version number:

git add –all

GIT_AUTHOR_NAME=’XDMF Developers’
GIT_AUTHOR_EMAIL=’xdmf@lists.kitware.com’
GIT_AUTHOR_DATE=’2012-08-01 16:14:03 -0500’
git commit -m ‘xdmf2/vtk 2012-08-01 (reduced)’ && git commit –amend

Edit the commit message to describe the procedure used to obtain the content. Then push the changes back up to the
main local repository:

git push .. HEAD:xdmf2vtk-upstream cd .. rm -rf xdmf2vtk-tmp

Create a topic in the main repository on which to perform the update:

git checkout -b update-xdmf2 master

Merge the xdmf2vtk-upstream branch as a subtree:

git merge -s recursive -X subtree=IO/Xdmf2
xdmf2vtk-upstream

If there are conflicts, resolve them and commit. Build and test the tree. Commit any additional changes needed to
succeed.

Finally, run

git rev-parse –short=8 xdmf2vtk-upstream

to get the commit from which the xdmf2vtk-upstream branch must be started on the next update. Edit the “git branch
xdmf2vtk-upstream” line above to record it, and commit this file.

6.7. VTK::IOOCCT 31

VTK

6.9 VTK::RenderingOpenVR

The OpenVR module aims to support PC-based rendering to virtual reality headsets via Valve’s OpenVR API.

The OpenVR standard has been succeeded by the industry-wide OpenXR standard. See the VTK OpenXR module for
modernized support. The VTK OpenVR module is preserved for legacy support.

6.9.1 Supported Devices

Any device that renders with OpenGL and runs from the OpenVR runtime is theoretically supported. Devices include:

• HTC Vive (, Pro)

• Valve Index

• Oculus Rift (, S)

• Meta Quest (1,2,3,Pro)

– Quest Link or Air Link only)

• HP Reverb G2

6.9.2 Supported Controllers

The VTK OpenVR module provides bindings for the following controllers:

• HP Motion Controller json

• Valve Knuckles json

• Oculus Touch json

• HTC Vive Controller json

The VTK OpenVR module is considered legacy and not under active development. Please see the VTK OpenXR module
for support for additional controllers and alternate input mechanisms.

6.9.3 Testing

A minimum OpenVRCone example is available for download on the VTK Examples website.

Tests in the Testing/Cxx directory may also be run to demonstrate VTK RenderingOpenVR capabilities.

6.10 VTK::RenderingOpenXR

The OpenXR module aims to support rendering to a variety of mixed reality devices under the OpenXR industry-wide
standard. Detailed information on the OpenXR specification and compliant OpenXR runtimes may be found on the
Khronos Group website.

32 Chapter 6. Modules

https://github.com/ValveSoftware/openvr
https://www.khronos.org/openxr/
https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-link-with-quest-2/
https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-with-air-link/
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_hpmotioncontroller.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_knuckles.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_oculus_touch.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/vtk_openvr_binding_vive_controller.json
https://examples.vtk.org/site/Cxx/GeometricObjects/OpenVRCone/
https://examples.vtk.org/site/
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenVR/Testing/Cxx
https://www.khronos.org/openxr/

VTK

6.10.1 Supported Devices

The OpenXR standard is implemented by most PC-based OpenXR runtimes and devices. The VTK OpenXR module
aims to support most devices that implement the OpenXR specification and support OpenGL rendering.

The list of possible XR device targets is extensive and constantly expanding. At the time of writing, theoretically
supported devices include but are not limited to the following:

• Valve Index

• HTC Vive (, Pro)

• Meta Quest (1,2,3,Pro)

– Quest Link or Air Link only

• HP Reverb G2

Supported input devices and mechanisms include the following:

• HP Mixed Reality Controller json

• HTC Vive Controller json

• KHR Simple Controller json

• Valve Knuckles json

• Microsoft Hand Interaction json

The OpenXR module is commonly tested with the Valve Index and HTC Vive virtual reality headsets.

6.10.2 Adding New Devices

It may be necessary to tell VTK how to handle inputs from a new OpenXR-compatible device. Consider contributing
a new JSON input binding specification to add support for a new XR device to the VTK OpenXR module.

The OpenXR interaction profile specification is documented here:

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles

Input binding JSON files should be added to OpenXR and set as default in vtk_openxr_actions.jsonjson.

6.10.3 Building

The OpenXR module depends on the OpenXR-SDK library. OpenXR-SDK can be built with CMake via the steps below:

> git clone git@github.com:KhronosGroup/OpenXR-SDK.git
> mkdir OpenXR-SDK-build
> cd OpenXR-SDK-build
OpenXR-SDK-build > cmake ../OpenXR-SDK
OpenXR-SDK-build > cmake --build . --config "Release"

The OpenXR is turned off in VTK by default. Run the following steps to build VTK with OpenXR:

VTK-build > cmake -DVTK_MODULE_ENABLE_VTK_RenderingOpenXR:STRING=YES -DOpenXR_INCLUDE_
→˓DIR:PATH="path/to/OpenXR-SDK/include/openxr" -DOpenXR_LIBRARY:FILEPATH="path/to/OpenXR-
→˓SDK-build/src/loader/Release/openxr_loader.lib" path/to/VTK
VTK-build > cmake --build . --config "Release"

6.10. VTK::RenderingOpenXR 33

https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-link-with-quest-2/
https://www.meta.com/help/quest/articles/headsets-and-accessories/oculus-link/connect-with-air-link/
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_hp_mixed_reality.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_htc_vive_controller.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_khr_simple_controller.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_knuckles.json
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_binding_microsoft_hand_interaction.json
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#semantic-path-interaction-profiles
https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/vtk_openxr_actions.json
https://github.com/KhronosGroup/OpenXR-SDK

VTK

6.10.4 Testing

Minimum OpenXR examples are available in the Testing/Cxx directory for testing.

To run OpenXR tests, first build VTK with testing enabled.

VTK-build > cmake -DVTK_BUILD_TESTING:BOOL=ON path/to/VTK
VTK-build > cmake --build . --config "Release"

Then run the test with CTest.

VTK-build > ctest -C Release -R <name_of_test>

6.10.5 Additional Notes

See VTK OpenXRRemoting documentation for information on virtual reality rendering to DirectX devices such as the
Microsoft HoloLens 2.

Some non-OpenGL devices may be compatible with the WebGL and WebXR specifications. If your XR device does
not support OpenGL or OpenXR, we suggest visiting VTK.js WebXR documentation for a web-driven solution.

6.11 VTK::RenderingOpenXRRemoting

6.11.1 VTK - OpenXR Holographic Remoting

Holographic remoting consists in a player application running on the XR device, and a VTK-based remote application
running on a standard Windows machine. The remote application receives camera information and rendering resources
from the player. It renders the VTK scene before streaming back the resulting texture to the player application. This
way we avoid the need to build VTK for Universal Windows Platform (UWP), and we can also keep using VTK’s
OpenGL-based rendering pipeline. Still, DirectX must be used to fill the texture to be streamed back to the Hololens.
This is possible by creating a texture shared by both a DirectX and an OpenGL context, thanks to the NV_DX_interop
extension available on almost every recent GPU.

At this time holographic remoting is supported only for the Microsoft HoloLens 2 virtual reality headset.

Player application

• Download the Microsoft MixedReality HolographicRemoting samples and follow the instruction to build the
player application. The version number in the branch name must match the version of the Microsoft.
Holographic.Remoting.OpenXr package used below by the remote application.

• Follow the instructions to deploy the player application to the Hololens 2. Alternatively, if you don’t have access
to a device, you can use the Hololens emulator.

• When the player is deployed, you should see the following message: Waiting for connection on XX.XX.
XX.XX where XX.XX.XX.XX describes the IP address the remote application should connect to.

34 Chapter 6. Modules

https://gitlab.kitware.com/vtk/vtk/-/blob/master/Rendering/OpenXR/Testing/Cxx
https://kitware.github.io/vtk-js/docs/develop_webxr.html
https://github.com/microsoft/MixedReality-HolographicRemoting-Samples
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-visual-studio?tabs=hl2#enabling-developer-mode
https://docs.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-hololens-emulator#hololens-2-emulator-overview

VTK

Remote application

• Enable the CMake option VTK_MODULE_ENABLE_VTK_RenderingOpenXRRemoting when building VTK.

• Set the OpenXRRemoting_BIN_DIR and OpenXRRemoting_INCLUDE_DIR to provide the path to the OpenXR
Remoting headers and binary directory. The Microsoft.Holographic.Remoting.OpenXr Nuget package
that provides this dependency is available here on nuget.org. The version of the Microsoft.Holographic.
Remoting.OpenXr package must match the branch name of the player application above.

• When successfully built, run the TestOpenXRRemotingInitialization test by sending the IP dis-
played in the player application as argument: vtkRenderingOpenXRRemotingCxxTests.exe
"TestOpenXRRemotingInitialization" -playerIP XX.XX.XX.XX Alternatively, the VTK_PLAYER_IP
environment variable can be used to specify the IP address to connect to. Make sure to provide the content
of the OpenXR Remoting binary directory in the system PATH or next to the executable before running the
program.

• To use this feature in your own application, use the OpenXR and OpenXRRemoting dedicated rendering
stack: vtkOpenXRRenderer, vtkOpenXRRemotingRenderWindow, vtkOpenXRRenderWindowInteractor
and vtkOpenXRCamera. The address of the player application to connect to must be set using
vtkOpenXRRemotingRenderWindow::SetRemotingIPAddress("XX.XX.XX.XX") before starting the inter-
actor. See the TestOpenXRRemotingInitialization test for a complete example.

Troubleshooting:

The OpenXR runtime fails to create and initialize the XrInstance.

To make sure that the player and remote application are compatible, the version of the Mi-
crosoft.Holographic.Remoting.OpenXr package must match the version number of the player application branch
name.

The remote application exits with the following output: WARN| Failed to initialize connection strategy.
ERR| vtkOpenXRRemotingRenderWindow: Failed to initialize OpenXRManager

The remote application could not find the RemotingXR.json or the Microsoft.Holographic.AppRemoting.OpenXr.dll.
Make sure to provide the content of the OpenXR Remoting binary directory in the system PATH or next to the exe-
cutable.

When running in the Hololens emulator, the connection fails with the following error displayed in the
player: “Transport connection was closed due to the requested video format not being supported”

If you have both an Intel and NVidia GPU in your laptop, try disabling the NVidia GPU temporarily under “Display
Adaptors” in the “Device Manager”.

When building the player application from VisualStudio, the Hololens emulator does not appear in the list
of machine to deploy to.

Add a new x64 solution platform within VisualStudio and switch the current platform from ARM64 to x64. When build-
ing, if you now get the error module machine type 'x64' conflicts with target machine type 'ARM64',
then edit the project file to remove all occurrence of /machine:ARM64.

6.11. VTK::RenderingOpenXRRemoting 35

https://www.nuget.org/packages/Microsoft.Holographic.Remoting.OpenXr
http://nuget.org

VTK

6.11.2 Additional Notes

See VTK OpenXR documentation for information on virtual reality rendering with OpenGL.

6.12 VTK::RenderingVR

6.12.1 vtkRenderingVR - Virtual reality support for VTK

Introduction

The VR module defines an API and support classes for adding virtual reality support to VTK. The OpenVR and
OpenXR modules are both subclassed off of this module. For a list of todos and development issues please see

https://gitlab.kitware.com/vtk/vtk/-/issues/18302

Supported Devices

The VR module aims to support runtimes that implement the OpenXR or OpenVR standards.

See VTK::RenderingOpenXR documentation for information on rendering with the modern OpenXR specification.

See VTK::RenderingOpenVR documentation for information on rendering with the legacy OpenVR specification.

Coordinate Systems

With VR the transformations between coordinate systems can quickly become confusing. To help with this note that
most matrices in the VR code are stored in vtk convention. That is a = Mx where x is a column vector in homogeneous
coordinates. Matrices are named according to what spaces they transform between. For example PhysicalToLeftEye-
Matrix. Some common coordinate systems are listed below in order of coordinate flow.

Note that in vtkMatrix4x4 multiplcations are done from right to left so to compute a matrix from spaces A to C you
would do

vtkMatrix4x4::Multiply4x4(BtoCMatrixInput, AtoBMatrixInput, AtoCMatrixOutput)

Model -> World -> Physical -> Left/RightEye -> Projection

• Model - what an actor’s data is in

• World - common coordinate system for all actors

• Physical - the physical VR space in meters with 0,0,0 being the center of the floor of the room

• Device - the viewpoint (position and orientation) of a device such as a controller

• LeftEye (and RightEye) - the viewpoint of the left and right eye

• Projection - in clip space, the expected output space for vertex shaders

The matrices that go between these spaces are as follows and they can be inverted as desired. You will also find
some additional matrices that combine some of these transformations into a single matrix for convenience such as
VRHMDCamera->WorldToLeftEyeMatrix.

• Model -> World = the actor’s matrix

• World -> Physical = inverse of VRRenderWindow->GetPhysicalToWorldMatrix()

• Physical -> LeftEye = VRHMDCamera->PhysicalToLeftEyeMatrix

36 Chapter 6. Modules

https://gitlab.kitware.com/vtk/vtk/-/issues/18302

VTK

• LeftEye -> Projection = VRHMDCamera->LeftEyeToProjectionMatrix

• Physical -> Device = inverse of VRRenderWindow->GetDeviceToPhysicalMatrixForDevice()

There are some other matrices used in the camera that are stored in OpenGL format (transpose of VTK format) using
an older naming convention. These are names such as WCDCMatrix, the names correspond to

• MC = model coordinates (same as above)

• WC = world coordinates (same as above)

• VC = view coordinates, world coordinates translated and rotated to the camera, similar to the LeftEye space

• DC = device coordinates (device in this context is a GPU, so same as projection coordinates above)

6.13 VTK::RenderingWebGPU

6.13.1 vtkRenderingWebGPU - WebGPU backend for rendering

Description

This module contains the WebGPU native backend for RenderingCore. At the moment, only polygonal geometry can
be rendered in different representations with point/cell scalar mapped colors.

Available features

Here is a list of currently implemented features:

1. Polygonal geometry rendering with point, line and triangle primitives.

2. Point scalar mapped coloring of surfaces.

3. Cell scalar mapped coloring.

4. Draw actors with the actor representation = VTK_POINTS, VTK_WIREFRAME, VTK_SURFACE and VTK_SURFACE
with edge visibility.

5. Lighting based on VTK headlights and point/cell normals.

6. Point size adjustments.

7. Line width adjustments for wireframe and surface with edges.

8. vtkSDL2WebGPURenderWindow is a reference implementation of vtkWebGPURenderWindow that works on We-
bAssembly and desktop.

9. vtkXWebGPURenderWindow is an implementation of vtkWebGPURenderWindow that uses X11 for Linux desk-
top rendering.

10. Depth testing.

6.13. VTK::RenderingWebGPU 37

VTK

Future work

Since WebGPU is already an abstraction over graphics APIs, this module doesn’t create another level of ab-
straction. It uses WebGPU’s C++ flavor for it’s object-oriented API and RAII. There are helper classes in the
vtkWebGPUInternals... files for convenience and to make the bind group initialization code look clean.

A lot of work remains to be done. Selections, volume mappers, textures, dual-depth peeling, fancy lights, platform
native render windows are few that come to mind.

References

Here are some very interesting references to learn WebGPU from examples if you prefer code over spec.

1. https://toji.github.io/webgpu-gltf-case-study/ A case-study that slowly builds up an efficient gltf renderer in We-
bGPU using javascript. The author describes downfalls in certain methods and proposes alternative ways when
applicable.

2. https://github.com/samdauwe/webgpu-native-examples A curated list of single file examples if you want to see
how to do X with Y like constraints using WebGPU C API.

3. https://eliemichel.github.io/LearnWebGPU/index.html Similar to LearnOpenGL or the vulka-tutorial.com.
Walks you through getting a window, triangle, buffers, textures and 3D rendering. This tutorial has good coverage
and the author provides a simple to use WebGPU C++ distribution.

4. https://sotrh.github.io/learn-wgpu/ A very nice coverage of the beginner concepts of webgpu. This tutorial uses
wgpu.rs

5. https://alain.xyz/blog/raw-webgpu Another small tutorial that lets you break the ice with WebGPU and get comfy
with the concepts. This tutorial targets javascript API.

6. https://carmencincotti.com/2022-12-19/how-to-render-a-webgpu-triangle-series-part-three-video/ A detailed,
yet fun to read explanation of the swapchain and image presentation process. The author has several other
targeted posts on WebGPU concepts.

7. https://webgpu.rocks/ You want to look at the WebGPU API, but are afraid of reading the spec and do not want
to read C headers. This website presents the WebGPU API and WGSL summary in a fancy way with syntax
highlights.

Finally, for wgsl, the spec does a good job https://www.w3.org/TR/WGSL/

How to build VTK with Dawn (Highly experimental)

Things you’ll need:

1. git

2. depot_tools

This module uses Dawn-C++ WebGPU implementation when VTK is built outside emscripten. First grab Dawn and
follow their build instructions using gn, not CMake.

To build VTK with Dawn, you need to build Dawn at commit 3a00a9e5c4179d789cfe89ba09c329b57d39f947. Subse-
quent commits have changed the public API of Dawn to a great extent, making it incompatible with VTK. Dawn uses
the Chromium build system and dependency management so you need to install depot_tools and add it to the PATH.

Clone the repo as "dawn"
git clone https://dawn.googlesource.com/dawn dawn && cd dawn
git checkout 3a00a9e5c4

(continues on next page)

38 Chapter 6. Modules

https://toji.github.io/webgpu-gltf-case-study/
https://github.com/samdauwe/webgpu-native-examples
https://eliemichel.github.io/LearnWebGPU/index.html
http://vulka-tutorial.com
https://sotrh.github.io/learn-wgpu/
http://wgpu.rs
https://alain.xyz/blog/raw-webgpu
https://carmencincotti.com/2022-12-19/how-to-render-a-webgpu-triangle-series-part-three-video/
https://webgpu.rocks/
https://www.w3.org/TR/WGSL/
http://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up
https://dawn.googlesource.com/dawn/
https://dawn.googlesource.com/dawn.git/+show/3a00a9e5c4179d789cfe89ba09c329b57d39f947
http://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up

VTK

(continued from previous page)

Bootstrap the gclient configuration
cp scripts/standalone.gclient .gclient

Fetch external dependencies and toolchains with gclient
gclient sync

Build Dawn with gn and Ninja

It is important to set is_component_build=true. Otherwise the dawn native shared libraries will not be built.

mkdir -p out/Debug
gn gen out/Debug --target_cpu="x64" --args="is_component_build=true is_debug=true is_
→˓clang=true"
autoninja -C out/Debug

Configure and build VTK

$ cmake \
-S /path/to/vtk/src \
-B /path/to/vtk/build \
-GNinja \
-DVTK_ENABLE_WEBGPU=ON \
-DDAWN_SOURCE_DIR=/path/to/dawn/src \
-DDAWN_INCLUDE_DIR=/path/to/dawn/include \
-DDAWN_BINARY_DIR=/path/to/dawn/out/Debug \
-DVTK_BUILD_TESTING=ON

$ cmake --build

Run the WebGPU tests

These are not regression tested with image comparisons.

$./bin/vtkRenderingWebGPUCxxTests
Available tests:
0. TestCellScalarMappedColors
1. TestConesBenchmark
2. TestLineRendering
3. TestPointScalarMappedColors
4. TestSurfacePlusEdges
5. TestTheQuad
6. TestTheQuadPointRepresentation
7. TestTheQuadWireframeRepresentation
8. TestTheTriangle
9. TestTheTrianglePointRepresentation

10. TestTheTriangleWireframeRepresentation
(continues on next page)

6.13. VTK::RenderingWebGPU 39

VTK

(continued from previous page)

11. TestVertexRendering
12. TestWireframe

Run the Rendering Core tests

The RenderingCore vtk.module can be edited to link the unit tests with VTK::RenderingWebGPU module. After
uncommenting the module name under TEST_DEPENDS, rebuild and run the tests. Very few of these pass.

$ export VTK_GRAPHICS_BACKEND=WEBGPU
$./bin/vtkRenderingCoreCxxTests

6.14 VTK::WrappingPythonCore

6.14.1 Python Wrapper Core Classes

This directory provides the core support classes that are used by VTK’s Python wrappers. The classes can be split into
two broad categories: the PyVTK classes provide C APIs for Python types, while the vtkPython classes are C++ utility
classes.

The Python Classes

PyVTKObject

This defines APIs for creating and managing PyVTKClass objects, which are Python extension types that wrap
vtkObjectBase-derived classes, and PyVTKObject objects, which are instances of the these extension types.

PyVTKSpecialObject

Similarly, PyVTKSpecialType objects are Python extension types that wrap C++ classes that are not derived from
vtkObjectBase, and PyVTKSpecialObject wraps the instances. These object are reference counted on the Python side,
but not on the C++ side. In general they are lightweight objects that are cheap to copy.

PyVTKTemplate

These objects represent C++ class templates. The wrappers instantiate the templates over a limited set of template
parameters, and PyVTKTemplate is a container for the template instantiations. It is implemented as a dictionary that
maps template parameters to template instantiations.

40 Chapter 6. Modules

VTK

PyVTKEnum

This provides an API for managing subtypes of the Python int type that represent named C++ enum types.

PyVTKNamespace

This provides an API for managing subtypes of the Python module type that represent C++ namespaces.

PyVTKReference

Python does not support C++-style pass-by-reference, but pass-by-reference can be simulated by passing a typed con-
tainer whose contents can be modified. The PyVTKReference type defines such containers. Within Python, this type
can be accessed as vtkmodules.vtkCommonCore.reference.

PyVTKMethodDescriptor

In Python, a method descriptor is an object that customizes method lookup, specifically it customizes object.method
and class.method method access. The PyVTKMethodDescriptor customizes the access of PyVTKClass methods. It
handles bound method calls, unbound method calls, static method calls, and calls to overloaded methods.

PyVTKExtras

This one is not actually a class, it is a helper function that adds utility methods and types like the previously-mentioned
reference type to the vtkCommonCore module. Everything in this file becomes part of vtkCommonCore.

The C++ Classes

vtkPythonUtil

This is a singleton that keeps track of all the vtk-python extension modules that have been loaded, and all of the vtk-
python objects that have been instantiated. It contains all of the machinery that is needed for moving VTK objects from
C++ to Python and back again.

vtkPythonCommand

This is a subclass of vtkCommand that allows Python methods to be used as VTK observer callbacks.

vtkPythonArgs

When a method call is performed in the wrappers, vtkPythonArgs does the conversion of the arguments from Python
to C++, and it also converts the return value from C++ to Python.

6.14. VTK::WrappingPythonCore 41

VTK

vtkPythonOverload

When an overloaded method is called from Python, this class uses the method arguments to decide which overload to
use.

vtkPythonCompatibility

This is actually just a header, not a class. It contains macros that make it easier to write code that is compatible with
different versions of the Python C API.

vtkSmartPyObject

Whereas the other classes in this directory are for using VTK C++ objects through Python, this class is for using Python
objects through C++. This class is a C++ smart pointer that handles Python reference counting.

VTK library is a dynamic C++ toolkit built around the concept of “modules”. Each module may have dependencies to
other VTK module or external libraries.

Foundational dependencies have been wrapped into convenient “module”.

6.15 Enabling or Disabling Modules

To enable a module set

cmake -DVTK_MODULE_ENABLE_<module name>=WANT ...

during the configuration stage.

Disabling a module can be done as follows:

cmake -DVTK_MODULE_ENABLE_<module name>=DONT_WANT ...

Enabling a module may cause more to be enabled due to dependencies. For more details about the module infrastructure
in VTK see the Module System section.

6.16 Available Modules

Here is a complete list of the available vtk modules:

Module Name Description
VTK::AcceleratorsVTKmCore VTKm data structures
VTK::AcceleratorsVTKmDataModel VTKm data structures
VTK::AcceleratorsVTKmFilters VTKm filters and algorithms
VTK::ChartsCore Charts and plots
VTK::CommonArchive
VTK::CommonColor Color palette and named color support classes
VTK::CommonComputationalGeometry Parametric splines and curves
VTK::CommonCore The base VTK library

continues on next page

42 Chapter 6. Modules

VTK

Table 1 – continued from previous page
Module Name Description
VTK::CommonDataModel Core data types
VTK::CommonExecutionModel Core algorithms and execution
VTK::CommonMath Linear algebra types
VTK::CommonMisc Assorted utility classes
VTK::CommonPython
VTK::CommonSystem Filesystem and networking support
VTK::CommonTransforms Linear algebra transformations
VTK::DICOMParser
VTK::DomainsChemistry Algorithms used in chemistry
VTK::DomainsChemistryOpenGL2 OpenGL support for chemistry data
VTK::DomainsMicroscopy File readers for microscopy file formats
VTK::DomainsParallelChemistry Parallel versions of algorithms used in chemistry
VTK::FiltersAMR Adaptive mesh refinement filters and algorithms
VTK::FiltersCellGrid Filters and cell-types for vtkCellGrid objects
VTK::FiltersCore Common filters for VTK data types
VTK::FiltersExtraction Filters for selecting subsets data
VTK::FiltersFlowPaths Filters and algorithms for streamlines
VTK::FiltersGeneral Filters for transforming data
VTK::FiltersGeneric Filters for selecting subsets of data at arbitrary points
VTK::FiltersGeometry Geometric transformation filters
VTK::FiltersGeometryPreview Filters for creating a preview of the geometry of a dataset.
VTK::FiltersHybrid
VTK::FiltersHyperTree Hypertree filters and algorithms
VTK::FiltersImaging Filters and algorithms for images
VTK::FiltersModeling
VTK::FiltersOpenTURNS
VTK::FiltersParallel
VTK::FiltersParallelDIY2
VTK::FiltersParallelFlowPaths
VTK::FiltersParallelGeometry
VTK::FiltersParallelImaging
VTK::FiltersParallelMPI
VTK::FiltersParallelStatistics
VTK::FiltersParallelVerdict
VTK::FiltersPoints
VTK::FiltersProgrammable
VTK::FiltersPython
VTK::FiltersReduction
VTK::FiltersReebGraph
VTK::FiltersSMP
VTK::FiltersSelection
VTK::FiltersSources
VTK::FiltersStatistics
VTK::FiltersTemporal
VTK::FiltersTensor Filters for tensor manipulation
VTK::FiltersTexture
VTK::FiltersTopology
VTK::FiltersVerdict
VTK::GUISupportMFC
VTK::GUISupportQt

continues on next page

6.16. Available Modules 43

VTK

Table 1 – continued from previous page
Module Name Description
VTK::GUISupportQtQuick
VTK::GUISupportQtSQL
VTK::GeovisCore
VTK::GeovisGDAL
VTK::IOADIOS2
VTK::IOAMR
VTK::IOAlembic
VTK::IOAsynchronous
VTK::IOCGNSReader
VTK::IOCONVERGECFD
VTK::IOCatalystConduit Catalyst implementation for VTK, including Conduit to/from VTK conversion.
VTK::IOCellGrid
VTK::IOCesium3DTiles
VTK::IOChemistry File readers used in chemistry
VTK::IOCityGML
VTK::IOCore
VTK::IOERF
VTK::IOEnSight
VTK::IOEngys Reader for Engys files
VTK::IOExodus
VTK::IOExport
VTK::IOExportGL2PS
VTK::IOExportPDF
VTK::IOFDS A module for handling I/O for the Fire Dynamics Simulator (FDS) output format.
VTK::IOFFMPEG
VTK::IOFLUENTCFF Reader for the FluentCFF file format
VTK::IOFides The base Fides reader library
VTK::IOGDAL
VTK::IOGeoJSON
VTK::IOGeometry
VTK::IOH5Rage
VTK::IOH5part
VTK::IOHDF
VTK::IOIOSS
VTK::IOImage
VTK::IOImport
VTK::IOInfovis
VTK::IOLAS
VTK::IOLSDyna
VTK::IOLegacy
VTK::IOMINC
VTK::IOMPIImage
VTK::IOMPIParallel
VTK::IOMotionFX
VTK::IOMovie
VTK::IOMySQL
VTK::IONetCDF
VTK::IOOCCT OCCT bridge for VTK, see README for more info
VTK::IOODBC
VTK::IOOMF The base OMF Reader library

continues on next page

44 Chapter 6. Modules

VTK

Table 1 – continued from previous page
Module Name Description
VTK::IOOggTheora
VTK::IOOpenVDB
VTK::IOPDAL
VTK::IOPIO
VTK::IOPLY
VTK::IOParallel
VTK::IOParallelExodus
VTK::IOParallelLSDyna
VTK::IOParallelNetCDF
VTK::IOParallelXML
VTK::IOParallelXdmf3
VTK::IOPostgreSQL
VTK::IOSQL
VTK::IOSegY
VTK::IOTRUCHAS
VTK::IOTecplotTable
VTK::IOVPIC
VTK::IOVeraOut
VTK::IOVideo
VTK::IOXML
VTK::IOXMLParser
VTK::IOXdmf2
VTK::IOXdmf3
VTK::ImagingColor
VTK::ImagingCore
VTK::ImagingFourier
VTK::ImagingGeneral
VTK::ImagingHybrid
VTK::ImagingMath
VTK::ImagingMorphological
VTK::ImagingOpenGL2
VTK::ImagingSources
VTK::ImagingStatistics
VTK::ImagingStencil
VTK::InfovisBoost
VTK::InfovisBoostGraphAlgorithms
VTK::InfovisCore
VTK::InfovisLayout
VTK::InteractionImage
VTK::InteractionStyle
VTK::InteractionWidgets
VTK::Java
VTK::ParallelCore
VTK::ParallelDIY DIY utility classes to simplify DIY-based filters
VTK::ParallelMPI
VTK::ParallelMPI4Py
VTK::Python
VTK::PythonContext2D
VTK::PythonInterpreter
VTK::RenderingAnari

continues on next page

6.16. Available Modules 45

VTK

Table 1 – continued from previous page
Module Name Description
VTK::RenderingAnnotation
VTK::RenderingCellGrid
VTK::RenderingContext2D
VTK::RenderingContextOpenGL2
VTK::RenderingCore
VTK::RenderingExternal
VTK::RenderingFFMPEGOpenGL2
VTK::RenderingFreeType
VTK::RenderingFreeTypeFontConfig
VTK::RenderingGL2PSOpenGL2
VTK::RenderingHyperTreeGrid
VTK::RenderingImage
VTK::RenderingLICOpenGL2
VTK::RenderingLOD
VTK::RenderingLabel
VTK::RenderingMatplotlib
VTK::RenderingOpenGL2
VTK::RenderingOpenVR
VTK::RenderingOpenXR
VTK::RenderingOpenXRRemoting
VTK::RenderingParallel
VTK::RenderingParallelLIC
VTK::RenderingQt
VTK::RenderingRayTracing
VTK::RenderingSceneGraph
VTK::RenderingTk
VTK::RenderingUI
VTK::RenderingVR
VTK::RenderingVolume
VTK::RenderingVolumeAMR
VTK::RenderingVolumeOpenGL2
VTK::RenderingVtkJS
VTK::RenderingWebGPU
VTK::RenderingZSpace
VTK::SerializationManager
VTK::TestingCore
VTK::TestingDataModel
VTK::TestingGenericBridge
VTK::TestingIOSQL
VTK::TestingRendering
VTK::UtilitiesBenchmarks
VTK::ViewsContext2D
VTK::ViewsCore
VTK::ViewsInfovis
VTK::ViewsQt
VTK::WebAssembly
VTK::WebCore
VTK::WebGLExporter
VTK::WebPython
VTK::WrappingPythonCore

continues on next page

46 Chapter 6. Modules

VTK

Table 1 – continued from previous page
Module Name Description
VTK::catalyst
VTK::kwiml
VTK::metaio
VTK::mpi
VTK::octree
VTK::opengl
VTK::vtksys

6.16. Available Modules 47

VTK

48 Chapter 6. Modules

CHAPTER

SEVEN

BUILDING

This page describes how to build and install VTK. It covers building for development, on both Unix-type systems
(Linux, HP-UX, Solaris, macOS), and Windows. Note that Unix-like environments such as Cygwin and MinGW are
not officially supported. However, patches to fix problems with these platforms will be considered for inclusion. It is
recommended that users which require VTK to work on these platforms to submit nightly testing results for them.

A full-featured build of VTK depends on several open source tools and libraries such as Python, Qt, CGNS, HDF5,
etc. Some of these are included in the VTK source itself (e.g., HDF5), while others are expected to be present on the
machine on which VTK is being built (e.g., Python, Qt).

VTK supports all of the common generators supported by CMake. The Ninja, Makefiles, and Visual Studio generators
are the most well-tested however.

Note that VTK does not support in-source builds, so you must have a build tree that is not the source tree.

7.1 Obtaining the sources

There are two approaches:

Release Download

1. Download the source release VTK-X.Y.Z.tar.gz from https://vtk.org/download/.

2. Create a folder for VTK.

3. Extract the contents of the VTK folder in the downloaded archive to the subfolder called source

Git Clone

To obtain VTK’s sources locally, clone the VTK repository using Git.

Open Git Bash on Windows or a terminal on Linux and macOS and execute the following:

mkdir -p ~/vtk
git clone --recursive https://gitlab.kitware.com/vtk/vtk.git ~/vtk/source

To use the latest features being developed or to make changes and contribute to VTK, download the source using Git
Clone.

49

https://vtk.org/download/
https://git-scm.org

VTK

7.2 Prerequisites

VTK only requires a few packages in order to build in general, however specific features may require additional packages
to be provided to VTK’s build configuration.

Required:

• CMake

– Version 3.12 or newer, however, the latest version is always recommended. If the system package man-
agement utilities do not offer cmake or if the offered version is too old Precompiled binaries available on
CMake’s download page.

• Supported compiler

– GCC 4.8 or newer

– Clang 3.3 or newer

– Apple Clang 7.0 (from Xcode 7.2.1) or newer

– Microsoft Visual Studio 2015 or newer

– Intel 14.0 or newer

7.2.1 Optional Additions

• ffmpeg When the ability to write .avi files is desired, and writing these files is not supported by the OS, VTK
can use the ffmpeg library. This is generally true for Unix-like operating systems. Source code for ffmpeg can
be obtained from the website.

• MPI To run VTK in parallel, an MPI implementation is required. If an MPI implementation that exploits special
interconnect hardware is provided on your system, we suggest using it for optimal performance. Otherwise, on
Linux/Mac, we suggest either OpenMPI or MPICH. On Windows, Microsoft MPI is required.

• Python In order to use scripting, Python is required. The minimum supported version is 3.4. The instructions are
using the system Python. On Ubuntu/Debian the required package is python3-dev. If you use a different Python
implementation or a virtual environment make sure the environment you use is activated. On Ubuntu/Debian the
required package for creating virtual environments is python3-venv.

• Qt5 VTK uses Qt as its GUI library (if the relevant modules are enabled). Precompiled binaries are available on
Qt’s website. Note that on Windows, the compiler used for building VTK must match the compiler version used
to build Qt. Version 5.9 or newer is required.

• OSMesa Off-screen Mesa can be used as a software-renderer for running VTK on a server without hardware
OpenGL acceleration. This is usually available in system packages on Linux. For example, the libosmesa6-dev
package on Debian and Ubuntu. However, for older machines, building a newer version of Mesa is likely neces-
sary for bug fixes and support. Its source and build instructions can be found on its website.

50 Chapter 7. Building

https://cmake.org
https://cmake.org/download
https://ffmpeg.org
https://www.mcs.anl.gov/research/projects/mpi
https://www.open-mpi.org
https://www.mpich.org
https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://python.org
https://download.qt.io/official_releases/qt
https://www.mesa3d.org

VTK

7.3 Creating the Build Environment

Windows

• Install CMake

• Install Visual Studio Community Edition

• During installation select the “desktop development with C++” workload.

• Use “x64 Native Tools Command Prompt” for the installed Visual Studio version to configure with CMake and
to build with ninja.

• Get ninja. Unzip the binary and put it in PATH. Note that newer Visual Studio releases come with a version of
ninja already and should already exist in PATH within the command prompt.

Linux (Ubuntu/Debian)

Install the following packages:

$ sudo apt install \
build-essential \
cmake \
cmake-curses-gui \
mesa-common-dev \
mesa-utils \
freeglut3-dev \
ninja-build

macOS

• Install CMake

• Install XCode

• Ensure XCode command line tools are installed:

xcode-select --install

Note: ninja is a more efficient alternative to Makefiles or Visual Studio solution files. The speed increase is the
most noticeable when doing incremental build.

7.4 Configure

In order to build, CMake requires two steps, configure and build. VTK itself does not support what are known as
in-source builds, so the first step is to create a build directory.

7.3. Creating the Build Environment 51

https://visualstudio.microsoft.com/vs
https://ninja-build.org

VTK

Windows (Ninja)

Open “x64 Native Tools Command Prompt” for the installed Visual Studio:

ccmake -GNinja -S %HOMEPATH%\vtk\source -B %HOMEPATH%\vtk\build

Note that CMake GUI must also be launched from the “Native Tools Command Prompt”.

Windows (Visual Studio)

Use CMake to generate a Visual Studio solution file (.sln).

1. Open CMake GUI, either by typing cmake-gui on the command prompt or from the start-menu.

2. Enter the source and build directories

3. Click [Configure]

4. You will now get a selection screen in which you can specify your “generator”. Select the one you need.

5. We are now presented with a few options that can be turned on or off as desired.

6. Click [Configure] to apply the changes.

7. Click [Generate]. This will populate the “build” sub-folder.

8. Finally, click [Open Project] to open the generated solution in Visual Studio.

Linux/macOS

mkdir -p ~/vtk/build
cd ~/vtk/build
ccmake -GNinja ../path/to/vtk/source

The parameter -GNinja may be skipped to use the default generator (e.g Unix Makefiles).

Missing dependencies

CMake may not find all dependencies automatically in all cases. The steps needed to find any given package depends
on the package itself.

For general assistance, please see the documentation for find_package’s search procedure and the relevant Find
module (as available).

Hint: Different features can be enabled/disabled by setting the Build Settings during the configure stage.

52 Chapter 7. Building

https://cmake.org/cmake/help/latest/command/find_package.html#search-procedure
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find-modules
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find-modules

VTK

7.5 Building

To build VTK:

Windows (Ninja)

cmake --build %HOMEPATH%\vtk\build --config Release

Windows (Visual Studio)

Open the generated solution file.

1. Set the configuration to “Release”

2. On the menu bar, choose Build, and then choose Build Solution.

Linux/macOS

cmake --build ~/vtk/build

7.5.1 Build Settings

VTK has a number of settings available for its build. The common variables to modify include:

• BUILD_SHARED_LIBS (default ON): If set, shared libraries will be built. This is usually what is wanted.

• VTK_USE_CUDA (default OFF): Whether CUDA support will be available or not.

• VTK_USE_MPI (default OFF): Whether MPI support will be available or not.

• VTK_WRAP_PYTHON (default OFF; requires VTK_ENABLE_WRAPPING): Whether Python support will be available
or not.

Less common, but variables which may be of interest to some:

• VTK_BUILD_EXAMPLES (default OFF): If set, VTK’s example code will be added as tests to the VTK test suite.

• VTK_ENABLE_LOGGING (default ON): If set, enhanced logging will be enabled.

• VTK_LOGGING_TIME_PRECISION (default 3; requires VTK_ENABLE_LOGGING): Change the precision of times
output when VTK_ENABLE_LOGGING is on.

• VTK_BUILD_TESTING (default OFF): Whether to build tests or not. Valid values are OFF (no testing), WANT
(enable tests as possible), and ON (enable all tests; may error out if features otherwise disabled are required by
test code).

• VTK_ENABLE_KITS (default OFF; requires BUILD_SHARED_LIBS): Compile VTK into a smaller set of libraries.
Can be useful on platforms where VTK takes a long time to launch due to expensive disk access.

• VTK_ENABLE_WRAPPING (default ON): Whether any wrapping support will be available or not.

• VTK_WRAP_JAVA (default OFF; requires VTK_ENABLE_WRAPPING): Whether Java support will be available or not.

• VTK_WRAP_SERIALIZATION (default OFF; requires VTK_ENABLE_WRAPPING): Whether serialization code will
be auto generated or not.

7.5. Building 53

https://developer.nvidia.com/cuda-zone
https://www.mcs.anl.gov/research/projects/mpi

VTK

• VTK_SMP_IMPLEMENTATION_TYPE (default Sequential): Set which SMPTools will be implemented by de-
fault. Must be either Sequential, STDThread, OpenMP or TBB. The backend can be changed at runtime if the
desired backend has his option VTK_SMP_ENABLE_<backend_name> set to ON.

• VTK_ENABLE_CATALYST (default OFF): Enable catalyst-dependent modules including the VTK catalyst imple-
mentation. Depends on an external Catalyst.

OpenGL-related options:

Note that if OpenGL is used, there must be a “sensible” setup. Sanity checks exist to make sure a broken build is not
being made. Essentially:

• at least one rendering environment (X, Cocoa, SDL2, OSMesa, EGL, etc.) must be available;

• OSMesa and EGL conflict with each other; and

• OSMesa only supports off-screen rendering and is therefore incompatible with Cocoa, X, and SDL2.

– VTK_USE_COCOA (default ON; requires macOS): Use Cocoa for render windows.

– VTK_USE_X (default ON for Unix-like platforms except macOS, iOS, and Emscripten, OFF otherwise): Use
X for render windows.

– VTK_USE_SDL2 (default ON for Emscripten, OFF otherwise): Use SDL2 for render windows.

– VTK_OPENGL_HAS_OSMESA (default OFF): Use to indicate that the OpenGL library being used supports
offscreen Mesa rendering (OSMesa).

– VTK_OPENGL_USE_GLES (default OFF; forced ON for Android): Whether to use OpenGL ES API for
OpenGL or not.

– VTK_OPENGL_HAS_EGL (default ON for Android, OFF otherwise): Use to indicate that the OpenGL library
being used supports EGL context management.

– VTK_DEFAULT_EGL_DEVICE_INDEX (default 0; requires VTK_OPENGL_HAS_EGL): The default EGL device
to use for EGL render windows.

– VTK_ENABLE_WEBGPU (default OFF; required if using Emscripten): Enable WebGPU rendering support.

– VTK_DEFAULT_RENDER_WINDOW_OFFSCREEN (default OFF): Whether to default to offscreen render win-
dows by default or not.

– VTK_USE_OPENGL_DELAYED_LOAD (default OFF; requires Windows and CMake >= 3.13): If set, use de-
layed loading to load the OpenGL DLL at runtime.

– VTK_DEFAULT_RENDER_WINDOW_HEADLESS (default OFF; only available if applicable): Default to a head-
less render window.

– VTK_USE_WIN32_OPENGL (default ON for Windows, forced OFF otherwise): Use Win32 APIs for render
windows (typically only relevant for OSMesa on Windows builds).

More advanced options:

• VTK_ABI_NAMESPACE_NAME (default <DEFAULT> aka ""): If set, VTK will wrap all VTK public sym-
bols in an inline namespace <VTK_ABI_NAMESPACE_NAME> to allow runtime co-habitation with different
VTK versions. Some C ABIs are also wrapped in this namespace using macro expansion #define c_abi
VTK_ABI_NAMESPACE_MANGLE(c_abi)

• VTK_ABI_NAMESPACE_ATTRIBUTES (default <DEFAULT> aka ""): If set, VTK will inject these at-
tributes into the inline namespace. i.e. inline namespace <VTK_ABI_NAMESPACE_ATTRIBUTES>
<VTK_ABI_NAMESPACE_NAME> The VTK_ABI_NAMESPACE_ATTRIBUTES is only applied the the APIs inside of
the namespace, not to C APIs.

• VTK_BUILD_DOCUMENTATION (default OFF): If set, VTK will build its API documentation using Doxygen.

54 Chapter 7. Building

VTK

• VTK_BUILD_SPHINX_DOCUMENTATION (default OFF): If set, VTK will build its sphinx documentation website.

• VTK_BUILD_ALL_MODULES (default OFF): If set, VTK will enable all modules not disabled by other features.

• VTK_ENABLE_REMOTE_MODULES (default ON): If set, VTK will try to build remote modules (the Remote direc-
tory). If unset, no remote modules will build.

• VTK_ENABLE_EXTRA_BUILD_WARNINGS (default OFF; requires CMake >= 3.19): If set, VTK will enable addi-
tional build warnings.

• VTK_ENABLE_EXTRA_BUILD_WARNINGS_EVERYTHING (default OFF; requires
VTK_ENABLE_EXTRA_BUILD_WARNINGS and -Weverything support): If set, VTK will enable all build
warnings (with some explicitly turned off).

• VTK_USE_EXTERNAL (default OFF): Whether to prefer external third party libraries or the versions VTK’s source
contains.

• VTK_TARGET_SPECIFIC_COMPONENTS (default OFF): Whether to install files into target-specific components
(<TARGET>-runtime, <TARGET>-development, etc.) or general components (runtime, development, etc.)

• VTK_VERSIONED_INSTALL (default ON): Whether to add version numbers to VTK’s include directories and li-
brary names in the install tree.

• VTK_CUSTOM_LIBRARY_SUFFIX (default depends on VTK_VERSIONED_INSTALL): The custom suffix for li-
braries built by VTK. Defaults to either an empty string or X.Y where X and Y are VTK’s major and minor
version components, respectively.

• VTK_INSTALL_SDK (default ON): If set, VTK will install its headers, CMake API, etc. into its install tree for use.

• VTK_FORBID_DOWNLOADS (default OFF): If set, VTK will error on any network activity required during the build
(namely remote modules and testing data).

• VTK_DATA_STORE (default is complicated): If set or detected, points to where VTK external data will be stored
or looked up.

• VTK_DATA_EXCLUDE_FROM_ALL (default is complicated, but generally OFF): If set or detected, data downloads
will only happen upon explicit request rather than through the build’s default target.

• VTK_RELOCATABLE_INSTALL (default ON): If set, the install tree will be relocatable to another path. If unset,
the install tree may be tied to the build machine with absolute paths, but finding dependencies in non-standard
locations may require work without passing extra information when consuming VTK.

• VTK_UNIFIED_INSTALL_TREE (default OFF): If set, the install tree is stipulated to be a unified install tree of
VTK and all of its dependencies; a unified tree usually simplifies things including, but not limited to, the Python
module paths, library search paths, and plugin searching. This option is irrelevant if a relocatable install is
requested as such setups assume that dependencies are set up either via a unified tree or some other mechanism
such as modules).

• VTK_ENABLE_SANITIZER (default OFF): Whether to enable sanitization of the VTK codebase or not.

• VTK_SANITIZER (default address; requires VTK_ENABLE_SANITIZER): The sanitizer to use.

• VTK_USE_LARGE_DATA (default OFF; requires VTK_BUILD_TESTING): Whether to enable tests which use “large”
data or not (usually used to reduce the amount of data downloading required for the test suite).

• VTK_USE_HIP (default OFF; requires CMAKE >= 3.21 and NOT VTK_USE_CUDA) Whether HIP support will be
available or not.

• VTK_LEGACY_REMOVE (default OFF): If set, VTK will disable legacy, deprecated APIs.

• VTK_LEGACY_SILENT (default OFF; requires VTK_LEGACY_REMOVE to be OFF): If set, usage of legacy, deprecated
APIs will not cause warnings.

7.5. Building 55

https://en.wikipedia.org/wiki/ROCm

VTK

• VTK_USE_FUTURE_CONST (default OFF): If set, the VTK_FUTURE_CONST macro expands to const; otherwise it
expands to nothing. This is used to incrementally add more const correctness to the codebase while making it
opt-in for backwards compatibility.

• VTK_USE_FUTURE_BOOL (default OFF): If set, the vtkTypeBool typedef is defined to bool; otherwise it’s int.
VTK was created before C++ even had bool, and so its oldest code used int. Set to ON to opt in to using more
real bools, set to OFF only if required for backwards compatibility.

• VTK_USE_TK (default OFF; requires VTK_WRAP_PYTHON): If set, VTK will enable Tkinter support for VTK wid-
gets.

• VTK_BUILD_COMPILE_TOOLS_ONLY (default OFF): If set, VTK will compile just its compile tools for use in a
cross-compile build.

• VTK_SERIAL_TESTS_USE_MPIEXEC (default OFF): Used on HPC to run serial tests on compute nodes. If
set, it prefixes serial tests with “${MPIEXEC_EXECUTABLE}” “${MPIEXEC_NUMPROC_FLAG}” “1”
${MPIEXEC_PREFLAGS}

• VTK_WINDOWS_PYTHON_DEBUGGABLE (default OFF): Set to ON if using a debug build of Python.

• VTK_WINDOWS_PYTHON_DEBUGGABLE_REPLACE_SUFFIX (default OFF): Set to ON to use just a _d suffix for
Python modules.

• VTK_BUILD_PYI_FILES (default OFF): Set to ON to build .pyi type hint files for VTK’s Python interfaces.

• VTK_DLL_PATHS (default "" or VTK_DLL_PATHS from the environment): If set, these paths will be added via
Python 3.8’s os.add_dll_directorymechanism in order to find dependent DLLs when loading VTK’s Python
modules. Note that when using the variable, paths are in CMake form (using /) and in the environment are a
path list in the platform’s preferred format.

• VTK_ENABLE_VR_COLLABORATION (default OFF): If ON, includes support for multi client VR collaboration. Re-
quires libzmq and cppzmq external libraries.

• VTK_SMP_ENABLE_<backend_name> (default OFF if needs an external library otherwise ON): If set,
builds with the specified SMPTools backend implementation that can be changed on runtime with
VTK_SMP_BACKEND_IN_USE environment variable.

• VTK_USE_VIDEO_FOR_WINDOWS (default OFF; requires Windows): Enable the vtkAVIWriter class in the
VTK::IOMovie module.

• VTK_USE_VIDEO_FOR_WINDOWS_CAPTURE (default OFF; requires Windows): Enable the
vtkWin32VideoSource class in the VTK::IOVideo module.

• VTK_USE_MICROSOFT_MEDIA_FOUNDATION (default OFF; requires Windows): Enable the vtkMP4Writer class
in the VTK::IOMovie module.

• VTK_USE_64BIT_TIMESTAMPS (default OFF; forced on for 64-bit builds): Build with 64-bit vtkMTimeType.

• VTK_USE_64BIT_IDS (default OFF for 32-bit builds; ON for 64-bit builds): Whether vtkIdType should be 32-bit
or 64-bit.

• VTK_DEBUG_LEAKS (default OFF): Whether VTK will report leaked vtkObject instances at process destruction
or not.

• VTK_DEBUG_RANGE_ITERATORS (default OFF; requires a Debug build): Detect errors with for-range iterators
in VTK (note that this is very slow).

• VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS (default OFF; requires NOT VTK_DEBUG_RANGE_ITERATORS):
Optimize for-range array iterators even in Debug builds.

• VTK_ALL_NEW_OBJECT_FACTORY (default OFF): If ON, classes using vtkStandardNewMacro will use
vtkObjectFactoryNewMacro allowing overrides to be available even when not explicitly requested through
vtkObjectFactoryNewMacro or vtkAbstractObjectFactoryNewMacro.

56 Chapter 7. Building

VTK

• VTK_ENABLE_VTKM_OVERRIDES (default OFF): If ON, enables factory override of certain VTK filters by their
VTK-m counterparts. There is also a runtime switch that can be used to enable/disable the overrides at run-time
(on by default). It can be accessed using the static function vtkmFilterOverrides::SetEnabled(bool).

• VTK_GENERATE_SPDX (default OFF): If ON, SPDX file will be generated at build time and installed for each
module and third party, in order to be able to create a SBOM. See SPDX files generation and SPDX & SBOM for
more info.

• VTK_ANARI_ENABLE_NVTX (default OFF; requires CUDA Toolkit): If ON, enables the NVIDIA Tools Exten-
sion Library (NVTX) for profiling the ANARI rendering code and visualizing these events in tools like NSight
Systems.

vtkArrayDispatch related options:

The VTK_DISPATCH_<array_type>_ARRAYS options (default OFF for all but AOS) enable the specified type of array
to be included in a dispatch type list. Explicit arrays (such as AOS, SOA, Typed, and implicit arrays) are included
in the vtkArrayDispatchTypeList.h The implicit array framework is included in the CommonCore module. The
following array types currently exist for use with the VTK dispatch mechanism:

• VTK_DISPATCH_AOS_ARRAYS (default ON): includes dispatching for the commonly used “array-of-structure”
ordered arrays derived from vtkAOSDataArrayTemplate

• VTK_DISPATCH_SOA_ARRAYS (default OFF): includes dispatching for “structure-of-array” ordered arrays derived
from vtkSOADataArrayTemplate

• VTK_DISPATCH_TYPED_ARRAYS (default OFF): includes dispatching for arrays derived from
vtkTypedDataArray

• VTK_DISPATCH_AFFINE_ARRAYS (default OFF): includes dispatching for linearly varying vtkAffineArrays as
part of the implicit array framework

• VTK_DISPATCH_CONSTANT_ARRAYS (default OFF): includes dispatching for constant arrays
vtkConstantArray as part of the implicit array framework

• VTK_DISPATCH_STD_FUNCTION_ARRAYS (default OFF): includes dispatching for arrays with an
std::function backend vtkStdFunctionArray as part of the implicit array framework

The outlier in terms of dispatch support is the family of arrays derived from vtkScaledSOADataArrayTemplate
which are automatically included in dispatch when built setting the VTK_BUILD_SCALED_SOA_ARRAYS.

Warning: Adding increasing numbers of arrays in the dispatch mechanism can greatly slow down compile times.

The VTK module system provides a number of variables to control modules which are not otherwise controlled by the
other options provided.

• VTK_MODULE_USE_EXTERNAL_<name> (default depends on VTK_USE_EXTERNAL): Use an external source for
the named third-party module rather than the copy contained within the VTK source tree.

Warning: Activating this option within an interactive cmake configuration (i.e. ccmake, cmake-gui) could
end up finding libraries in the standard locations rather than copies in non-standard locations.

It is recommended to pass the variables necessary to find the intended external package to the first config-
ure to avoid finding unintended copies of the external package. The variables which matter depend on the
package being found, but those ending with _LIBRARY and _INCLUDE_DIR as well as the general CMake
find_package variables ending with _DIR and _ROOT are likely candidates.

Example:

ccmake -D HDF5_ROOT:PATH=/home/user/myhdf5 ../vtk/sources

7.5. Building 57

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

VTK

• VTK_MODULE_ENABLE_<name> (default DEFAULT): Change the build settings for the named module. Valid values
are those for the module system’s build settings (see below).

• VTK_GROUP_ENABLE_<name> (default DEFAULT): Change the default build settings for modules belonging to
the named group. Valid values are those for the module system’s build settings (see below).

For variables which use the module system’s build settings, the valid values are as follows:

• YES: Require the module to be built.

• WANT: Build the module if possible.

• DEFAULT: Use the settings by the module’s groups and VTK_BUILD_ALL_MODULES.

• DONT_WANT: Don’t build the module unless required as a dependency.

• NO: Do not build the module.

If any YES module requires a NO module, an error is raised.

58 Chapter 7. Building

CHAPTER

EIGHT

API

8.1 C++

Reference documentation for VTK can be found in the Doxygen Manual.

8.2 Python

8.2.1 Native Python documentation

Python-style documentation is available for the following packages:

vtkmodules

Currently, this package is experimental and may change in the future.

Subpackages

vtkmodules.util

Utility modules for the VTK-Python wrappers.

Submodules

vtkmodules.util.vtkImageExportToArray

vtkImageExportToArray - a NumPy front-end to vtkImageExport

This class converts a VTK image to a numpy array. The output array will always have 3 dimensions (or 4, if the image
had multiple scalar components).

To use this class, you must have numpy installed (http://numpy.scipy.org)

Methods

SetInputConnection(vtkAlgorithmOutput) – connect to VTK image pipeline SetInputData(vtkImageData) – set an
vtkImageData to export GetArray() – execute pipeline and return a numpy array

Methods from vtkImageExport

59

https://vtk.org/doc/nightly/html/
http://numpy.scipy.org

VTK

GetDataExtent() GetDataSpacing() GetDataOrigin()

Module Contents

Classes

vtkImageExportToArray

API

class vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray

Initialization

__typeDict

None

__sizeDict

None

SetConvertUnsignedShortToInt(yesno)

GetConvertUnsignedShortToInt()

ConvertUnsignedShortToIntOn()

ConvertUnsignedShortToIntOff()

SetInputConnection(input)

SetInputData(input)

GetInput()

GetArray()

GetDataExtent()

GetDataSpacing()

GetDataOrigin()

vtkmodules.util.colors

Module Contents

Data

60 Chapter 8. API

VTK

antique_white
azure
bisque
blanched_almond
cornsilk
eggshell
floral_white
gainsboro
ghost_white
honeydew
ivory
lavender
lavender_blush
lemon_chiffon
linen
mint_cream
misty_rose
moccasin
navajo_white
old_lace
papaya_whip
peach_puff
seashell
snow
thistle
titanium_white
wheat
white
white_smoke
zinc_white
cold_grey
dim_grey
grey
light_grey
slate_grey
slate_grey_dark
slate_grey_light
warm_grey
black
ivory_black
lamp_black
alizarin_crimson
brick
cadmium_red_deep
coral
coral_light
deep_pink
english_red
firebrick
geranium_lake
hot_pink
indian_red

continues on next page

8.2. Python 61

VTK

Table 2 – continued from previous page
light_salmon
madder_lake_deep
maroon
pink
pink_light
raspberry
red
rose_madder
salmon
tomato
venetian_red
beige
brown
brown_madder
brown_ochre
burlywood
burnt_sienna
burnt_umber
chocolate
deep_ochre
flesh
flesh_ochre
gold_ochre
greenish_umber
khaki
khaki_dark
light_beige
peru
rosy_brown
raw_sienna
raw_umber
sepia
sienna
saddle_brown
sandy_brown
tan
van_dyke_brown
cadmium_orange
cadmium_red_light
carrot
dark_orange
mars_orange
mars_yellow
orange
orange_red
yellow_ochre
aureoline_yellow
banana
cadmium_lemon
cadmium_yellow
cadmium_yellow_light
gold

continues on next page

62 Chapter 8. API

VTK

Table 2 – continued from previous page
goldenrod
goldenrod_dark
goldenrod_light
goldenrod_pale
light_goldenrod
melon
naples_yellow_deep
yellow
yellow_light
chartreuse
chrome_oxide_green
cinnabar_green
cobalt_green
emerald_green
forest_green
green
green_dark
green_pale
green_yellow
lawn_green
lime_green
mint
olive
olive_drab
olive_green_dark
permanent_green
sap_green
sea_green
sea_green_dark
sea_green_medium
sea_green_light
spring_green
spring_green_medium
terre_verte
viridian_light
yellow_green
aquamarine
aquamarine_medium
cyan
cyan_white
turquoise
turquoise_dark
turquoise_medium
turquoise_pale
alice_blue
blue
blue_light
blue_medium
cadet
cobalt
cornflower
cerulean

continues on next page

8.2. Python 63

VTK

Table 2 – continued from previous page
dodger_blue
indigo
manganese_blue
midnight_blue
navy
peacock
powder_blue
royal_blue
slate_blue
slate_blue_dark
slate_blue_light
slate_blue_medium
sky_blue
sky_blue_deep
sky_blue_light
steel_blue
steel_blue_light
turquoise_blue
ultramarine
blue_violet
cobalt_violet_deep
magenta
orchid
orchid_dark
orchid_medium
permanent_red_violet
plum
purple
purple_medium
ultramarine_violet
violet
violet_dark
violet_red
violet_red_medium
violet_red_pale

API

vtkmodules.util.colors.antique_white

(0.9804, 0.9216, 0.8431)

vtkmodules.util.colors.azure

(0.9412, 1.0, 1.0)

vtkmodules.util.colors.bisque

(1.0, 0.8941, 0.7686)

vtkmodules.util.colors.blanched_almond

(1.0, 0.9216, 0.8039)

vtkmodules.util.colors.cornsilk

(1.0, 0.9725, 0.8627)

64 Chapter 8. API

VTK

vtkmodules.util.colors.eggshell

(0.99, 0.9, 0.79)

vtkmodules.util.colors.floral_white

(1.0, 0.9804, 0.9412)

vtkmodules.util.colors.gainsboro

(0.8627, 0.8627, 0.8627)

vtkmodules.util.colors.ghost_white

(0.9725, 0.9725, 1.0)

vtkmodules.util.colors.honeydew

(0.9412, 1.0, 0.9412)

vtkmodules.util.colors.ivory

(1.0, 1.0, 0.9412)

vtkmodules.util.colors.lavender

(0.902, 0.902, 0.9804)

vtkmodules.util.colors.lavender_blush

(1.0, 0.9412, 0.9608)

vtkmodules.util.colors.lemon_chiffon

(1.0, 0.9804, 0.8039)

vtkmodules.util.colors.linen

(0.9804, 0.9412, 0.902)

vtkmodules.util.colors.mint_cream

(0.9608, 1.0, 0.9804)

vtkmodules.util.colors.misty_rose

(1.0, 0.8941, 0.8824)

vtkmodules.util.colors.moccasin

(1.0, 0.8941, 0.7098)

vtkmodules.util.colors.navajo_white

(1.0, 0.8706, 0.6784)

vtkmodules.util.colors.old_lace

(0.9922, 0.9608, 0.902)

vtkmodules.util.colors.papaya_whip

(1.0, 0.9373, 0.8353)

vtkmodules.util.colors.peach_puff

(1.0, 0.8549, 0.7255)

vtkmodules.util.colors.seashell

(1.0, 0.9608, 0.9333)

vtkmodules.util.colors.snow

(1.0, 0.9804, 0.9804)

8.2. Python 65

VTK

vtkmodules.util.colors.thistle

(0.8471, 0.749, 0.8471)

vtkmodules.util.colors.titanium_white

(0.99, 1.0, 0.94)

vtkmodules.util.colors.wheat

(0.9608, 0.8706, 0.702)

vtkmodules.util.colors.white

(1.0, 1.0, 1.0)

vtkmodules.util.colors.white_smoke

(0.9608, 0.9608, 0.9608)

vtkmodules.util.colors.zinc_white

(0.99, 0.97, 1.0)

vtkmodules.util.colors.cold_grey

(0.5, 0.54, 0.53)

vtkmodules.util.colors.dim_grey

(0.4118, 0.4118, 0.4118)

vtkmodules.util.colors.grey

(0.7529, 0.7529, 0.7529)

vtkmodules.util.colors.light_grey

(0.8275, 0.8275, 0.8275)

vtkmodules.util.colors.slate_grey

(0.4392, 0.502, 0.5647)

vtkmodules.util.colors.slate_grey_dark

(0.1843, 0.3098, 0.3098)

vtkmodules.util.colors.slate_grey_light

(0.4667, 0.5333, 0.6)

vtkmodules.util.colors.warm_grey

(0.5, 0.5, 0.41)

vtkmodules.util.colors.black

(0.0, 0.0, 0.0)

vtkmodules.util.colors.ivory_black

(0.16, 0.14, 0.13)

vtkmodules.util.colors.lamp_black

(0.18, 0.28, 0.23)

vtkmodules.util.colors.alizarin_crimson

(0.89, 0.15, 0.21)

vtkmodules.util.colors.brick

(0.61, 0.4, 0.12)

66 Chapter 8. API

VTK

vtkmodules.util.colors.cadmium_red_deep

(0.89, 0.09, 0.05)

vtkmodules.util.colors.coral

(1.0, 0.498, 0.3137)

vtkmodules.util.colors.coral_light

(0.9412, 0.502, 0.502)

vtkmodules.util.colors.deep_pink

(1.0, 0.0784, 0.5765)

vtkmodules.util.colors.english_red

(0.83, 0.24, 0.1)

vtkmodules.util.colors.firebrick

(0.698, 0.1333, 0.1333)

vtkmodules.util.colors.geranium_lake

(0.89, 0.07, 0.19)

vtkmodules.util.colors.hot_pink

(1.0, 0.4118, 0.7059)

vtkmodules.util.colors.indian_red

(0.69, 0.09, 0.12)

vtkmodules.util.colors.light_salmon

(1.0, 0.6275, 0.4784)

vtkmodules.util.colors.madder_lake_deep

(0.89, 0.18, 0.19)

vtkmodules.util.colors.maroon

(0.6902, 0.1882, 0.3765)

vtkmodules.util.colors.pink

(1.0, 0.7529, 0.7961)

vtkmodules.util.colors.pink_light

(1.0, 0.7137, 0.7569)

vtkmodules.util.colors.raspberry

(0.53, 0.15, 0.34)

vtkmodules.util.colors.red

(1.0, 0.0, 0.0)

vtkmodules.util.colors.rose_madder

(0.89, 0.21, 0.22)

vtkmodules.util.colors.salmon

(0.9804, 0.502, 0.4471)

vtkmodules.util.colors.tomato

(1.0, 0.3882, 0.2784)

8.2. Python 67

VTK

vtkmodules.util.colors.venetian_red

(0.83, 0.1, 0.12)

vtkmodules.util.colors.beige

(0.64, 0.58, 0.5)

vtkmodules.util.colors.brown

(0.5, 0.1647, 0.1647)

vtkmodules.util.colors.brown_madder

(0.86, 0.16, 0.16)

vtkmodules.util.colors.brown_ochre

(0.53, 0.26, 0.12)

vtkmodules.util.colors.burlywood

(0.8706, 0.7216, 0.5294)

vtkmodules.util.colors.burnt_sienna

(0.54, 0.21, 0.06)

vtkmodules.util.colors.burnt_umber

(0.54, 0.2, 0.14)

vtkmodules.util.colors.chocolate

(0.8235, 0.4118, 0.1176)

vtkmodules.util.colors.deep_ochre

(0.45, 0.24, 0.1)

vtkmodules.util.colors.flesh

(1.0, 0.49, 0.25)

vtkmodules.util.colors.flesh_ochre

(1.0, 0.34, 0.13)

vtkmodules.util.colors.gold_ochre

(0.78, 0.47, 0.15)

vtkmodules.util.colors.greenish_umber

(1.0, 0.24, 0.05)

vtkmodules.util.colors.khaki

(0.9412, 0.902, 0.549)

vtkmodules.util.colors.khaki_dark

(0.7412, 0.7176, 0.4196)

vtkmodules.util.colors.light_beige

(0.9608, 0.9608, 0.8627)

vtkmodules.util.colors.peru

(0.8039, 0.5216, 0.2471)

vtkmodules.util.colors.rosy_brown

(0.7373, 0.5608, 0.5608)

68 Chapter 8. API

VTK

vtkmodules.util.colors.raw_sienna

(0.78, 0.38, 0.08)

vtkmodules.util.colors.raw_umber

(0.45, 0.29, 0.07)

vtkmodules.util.colors.sepia

(0.37, 0.15, 0.07)

vtkmodules.util.colors.sienna

(0.6275, 0.3216, 0.1765)

vtkmodules.util.colors.saddle_brown

(0.5451, 0.2706, 0.0745)

vtkmodules.util.colors.sandy_brown

(0.9569, 0.6431, 0.3765)

vtkmodules.util.colors.tan

(0.8235, 0.7059, 0.549)

vtkmodules.util.colors.van_dyke_brown

(0.37, 0.15, 0.02)

vtkmodules.util.colors.cadmium_orange

(1.0, 0.38, 0.01)

vtkmodules.util.colors.cadmium_red_light

(1.0, 0.01, 0.05)

vtkmodules.util.colors.carrot

(0.93, 0.57, 0.13)

vtkmodules.util.colors.dark_orange

(1.0, 0.549, 0.0)

vtkmodules.util.colors.mars_orange

(0.59, 0.27, 0.08)

vtkmodules.util.colors.mars_yellow

(0.89, 0.44, 0.1)

vtkmodules.util.colors.orange

(1.0, 0.5, 0.0)

vtkmodules.util.colors.orange_red

(1.0, 0.2706, 0.0)

vtkmodules.util.colors.yellow_ochre

(0.89, 0.51, 0.09)

vtkmodules.util.colors.aureoline_yellow

(1.0, 0.66, 0.14)

vtkmodules.util.colors.banana

(0.89, 0.81, 0.34)

8.2. Python 69

VTK

vtkmodules.util.colors.cadmium_lemon

(1.0, 0.89, 0.01)

vtkmodules.util.colors.cadmium_yellow

(1.0, 0.6, 0.07)

vtkmodules.util.colors.cadmium_yellow_light

(1.0, 0.69, 0.06)

vtkmodules.util.colors.gold

(1.0, 0.8431, 0.0)

vtkmodules.util.colors.goldenrod

(0.8549, 0.6471, 0.1255)

vtkmodules.util.colors.goldenrod_dark

(0.7216, 0.5255, 0.0431)

vtkmodules.util.colors.goldenrod_light

(0.9804, 0.9804, 0.8235)

vtkmodules.util.colors.goldenrod_pale

(0.9333, 0.9098, 0.6667)

vtkmodules.util.colors.light_goldenrod

(0.9333, 0.8667, 0.5098)

vtkmodules.util.colors.melon

(0.89, 0.66, 0.41)

vtkmodules.util.colors.naples_yellow_deep

(1.0, 0.66, 0.07)

vtkmodules.util.colors.yellow

(1.0, 1.0, 0.0)

vtkmodules.util.colors.yellow_light

(1.0, 1.0, 0.8784)

vtkmodules.util.colors.chartreuse

(0.498, 1.0, 0.0)

vtkmodules.util.colors.chrome_oxide_green

(0.4, 0.5, 0.08)

vtkmodules.util.colors.cinnabar_green

(0.38, 0.7, 0.16)

vtkmodules.util.colors.cobalt_green

(0.24, 0.57, 0.25)

vtkmodules.util.colors.emerald_green

(0.0, 0.79, 0.34)

vtkmodules.util.colors.forest_green

(0.1333, 0.5451, 0.1333)

70 Chapter 8. API

VTK

vtkmodules.util.colors.green

(0.0, 1.0, 0.0)

vtkmodules.util.colors.green_dark

(0.0, 0.3922, 0.0)

vtkmodules.util.colors.green_pale

(0.5961, 0.9843, 0.5961)

vtkmodules.util.colors.green_yellow

(0.6784, 1.0, 0.1843)

vtkmodules.util.colors.lawn_green

(0.4863, 0.9882, 0.0)

vtkmodules.util.colors.lime_green

(0.1961, 0.8039, 0.1961)

vtkmodules.util.colors.mint

(0.74, 0.99, 0.79)

vtkmodules.util.colors.olive

(0.23, 0.37, 0.17)

vtkmodules.util.colors.olive_drab

(0.4196, 0.5569, 0.1373)

vtkmodules.util.colors.olive_green_dark

(0.3333, 0.4196, 0.1843)

vtkmodules.util.colors.permanent_green

(0.04, 0.79, 0.17)

vtkmodules.util.colors.sap_green

(0.19, 0.5, 0.08)

vtkmodules.util.colors.sea_green

(0.1804, 0.5451, 0.3412)

vtkmodules.util.colors.sea_green_dark

(0.5608, 0.7373, 0.5608)

vtkmodules.util.colors.sea_green_medium

(0.2353, 0.702, 0.4431)

vtkmodules.util.colors.sea_green_light

(0.1255, 0.698, 0.6667)

vtkmodules.util.colors.spring_green

(0.0, 1.0, 0.498)

vtkmodules.util.colors.spring_green_medium

(0.0, 0.9804, 0.6039)

vtkmodules.util.colors.terre_verte

(0.22, 0.37, 0.06)

8.2. Python 71

VTK

vtkmodules.util.colors.viridian_light

(0.43, 1.0, 0.44)

vtkmodules.util.colors.yellow_green

(0.6039, 0.8039, 0.1961)

vtkmodules.util.colors.aquamarine

(0.498, 1.0, 0.8314)

vtkmodules.util.colors.aquamarine_medium

(0.4, 0.8039, 0.6667)

vtkmodules.util.colors.cyan

(0.0, 1.0, 1.0)

vtkmodules.util.colors.cyan_white

(0.8784, 1.0, 1.0)

vtkmodules.util.colors.turquoise

(0.251, 0.8784, 0.8157)

vtkmodules.util.colors.turquoise_dark

(0.0, 0.8078, 0.8196)

vtkmodules.util.colors.turquoise_medium

(0.2824, 0.8196, 0.8)

vtkmodules.util.colors.turquoise_pale

(0.6863, 0.9333, 0.9333)

vtkmodules.util.colors.alice_blue

(0.9412, 0.9725, 1.0)

vtkmodules.util.colors.blue

(0.0, 0.0, 1.0)

vtkmodules.util.colors.blue_light

(0.6784, 0.8471, 0.902)

vtkmodules.util.colors.blue_medium

(0.0, 0.0, 0.8039)

vtkmodules.util.colors.cadet

(0.3725, 0.6196, 0.6275)

vtkmodules.util.colors.cobalt

(0.24, 0.35, 0.67)

vtkmodules.util.colors.cornflower

(0.3922, 0.5843, 0.9294)

vtkmodules.util.colors.cerulean

(0.02, 0.72, 0.8)

vtkmodules.util.colors.dodger_blue

(0.1176, 0.5647, 1.0)

72 Chapter 8. API

VTK

vtkmodules.util.colors.indigo

(0.03, 0.18, 0.33)

vtkmodules.util.colors.manganese_blue

(0.01, 0.66, 0.62)

vtkmodules.util.colors.midnight_blue

(0.098, 0.098, 0.4392)

vtkmodules.util.colors.navy

(0.0, 0.0, 0.502)

vtkmodules.util.colors.peacock

(0.2, 0.63, 0.79)

vtkmodules.util.colors.powder_blue

(0.6902, 0.8784, 0.902)

vtkmodules.util.colors.royal_blue

(0.2549, 0.4118, 0.8824)

vtkmodules.util.colors.slate_blue

(0.4157, 0.3529, 0.8039)

vtkmodules.util.colors.slate_blue_dark

(0.2824, 0.2392, 0.5451)

vtkmodules.util.colors.slate_blue_light

(0.5176, 0.4392, 1.0)

vtkmodules.util.colors.slate_blue_medium

(0.4824, 0.4078, 0.9333)

vtkmodules.util.colors.sky_blue

(0.5294, 0.8078, 0.9216)

vtkmodules.util.colors.sky_blue_deep

(0.0, 0.749, 1.0)

vtkmodules.util.colors.sky_blue_light

(0.5294, 0.8078, 0.9804)

vtkmodules.util.colors.steel_blue

(0.2745, 0.5098, 0.7059)

vtkmodules.util.colors.steel_blue_light

(0.6902, 0.7686, 0.8706)

vtkmodules.util.colors.turquoise_blue

(0.0, 0.78, 0.55)

vtkmodules.util.colors.ultramarine

(0.07, 0.04, 0.56)

vtkmodules.util.colors.blue_violet

(0.5412, 0.1686, 0.8863)

8.2. Python 73

VTK

vtkmodules.util.colors.cobalt_violet_deep

(0.57, 0.13, 0.62)

vtkmodules.util.colors.magenta

(1.0, 0.0, 1.0)

vtkmodules.util.colors.orchid

(0.8549, 0.4392, 0.8392)

vtkmodules.util.colors.orchid_dark

(0.6, 0.1961, 0.8)

vtkmodules.util.colors.orchid_medium

(0.7294, 0.3333, 0.8275)

vtkmodules.util.colors.permanent_red_violet

(0.86, 0.15, 0.27)

vtkmodules.util.colors.plum

(0.8667, 0.6275, 0.8667)

vtkmodules.util.colors.purple

(0.6275, 0.1255, 0.9412)

vtkmodules.util.colors.purple_medium

(0.5765, 0.4392, 0.8588)

vtkmodules.util.colors.ultramarine_violet

(0.36, 0.14, 0.43)

vtkmodules.util.colors.violet

(0.56, 0.37, 0.6)

vtkmodules.util.colors.violet_dark

(0.5804, 0.0, 0.8275)

vtkmodules.util.colors.violet_red

(0.8157, 0.1255, 0.5647)

vtkmodules.util.colors.violet_red_medium

(0.7804, 0.0824, 0.5216)

vtkmodules.util.colors.violet_red_pale

(0.8588, 0.4392, 0.5765)

vtkmodules.util.pickle_support

This module generates support for pickling vtkDataObjects from python. It needs to be imported specifically in order
to work:

import vtkmodules.util.pickle_support

Once imported however, the pickling of data objects is very straightforward. Here is an example using poly data:

sphereSrc = vtkSphereSource() sphereSrc.Update() pickled =
pickle.dumps(sphereSrc.GetOutput()) unpickled = pickle.loads(pickled)
print(unpickled) description of sphere data set

74 Chapter 8. API

VTK

The underlying serialization of the vtkDatObjects is based on the marshaling capabilities found in vtkCommunicator.
Importing this module adds entries for the most common data objects in the global dispatch table used by pickle.
NumPy is required as well since the -serialized data object gets pickled as a numpy array.

Module Contents

Functions

unserialize_VTK_data_object Takes a state dictionary with entries:
serialize_VTK_data_object Returns a tuple with a reference to the unpickling function and a state dictionary with entries:

API

vtkmodules.util.pickle_support.unserialize_VTK_data_object(state)
Takes a state dictionary with entries:

• Type : a string with the class name for the data object

• Serialized : a numpy array with the serialized data object

and transforms it into a data object.

vtkmodules.util.pickle_support.serialize_VTK_data_object(data_object)
Returns a tuple with a reference to the unpickling function and a state dictionary with entries:

• Type : a string with the class name for the data object

• Serialized : a numpy array with the serialized data object

This is exactly the state dictionary that unserialize_VTK_data_object expects.

vtkmodules.util.vtkVariant

Utility functions to mimic the template support functions for vtkVariant

Module Contents

Classes

vtkVariantStrictWeakOrderKey A key method (class, actually) for use with sort()

8.2. Python 75

VTK

Functions

vtkVariantCreate Create a vtkVariant of the specified type, where the type is in the following format: ‘int’, ‘unsigned int’, etc. for numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type.
vtkVariantExtract Extract the specified value type from the vtkVariant, where the type is in the following format: ‘int’, ‘unsigned int’, etc. for numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type. Set the type to ‘None” to extract the value in its native type.
vtkVariantCast Cast the vtkVariant to the specified value type, where the type is in the following format: ‘int’, ‘unsigned int’, etc. for numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type.
vtkVariantStrictWeakOrder Compare variants by type first, and then by value.
vtkVariantStrictEquality Check two variants for strict equality of type and value.
vtkVariantLessThan Return true if s1 < s2.
vtkVariantEqual Return true if s1 == s2.

Data

_variant_type_map
_variant_method_map
_variant_check_map

API

vtkmodules.util.vtkVariant._variant_type_map

None

vtkmodules.util.vtkVariant._variant_method_map

None

vtkmodules.util.vtkVariant._variant_check_map

None

vtkmodules.util.vtkVariant.vtkVariantCreate(v, t)
Create a vtkVariant of the specified type, where the type is in the following format: ‘int’, ‘unsigned int’, etc. for
numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type.

vtkmodules.util.vtkVariant.vtkVariantExtract(v, t=None)
Extract the specified value type from the vtkVariant, where the type is in the following format: ‘int’, ‘unsigned
int’, etc. for numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type.
Set the type to ‘None” to extract the value in its native type.

vtkmodules.util.vtkVariant.vtkVariantCast(v, t)
Cast the vtkVariant to the specified value type, where the type is in the following format: ‘int’, ‘unsigned int’,
etc. for numeric types, and ‘string’ for strings. You can also use an integer VTK type constant for the type.

vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrder(s1, s2)
Compare variants by type first, and then by value.

class vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrderKey(obj, *args)
A key method (class, actually) for use with sort()

76 Chapter 8. API

VTK

Initialization

__lt__(other)

vtkmodules.util.vtkVariant.vtkVariantStrictEquality(s1, s2)
Check two variants for strict equality of type and value.

vtkmodules.util.vtkVariant.vtkVariantLessThan(s1, s2)
Return true if s1 < s2.

vtkmodules.util.vtkVariant.vtkVariantEqual(s1, s2)
Return true if s1 == s2.

vtkmodules.util.vtkMethodParser

This python module provides functionality to parse the methods of a VTK object.

Created by Prabhu Ramachandran. Committed in Apr, 2002.

Module Contents

Classes

VtkDirMethodParser Parses the methods from dir(vtk_obj).
VtkPrintMethodParser This class finds the methods for a given vtkObject. It uses the output from vtkObject->Print() (or in Python str(vtkObject)) and output from the VtkDirMethodParser to obtain the methods.

Functions

debug

Data

DEBUG

API

vtkmodules.util.vtkMethodParser.DEBUG

0

vtkmodules.util.vtkMethodParser.debug(msg)

class vtkmodules.util.vtkMethodParser.VtkDirMethodParser

Parses the methods from dir(vtk_obj).

initialize_methods(vtk_obj)

8.2. Python 77

VTK

parse_methods(vtk_obj)

clean_up_methods(vtk_obj)

clean_get_set(vtk_obj)

clean_state_methods(vtk_obj)

clean_get_methods(vtk_obj)

toggle_methods()

state_methods()

get_set_methods()

get_methods()

class vtkmodules.util.vtkMethodParser.VtkPrintMethodParser

This class finds the methods for a given vtkObject. It uses the output from vtkObject->Print() (or in Python
str(vtkObject)) and output from the VtkDirMethodParser to obtain the methods.

parse_methods(vtk_obj)
Parse for the methods.

_get_str_obj(vtk_obj)

_initialize_methods(vtk_obj)
Do the basic parsing and setting up

_clean_up_methods(vtk_obj)
Merge dir and str methods. Finish up.

toggle_methods()

state_methods()

get_set_methods()

get_methods()

vtkmodules.util.vtkImageImportFromArray

vtkImageImportFromArray: a NumPy front-end to vtkImageImport

Load a python array into a vtk image. To use this class, you must have NumPy installed (http://numpy.scipy.org/)

Methods:

SetArray() – set the numpy array to load Update() – generate the output GetOutput() – get the image as vtkImageData
GetOutputPort() – connect to VTK pipeline

Methods from vtkImageImport: (if you don’t set these, sensible defaults will be used)

SetDataExtent() SetDataSpacing() SetDataOrigin()

78 Chapter 8. API

http://numpy.scipy.org/

VTK

Module Contents

Classes

vtkImageImportFromArray

API

class vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray

Initialization

__typeDict

None

__sizeDict

None

SetConvertIntToUnsignedShort(yesno)

GetConvertIntToUnsignedShort()

ConvertIntToUnsignedShortOn()

ConvertIntToUnsignedShortOff()

Update()

GetOutputPort()

GetOutput()

SetArray(imArray)

GetArray()

SetDataExtent(extent)

GetDataExtent()

SetDataSpacing(spacing)

GetDataSpacing()

SetDataOrigin(origin)

GetDataOrigin()

8.2. Python 79

VTK

vtkmodules.util.keys

Utility module to make it easier to create new keys.

Module Contents

Functions

MakeKey Given a key type, make a new key of given name and location.

API

vtkmodules.util.keys.MakeKey(key_type, name, location, *args)
Given a key type, make a new key of given name and location.

vtkmodules.util.vtkAlgorithm

Module Contents

Classes

VTKAlgorithm This is a superclass which can be derived to implement Python classes that work with vtkPythonAlgorithm. It implements Initialize(), ProcessRequest(), FillInputPortInformation() and FillOutputPortInformation().
VTKPythonAlgorithmBase This is a superclass which can be derived to implement Python classes that act as VTK algorithms in a VTK pipeline. It implements ProcessRequest(), FillInputPortInformation() and FillOutputPortInformation().

API

class vtkmodules.util.vtkAlgorithm.VTKAlgorithm(nInputPorts=1, inputType='vtkDataSet',
nOutputPorts=1, outputType='vtkPolyData')

Bases: object

This is a superclass which can be derived to implement Python classes that work with vtkPythonAlgorithm. It
implements Initialize(), ProcessRequest(), FillInputPortInformation() and FillOutputPortInformation().

Initialize() sets the input and output ports based on data members.

ProcessRequest() calls RequestXXX() methods to implement various pipeline passes.

FillInputPortInformation() and FillOutputPortInformation() set the input and output types based on data mem-
bers.

80 Chapter 8. API

VTK

Initialization

Sets up default NumberOfInputPorts, NumberOfOutputPorts, InputType and OutputType that are used by various
initialization methods.

Initialize(vtkself)
Sets up number of input and output ports based on NumberOfInputPorts and NumberOfOutputPorts.

GetInputData(inInfo, i, j)
Convenience method that returns an input data object given a vector of information objects and two indices.

GetOutputData(outInfo, i)
Convenience method that returns an output data object given an information object and an index.

RequestDataObject(vtkself , request, inInfo, outInfo)
Overwritten by subclass to manage data object creation. There is not need to overwrite this class if the
output can be created based on the OutputType data member.

RequestInformation(vtkself , request, inInfo, outInfo)
Overwritten by subclass to provide meta-data to downstream pipeline.

RequestUpdateExtent(vtkself , request, inInfo, outInfo)
Overwritten by subclass to modify data request going to upstream pipeline.

abstract RequestData(vtkself , request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

ProcessRequest(vtkself , request, inInfo, outInfo)
Splits a request to RequestXXX() methods.

FillInputPortInformation(vtkself , port, info)
Sets the required input type to InputType.

FillOutputPortInformation(vtkself , port, info)
Sets the default output type to OutputType.

class vtkmodules.util.vtkAlgorithm.VTKPythonAlgorithmBase(nInputPorts=1, inputType='vtkDataSet',
nOutputPorts=1,
outputType='vtkPolyData')

Bases: vtkmodules.vtkFiltersPython.vtkPythonAlgorithm

This is a superclass which can be derived to implement Python classes that act as VTK algorithms in a VTK
pipeline. It implements ProcessRequest(), FillInputPortInformation() and FillOutputPortInformation().

ProcessRequest() calls RequestXXX() methods to implement various pipeline passes.

FillInputPortInformation() and FillOutputPortInformation() set the input and output types based on data mem-
bers.

Common use is something like this:

class HDF5Source(VTKPythonAlgorithmBase): def init(self): VTKPythonAlgorithmBase.init(self, nInput-
Ports=0, nOutputPorts=1, outputType=’vtkImageData’)

def RequestInformation(self, request, inInfo, outInfo):
f = h5py.File("foo.h5", 'r')
dims = f['RTData'].shape[::-1]
info = outInfo.GetInformationObject(0)
info.Set(vtkmodules.vtkCommonExecutionModel.vtkStreamingDemandDrivenPipeline.

(continues on next page)

8.2. Python 81

VTK

(continued from previous page)

→˓WHOLE_EXTENT(),
(0, dims[0]-1, 0, dims[1]-1, 0, dims[2]-1), 6)

return 1

def RequestData(self, request, inInfo, outInfo):
f = h5py.File("foo.h5", 'r')
data = f['RTData'][:]
output = dsa.WrapDataObject(vtkmodules.vtkCommonDataModel.vtkImageData.

→˓GetData(outInfo))
output.SetDimensions(data.shape)
output.PointData.append(data.flatten(), 'RTData')
output.PointData.SetActiveScalars('RTData')
return 1

alg = HDF5Source()

cf = vtkmodules.vtkFiltersCore.vtkContourFilter() cf.SetInputConnection(alg.GetOutputPort()) cf.Update()

Initialization

Sets up default NumberOfInputPorts, NumberOfOutputPorts, InputType and OutputType that are used by various
methods. Make sure to call this method from any subclass’ init

class InternalAlgorithm

Bases: object

Internal class. Do not use.

Initialize(vtkself)

FillInputPortInformation(vtkself , port, info)

FillOutputPortInformation(vtkself , port, info)

ProcessRequest(vtkself , request, inInfo, outInfo)

GetInputData(inInfo, i, j)
Convenience method that returns an input data object given a vector of information objects and two indices.

GetOutputData(outInfo, i)
Convenience method that returns an output data object given an information object and an index.

FillInputPortInformation(port, info)
Sets the required input type to InputType.

FillOutputPortInformation(port, info)
Sets the default output type to OutputType.

ProcessRequest(request, inInfo, outInfo)
Splits a request to RequestXXX() methods.

RequestDataObject(request, inInfo, outInfo)
Overwritten by subclass to manage data object creation. There is not need to overwrite this class if the
output can be created based on the OutputType data member.

82 Chapter 8. API

VTK

RequestInformation(request, inInfo, outInfo)
Overwritten by subclass to provide meta-data to downstream pipeline.

RequestUpdateExtent(request, inInfo, outInfo)
Overwritten by subclass to modify data request going to upstream pipeline.

abstract RequestData(request, inInfo, outInfo)
Overwritten by subclass to execute the algorithm.

vtkmodules.util.execution_model

Utility classes to help with the simpler Python interface for connecting and executing pipelines.

Module Contents

Classes

select_ports Helper class for selecting input and output ports when connecting pipeline objects with the >> operator. Example uses:
Pipeline Pipeline objects are created when 2 or more algorithms are connected with the >> operator. They store the first and last algorithms in the pipeline and enable connecting more algorithms and executing the pipeline. One should not have to create Pipeline objects directly. They are created by the use of the >> operator.
Output Helper object to represent the output of an algorithms as returned by the update() method. Implements the output property enabling calling update().output.

Functions

_call Set the input of the first filter, update the pipeline and return the output.

Data

__all__

API

vtkmodules.util.execution_model.__all__

[‘select_ports’, ‘Pipeline’, ‘Output’]

vtkmodules.util.execution_model._call(first, last, inp=None, port=0)
Set the input of the first filter, update the pipeline and return the output.

class vtkmodules.util.execution_model.select_ports(*args)
Bases: object

Helper class for selecting input and output ports when connecting pipeline objects with the >> operator. Example
uses:

8.2. Python 83

VTK

Connect a source to the second input of a filter.

source >> select_ports(1, filter)

Connect the second output of a source to a filter.

select_ports(source, 1) >> filter

Combination of both: Connect source to second

input of the filter, then connect the second

output of that filter to another one.

source >>> select_ports(1, filter, 1) >> filter2

Initialization

This constructor takes 2 or 3 arguments. The possibilities are: select_ports(input_port, algorithm) se-
lect_ports(algorithm, output_port) select_ports(input_port, algorithm, output_port)

SetInputConnection(inp)
Forwards to underlying algorithm and port.

AddInputConnection(inp)
Forwards to underlying algorithm and port.

GetOutputPort()

Returns the output port of the underlying algorithm.

GetInputPortInformation(port)

update()

Execute the algorithm and return the output from the selected output port.

__rshift__(rhs)
Creates a pipeline between the underlying port and an algorithm.

__rrshift__(lhs)
Creates a pipeline between the underlying port and an algorithm. This is to handle sequence >> select_ports
where the port can accept multiple connections.

__call__(inp=None)
Executes the underlying algorithm by passing input data to the selected input port. Returns a single output
or a tuple if there are multiple outputs.

class vtkmodules.util.execution_model.Pipeline(lhs, rhs)
Bases: object

Pipeline objects are created when 2 or more algorithms are connected with the >> operator. They store the first
and last algorithms in the pipeline and enable connecting more algorithms and executing the pipeline. One should
not have to create Pipeline objects directly. They are created by the use of the >> operator.

84 Chapter 8. API

VTK

Initialization

Create a pipeline object that connects two objects of the following type: data object, pipeline object, algorithm
object.

PIPELINE

0

ALGORITHM

1

DATA

2

UNKNOWN

3

_connect(lhs, rhs, rhs_alg, connect_method)

_determine_type(arg)

update(**kwargs)
Update the pipeline and return the last algorithm’s output.

__call__(inp=None)
Sets the input of the first filter, update the pipeline and returns the output. A single data object or a tuple of
data objects (when there are multiple outputs) are returned.

__rshift__(rhs)
Used to connect two pipeline items. The left side can be a data object, an algorithm or a pipeline. The right
side can be an algorithm or a pipeline.

__rrshift__(lhs)
Creates a pipeline between a sequence input and a pipeline.

class vtkmodules.util.execution_model.Output(algorithm, **kwargs)
Bases: object

Helper object to represent the output of an algorithms as returned by the update() method. Implements the output
property enabling calling update().output.

Initialization

property output

Returns a single data object or a tuple of data objects if there are multiple outputs.

vtkmodules.util.data_model

This module provides classes that allow numpy style access to VTK datasets. See examples at bottom.

8.2. Python 85

VTK

Module Contents

Classes

FieldDataBase
vtkFieldData
DataSetAttributesBase
DataSetAttributes
PointData
CellData
CompositeDataSetAttributesIterator
CompositeDataSetAttributes This is a python friendly wrapper for vtkDataSetAttributes for composite datasets. Since composite datasets themselves don’t have attribute data, but the attribute data is associated with the leaf nodes in the composite dataset, this class simulates a DataSetAttributes interface by taking a union of DataSetAttributes associated with all leaf nodes.
DataSet
PointSet
vtkUnstructuredGrid
vtkImageData
vtkPolyData
CompositeDataIterator Wrapper for a vtkCompositeDataIterator class to satisfy the python iterator protocol. This iterator iterates over non-empty leaf nodes. To iterate over empty or non-leaf nodes, use the vtkCompositeDataIterator directly.
CompositeDataSetBase A wrapper for vtkCompositeData and subclasses that makes it easier to access Point/Cell/Field data as VTKCompositeDataArrays. It also provides a Python type iterator.
vtkPartitionedDataSet

API

class vtkmodules.util.data_model.FieldDataBase

Bases: object

Initialization

__getitem__(idx)
Implements the [] operator. Accepts an array name or index.

__setitem__(name, value)
Implements the [] operator. Accepts an array name or index.

get_array(idx)
Given an index or name, returns a VTKArray.

keys()

Returns the names of the arrays as a list.

values()

Returns the arrays as a list.

set_array(name, narray)
Appends a new array to the dataset attributes.

class vtkmodules.util.data_model.vtkFieldData

Bases: vtkmodules.util.data_model.FieldDataBase, vtkmodules.util.data_model.
vtkFieldData

86 Chapter 8. API

VTK

Initialization

class vtkmodules.util.data_model.DataSetAttributesBase

Bases: vtkmodules.util.data_model.FieldDataBase

Initialization

class vtkmodules.util.data_model.DataSetAttributes

Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.
vtkDataSetAttributes

Initialization

class vtkmodules.util.data_model.PointData

Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.
vtkPointData

Initialization

class vtkmodules.util.data_model.CellData

Bases: vtkmodules.util.data_model.DataSetAttributesBase, vtkmodules.vtkCommonDataModel.
vtkCellData

Initialization

class vtkmodules.util.data_model.CompositeDataSetAttributesIterator(cdsa)
Bases: object

Initialization

__iter__()

__next__()

next()

class vtkmodules.util.data_model.CompositeDataSetAttributes(dataset, association)
Bases: object

This is a python friendly wrapper for vtkDataSetAttributes for composite datasets. Since composite datasets
themselves don’t have attribute data, but the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a union of DataSetAttributes associated with
all leaf nodes.

8.2. Python 87

VTK

Initialization

__determine_arraynames()

modified()

Rescans the contained dataset to update the internal list of arrays.

keys()

Returns the names of the arrays as a list.

__getitem__(idx)
Implements the [] operator. Accepts an array name.

__setitem__(name, narray)
Implements the [] operator. Accepts an array name.

set_array(name, narray)
Appends a new array to the composite dataset attributes.

get_array(idx)
Given a name, returns a VTKCompositeArray.

__iter__()

Creates an iterator for the contained arrays.

class vtkmodules.util.data_model.DataSet

Bases: object

property point_data

property cell_data

convert_to_unstructured_grid()

class vtkmodules.util.data_model.PointSet

Bases: vtkmodules.util.data_model.DataSet

property points

class vtkmodules.util.data_model.vtkUnstructuredGrid

Bases: vtkmodules.util.data_model.PointSet, vtkmodules.util.data_model.
vtkUnstructuredGrid

property cells

class vtkmodules.util.data_model.vtkImageData

Bases: vtkmodules.util.data_model.DataSet, vtkmodules.util.data_model.vtkImageData

class vtkmodules.util.data_model.vtkPolyData

Bases: vtkmodules.util.data_model.PointSet, vtkmodules.util.data_model.vtkPolyData

property polygons

class vtkmodules.util.data_model.CompositeDataIterator(cds)
Bases: object

Wrapper for a vtkCompositeDataIterator class to satisfy the python iterator protocol. This iterator iterates over
non-empty leaf nodes. To iterate over empty or non-leaf nodes, use the vtkCompositeDataIterator directly.

88 Chapter 8. API

VTK

Initialization

__iter__()

__next__()

next()

__getattr__(name)
Returns attributes from the vtkCompositeDataIterator.

class vtkmodules.util.data_model.CompositeDataSetBase(**kwargs)
Bases: object

A wrapper for vtkCompositeData and subclasses that makes it easier to access Point/Cell/Field data as VTK-
CompositeDataArrays. It also provides a Python type iterator.

Initialization

__iter__()

Creates an iterator for the contained datasets.

get_attributes(type)
Returns the attributes specified by the type as a CompositeDataSetAttributes instance.

property point_data

Returns the point data as a DataSetAttributes instance.

property cell_data

Returns the cell data as a DataSetAttributes instance.

property field_data

Returns the field data as a DataSetAttributes instance.

property points

Returns the points as a VTKCompositeDataArray instance.

class vtkmodules.util.data_model.vtkPartitionedDataSet(**kwargs)
Bases: vtkmodules.util.data_model.CompositeDataSetBase, vtkmodules.util.data_model.
vtkPartitionedDataSet

append(dataset)

vtkmodules.util.numpy_support

Caveats:

• Bit arrays in general do not have a numpy equivalent and are not supported. Char arrays are also not easy to
handle and might not work as you expect. Patches welcome.

• You need to make sure you hold a reference to a Numpy array you want to import into VTK. If not you’ll get a
segfault (in the best case). The same holds in reverse when you convert a VTK array to a numpy array – don’t
delete the VTK array.

8.2. Python 89

VTK

Created by Prabhu Ramachandran in Feb. 2008.

This module adds support to easily import and export NumPy (http://numpy.scipy.org) arrays into/out of VTK arrays.
The code is loosely based on TVTK (https://svn.enthought.com/enthought/wiki/TVTK).

This code depends on an addition to the VTK data arrays made by Berk Geveci to make it support Python’s buffer
protocol (on Feb. 15, 2008).

The main functionality of this module is provided by the two functions: numpy_to_vtk, vtk_to_numpy.

Module Contents

Functions

get_vtk_array_type Returns a VTK typecode given a numpy array.
get_vtk_to_numpy_typemap Returns the VTK array type to numpy array type mapping.
get_numpy_array_type Returns a numpy array typecode given a VTK array type.
create_vtk_array Internal function used to create a VTK data array from another VTK array given the VTK array type.
numpy_to_vtk Converts a real numpy Array to a VTK array object.
numpy_to_vtkIdTypeArray
vtk_to_numpy Converts a VTK data array to a numpy array.

Data

VTK_ID_TYPE_SIZE
VTK_LONG_TYPE_SIZE

API

vtkmodules.util.numpy_support.VTK_ID_TYPE_SIZE

‘GetDataTypeSize(. . .)’

vtkmodules.util.numpy_support.VTK_LONG_TYPE_SIZE

‘GetDataTypeSize(. . .)’

vtkmodules.util.numpy_support.get_vtk_array_type(numpy_array_type)
Returns a VTK typecode given a numpy array.

vtkmodules.util.numpy_support.get_vtk_to_numpy_typemap()

Returns the VTK array type to numpy array type mapping.

vtkmodules.util.numpy_support.get_numpy_array_type(vtk_array_type)
Returns a numpy array typecode given a VTK array type.

vtkmodules.util.numpy_support.create_vtk_array(vtk_arr_type)
Internal function used to create a VTK data array from another VTK array given the VTK array type.

90 Chapter 8. API

http://numpy.scipy.org
https://svn.enthought.com/enthought/wiki/TVTK

VTK

vtkmodules.util.numpy_support.numpy_to_vtk(num_array, deep=0, array_type=None)
Converts a real numpy Array to a VTK array object.

This function only works for real arrays. Complex arrays are NOT handled. It also works for multi-component
arrays. However, only 1, and 2 dimensional arrays are supported. This function is very efficient, so large arrays
should not be a problem.

If the second argument is set to 1, the array is deep-copied from from numpy. This is not as efficient as the default
behavior (shallow copy) and uses more memory but detaches the two arrays such that the numpy array can be
released.

WARNING: You must maintain a reference to the passed numpy array, if the numpy data is gc’d and VTK will
point to garbage which will in the best case give you a segfault.

Parameters:

num_array a 1D or 2D, real numpy array.

vtkmodules.util.numpy_support.numpy_to_vtkIdTypeArray(num_array, deep=0)

vtkmodules.util.numpy_support.vtk_to_numpy(vtk_array)
Converts a VTK data array to a numpy array.

Given a subclass of vtkDataArray, this function returns an appropriate numpy array containing the same data –
it actually points to the same data.

WARNING: This does not work for bit arrays.

Parameters

vtk_array The VTK data array to be converted.

vtkmodules.util.misc

Miscellaneous functions and classes that don’t fit into specific categories.

Module Contents

Functions

calldata_type set_call_data_type(type) – convenience decorator to easily set the CallDataType attribute for python function used as observer callback. For example:
vtkGetDataRoot vtkGetDataRoot() – return vtk example data directory
vtkGetTempDir vtkGetTempDir() – return vtk testing temp dir
vtkRegressionTestImage vtkRegressionTestImage(renWin) – produce regression image for window

8.2. Python 91

VTK

API

vtkmodules.util.misc.calldata_type(type)
set_call_data_type(type) – convenience decorator to easily set the CallDataType attribute for python function
used as observer callback. For example:

import vtkmodules.util.calldata_type import vtkmodules.util.vtkConstants import vtkmodules.vtkCommonCore
import vtkCommand, vtkLookupTable

@calldata_type(vtkConstants.VTK_STRING) def onError(caller, event, calldata): print(“caller: %s - event: %s
- msg: %s” % (caller.GetClassName(), event, calldata))

lt = vtkLookupTable() lt.AddObserver(vtkCommand.ErrorEvent, onError) lt.SetTableRange(2,1)

vtkmodules.util.misc.vtkGetDataRoot()

vtkGetDataRoot() – return vtk example data directory

vtkmodules.util.misc.vtkGetTempDir()

vtkGetTempDir() – return vtk testing temp dir

vtkmodules.util.misc.vtkRegressionTestImage(renWin)
vtkRegressionTestImage(renWin) – produce regression image for window

This function writes out a regression .png file for a vtkWindow. Does anyone involved in testing care to elaborate?

vtkmodules.util.vtkConstants

This file is obsolete. All the constants are part of the base vtk module.

Module Contents

Functions

vtkImageScalarTypeNameMacro

Data

_VTK_FLOAT_MAX
_VTK_INT_MAX
VTK_VOID
VTK_BIT
VTK_CHAR
VTK_SIGNED_CHAR
VTK_UNSIGNED_CHAR
VTK_SHORT
VTK_UNSIGNED_SHORT

continues on next page

92 Chapter 8. API

VTK

Table 21 – continued from previous page
VTK_INT
VTK_UNSIGNED_INT
VTK_LONG
VTK_UNSIGNED_LONG
VTK_FLOAT
VTK_DOUBLE
VTK_ID_TYPE
VTK_STRING
VTK_OPAQUE
VTK_LONG_LONG
VTK_UNSIGNED_LONG_LONG
VTK_VARIANT
VTK_OBJECT
VTK_BIT_MIN
VTK_BIT_MAX
VTK_CHAR_MIN
VTK_CHAR_MAX
VTK_UNSIGNED_CHAR_MIN
VTK_UNSIGNED_CHAR_MAX
VTK_SHORT_MIN
VTK_SHORT_MAX
VTK_UNSIGNED_SHORT_MIN
VTK_UNSIGNED_SHORT_MAX
VTK_INT_MIN
VTK_INT_MAX
VTK_LONG_MIN
VTK_LONG_MAX
VTK_FLOAT_MIN
VTK_FLOAT_MAX
VTK_DOUBLE_MIN
VTK_DOUBLE_MAX
VTK_POLY_DATA
VTK_STRUCTURED_POINTS
VTK_STRUCTURED_GRID
VTK_RECTILINEAR_GRID
VTK_UNSTRUCTURED_GRID
VTK_PIECEWISE_FUNCTION
VTK_IMAGE_DATA
VTK_DATA_OBJECT
VTK_DATA_SET
VTK_POINT_SET
VTK_UNIFORM_GRID
VTK_COMPOSITE_DATA_SET
VTK_MULTIGROUP_DATA_SET
VTK_MULTIBLOCK_DATA_SET
VTK_HIERARCHICAL_DATA_SET
VTK_HIERARCHICAL_BOX_DATA_SET
VTK_GENERIC_DATA_SET
VTK_HYPER_OCTREE
VTK_TEMPORAL_DATA_SET
VTK_TABLE
VTK_GRAPH

continues on next page

8.2. Python 93

VTK

Table 21 – continued from previous page
VTK_TREE
VTK_SELECTION
VTK_OK
VTK_ERROR
VTK_ARIAL
VTK_COURIER
VTK_TIMES
VTK_UNKNOWN_FONT
VTK_TEXT_LEFT
VTK_TEXT_CENTERED
VTK_TEXT_RIGHT
VTK_TEXT_BOTTOM
VTK_TEXT_TOP
VTK_TEXT_GLOBAL_ANTIALIASING_SOME
VTK_TEXT_GLOBAL_ANTIALIASING_NONE
VTK_TEXT_GLOBAL_ANTIALIASING_ALL
VTK_LUMINANCE
VTK_LUMINANCE_ALPHA
VTK_RGB
VTK_RGBA
VTK_COLOR_MODE_DEFAULT
VTK_COLOR_MODE_MAP_SCALARS
VTK_NEAREST_INTERPOLATION
VTK_LINEAR_INTERPOLATION
VTK_MAX_VRCOMP
VTK_EMPTY_CELL
VTK_VERTEX
VTK_POLY_VERTEX
VTK_LINE
VTK_POLY_LINE
VTK_TRIANGLE
VTK_TRIANGLE_STRIP
VTK_POLYGON
VTK_PIXEL
VTK_QUAD
VTK_TETRA
VTK_VOXEL
VTK_HEXAHEDRON
VTK_WEDGE
VTK_PYRAMID
VTK_PENTAGONAL_PRISM
VTK_HEXAGONAL_PRISM
VTK_QUADRATIC_EDGE
VTK_QUADRATIC_TRIANGLE
VTK_QUADRATIC_QUAD
VTK_QUADRATIC_TETRA
VTK_QUADRATIC_HEXAHEDRON
VTK_QUADRATIC_WEDGE
VTK_QUADRATIC_PYRAMID
VTK_BIQUADRATIC_QUAD
VTK_TRIQUADRATIC_HEXAHEDRON
VTK_QUADRATIC_LINEAR_QUAD

continues on next page

94 Chapter 8. API

VTK

Table 21 – continued from previous page
VTK_QUADRATIC_LINEAR_WEDGE
VTK_BIQUADRATIC_QUADRATIC_WEDGE
VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON
VTK_CONVEX_POINT_SET
VTK_PARAMETRIC_CURVE
VTK_PARAMETRIC_SURFACE
VTK_PARAMETRIC_TRI_SURFACE
VTK_PARAMETRIC_QUAD_SURFACE
VTK_PARAMETRIC_TETRA_REGION
VTK_PARAMETRIC_HEX_REGION
VTK_HIGHER_ORDER_EDGE
VTK_HIGHER_ORDER_TRIANGLE
VTK_HIGHER_ORDER_QUAD
VTK_HIGHER_ORDER_POLYGON
VTK_HIGHER_ORDER_TETRAHEDRON
VTK_HIGHER_ORDER_WEDGE
VTK_HIGHER_ORDER_PYRAMID
VTK_HIGHER_ORDER_HEXAHEDRON
__vtkTypeNameDict

API

vtkmodules.util.vtkConstants._VTK_FLOAT_MAX

1e+38

vtkmodules.util.vtkConstants._VTK_INT_MAX

2147483647

vtkmodules.util.vtkConstants.VTK_VOID

0

vtkmodules.util.vtkConstants.VTK_BIT

1

vtkmodules.util.vtkConstants.VTK_CHAR

2

vtkmodules.util.vtkConstants.VTK_SIGNED_CHAR

15

vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR

3

vtkmodules.util.vtkConstants.VTK_SHORT

4

vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT

5

vtkmodules.util.vtkConstants.VTK_INT

6

vtkmodules.util.vtkConstants.VTK_UNSIGNED_INT

7

8.2. Python 95

VTK

vtkmodules.util.vtkConstants.VTK_LONG

8

vtkmodules.util.vtkConstants.VTK_UNSIGNED_LONG

9

vtkmodules.util.vtkConstants.VTK_FLOAT

10

vtkmodules.util.vtkConstants.VTK_DOUBLE

11

vtkmodules.util.vtkConstants.VTK_ID_TYPE

12

vtkmodules.util.vtkConstants.VTK_STRING

13

vtkmodules.util.vtkConstants.VTK_OPAQUE

14

vtkmodules.util.vtkConstants.VTK_LONG_LONG

16

vtkmodules.util.vtkConstants.VTK_UNSIGNED_LONG_LONG

17

vtkmodules.util.vtkConstants.VTK_VARIANT

20

vtkmodules.util.vtkConstants.VTK_OBJECT

21

vtkmodules.util.vtkConstants.VTK_BIT_MIN

0

vtkmodules.util.vtkConstants.VTK_BIT_MAX

1

vtkmodules.util.vtkConstants.VTK_CHAR_MIN

None

vtkmodules.util.vtkConstants.VTK_CHAR_MAX

127

vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR_MIN

0

vtkmodules.util.vtkConstants.VTK_UNSIGNED_CHAR_MAX

255

vtkmodules.util.vtkConstants.VTK_SHORT_MIN

None

vtkmodules.util.vtkConstants.VTK_SHORT_MAX

32767

vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT_MIN

0

96 Chapter 8. API

VTK

vtkmodules.util.vtkConstants.VTK_UNSIGNED_SHORT_MAX

65535

vtkmodules.util.vtkConstants.VTK_INT_MIN

None

vtkmodules.util.vtkConstants.VTK_INT_MAX

None

vtkmodules.util.vtkConstants.VTK_LONG_MIN

None

vtkmodules.util.vtkConstants.VTK_LONG_MAX

None

vtkmodules.util.vtkConstants.VTK_FLOAT_MIN

None

vtkmodules.util.vtkConstants.VTK_FLOAT_MAX

None

vtkmodules.util.vtkConstants.VTK_DOUBLE_MIN

None

vtkmodules.util.vtkConstants.VTK_DOUBLE_MAX

1e+99

vtkmodules.util.vtkConstants.VTK_POLY_DATA

0

vtkmodules.util.vtkConstants.VTK_STRUCTURED_POINTS

1

vtkmodules.util.vtkConstants.VTK_STRUCTURED_GRID

2

vtkmodules.util.vtkConstants.VTK_RECTILINEAR_GRID

3

vtkmodules.util.vtkConstants.VTK_UNSTRUCTURED_GRID

4

vtkmodules.util.vtkConstants.VTK_PIECEWISE_FUNCTION

5

vtkmodules.util.vtkConstants.VTK_IMAGE_DATA

6

vtkmodules.util.vtkConstants.VTK_DATA_OBJECT

7

vtkmodules.util.vtkConstants.VTK_DATA_SET

8

vtkmodules.util.vtkConstants.VTK_POINT_SET

9

vtkmodules.util.vtkConstants.VTK_UNIFORM_GRID

10

8.2. Python 97

VTK

vtkmodules.util.vtkConstants.VTK_COMPOSITE_DATA_SET

11

vtkmodules.util.vtkConstants.VTK_MULTIGROUP_DATA_SET

12

vtkmodules.util.vtkConstants.VTK_MULTIBLOCK_DATA_SET

13

vtkmodules.util.vtkConstants.VTK_HIERARCHICAL_DATA_SET

14

vtkmodules.util.vtkConstants.VTK_HIERARCHICAL_BOX_DATA_SET

15

vtkmodules.util.vtkConstants.VTK_GENERIC_DATA_SET

16

vtkmodules.util.vtkConstants.VTK_HYPER_OCTREE

17

vtkmodules.util.vtkConstants.VTK_TEMPORAL_DATA_SET

18

vtkmodules.util.vtkConstants.VTK_TABLE

19

vtkmodules.util.vtkConstants.VTK_GRAPH

20

vtkmodules.util.vtkConstants.VTK_TREE

21

vtkmodules.util.vtkConstants.VTK_SELECTION

22

vtkmodules.util.vtkConstants.VTK_OK

1

vtkmodules.util.vtkConstants.VTK_ERROR

2

vtkmodules.util.vtkConstants.VTK_ARIAL

0

vtkmodules.util.vtkConstants.VTK_COURIER

1

vtkmodules.util.vtkConstants.VTK_TIMES

2

vtkmodules.util.vtkConstants.VTK_UNKNOWN_FONT

3

vtkmodules.util.vtkConstants.VTK_TEXT_LEFT

0

vtkmodules.util.vtkConstants.VTK_TEXT_CENTERED

1

98 Chapter 8. API

VTK

vtkmodules.util.vtkConstants.VTK_TEXT_RIGHT

2

vtkmodules.util.vtkConstants.VTK_TEXT_BOTTOM

0

vtkmodules.util.vtkConstants.VTK_TEXT_TOP

2

vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_SOME

0

vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_NONE

1

vtkmodules.util.vtkConstants.VTK_TEXT_GLOBAL_ANTIALIASING_ALL

2

vtkmodules.util.vtkConstants.VTK_LUMINANCE

1

vtkmodules.util.vtkConstants.VTK_LUMINANCE_ALPHA

2

vtkmodules.util.vtkConstants.VTK_RGB

3

vtkmodules.util.vtkConstants.VTK_RGBA

4

vtkmodules.util.vtkConstants.VTK_COLOR_MODE_DEFAULT

0

vtkmodules.util.vtkConstants.VTK_COLOR_MODE_MAP_SCALARS

1

vtkmodules.util.vtkConstants.VTK_NEAREST_INTERPOLATION

0

vtkmodules.util.vtkConstants.VTK_LINEAR_INTERPOLATION

1

vtkmodules.util.vtkConstants.VTK_MAX_VRCOMP

4

vtkmodules.util.vtkConstants.VTK_EMPTY_CELL

0

vtkmodules.util.vtkConstants.VTK_VERTEX

1

vtkmodules.util.vtkConstants.VTK_POLY_VERTEX

2

vtkmodules.util.vtkConstants.VTK_LINE

3

vtkmodules.util.vtkConstants.VTK_POLY_LINE

4

8.2. Python 99

VTK

vtkmodules.util.vtkConstants.VTK_TRIANGLE

5

vtkmodules.util.vtkConstants.VTK_TRIANGLE_STRIP

6

vtkmodules.util.vtkConstants.VTK_POLYGON

7

vtkmodules.util.vtkConstants.VTK_PIXEL

8

vtkmodules.util.vtkConstants.VTK_QUAD

9

vtkmodules.util.vtkConstants.VTK_TETRA

10

vtkmodules.util.vtkConstants.VTK_VOXEL

11

vtkmodules.util.vtkConstants.VTK_HEXAHEDRON

12

vtkmodules.util.vtkConstants.VTK_WEDGE

13

vtkmodules.util.vtkConstants.VTK_PYRAMID

14

vtkmodules.util.vtkConstants.VTK_PENTAGONAL_PRISM

15

vtkmodules.util.vtkConstants.VTK_HEXAGONAL_PRISM

16

vtkmodules.util.vtkConstants.VTK_QUADRATIC_EDGE

21

vtkmodules.util.vtkConstants.VTK_QUADRATIC_TRIANGLE

22

vtkmodules.util.vtkConstants.VTK_QUADRATIC_QUAD

23

vtkmodules.util.vtkConstants.VTK_QUADRATIC_TETRA

24

vtkmodules.util.vtkConstants.VTK_QUADRATIC_HEXAHEDRON

25

vtkmodules.util.vtkConstants.VTK_QUADRATIC_WEDGE

26

vtkmodules.util.vtkConstants.VTK_QUADRATIC_PYRAMID

27

vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUAD

28

100 Chapter 8. API

VTK

vtkmodules.util.vtkConstants.VTK_TRIQUADRATIC_HEXAHEDRON

29

vtkmodules.util.vtkConstants.VTK_QUADRATIC_LINEAR_QUAD

30

vtkmodules.util.vtkConstants.VTK_QUADRATIC_LINEAR_WEDGE

31

vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUADRATIC_WEDGE

32

vtkmodules.util.vtkConstants.VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON

33

vtkmodules.util.vtkConstants.VTK_CONVEX_POINT_SET

41

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_CURVE

51

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_SURFACE

52

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_TRI_SURFACE

53

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_QUAD_SURFACE

54

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_TETRA_REGION

55

vtkmodules.util.vtkConstants.VTK_PARAMETRIC_HEX_REGION

56

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_EDGE

60

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_TRIANGLE

61

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_QUAD

62

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_POLYGON

63

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_TETRAHEDRON

64

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_WEDGE

65

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_PYRAMID

66

vtkmodules.util.vtkConstants.VTK_HIGHER_ORDER_HEXAHEDRON

67

8.2. Python 101

VTK

vtkmodules.util.vtkConstants.__vtkTypeNameDict

None

vtkmodules.util.vtkConstants.vtkImageScalarTypeNameMacro(type)

Package Contents

Data

__all__

API

vtkmodules.util.__all__

[‘colors’, ‘misc’, ‘vtkConstants’, ‘vtkImageExportToArray’, ‘vtkImageImportFromArray’, ‘vtkMethodPar. . .

vtkmodules.qt

Qt module for VTK/Python.

Example usage:

import sys
import PyQt5
from PyQt5.QtWidgets import QApplication
from vtkmodules.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor

app = QApplication(sys.argv)

widget = QVTKRenderWindowInteractor()
widget.Initialize()
widget.Start()

renwin = widget.GetRenderWindow()

For more information, see QVTKRenderWidgetConeExample() in the file QVTKRenderWindowInteractor.py.

Submodules

vtkmodules.qt.QVTKRenderWindowInteractor

A simple VTK widget for PyQt or PySide. See http://www.trolltech.com for Qt documentation, http://www.
riverbankcomputing.co.uk for PyQt, and http://pyside.github.io for PySide.

This class is based on the vtkGenericRenderWindowInteractor and is therefore fairly powerful. It should also play
nicely with the vtk3DWidget code.

Created by Prabhu Ramachandran, May 2002 Based on David Gobbi’s QVTKRenderWidget.py

Changes by Gerard Vermeulen Feb. 2003 Win32 support.

102 Chapter 8. API

http://QVTKRenderWindowInteractor.py
http://www.trolltech.com
http://www.riverbankcomputing.co.uk
http://www.riverbankcomputing.co.uk
http://pyside.github.io
http://QVTKRenderWidget.py

VTK

Changes by Gerard Vermeulen, May 2003 Bug fixes and better integration with the Qt framework.

Changes by Phil Thompson, Nov. 2006 Ported to PyQt v4. Added support for wheel events.

Changes by Phil Thompson, Oct. 2007 Bug fixes.

Changes by Phil Thompson, Mar. 2008 Added cursor support.

Changes by Rodrigo Mologni, Sep. 2013 (Credit to Daniele Esposti) Bug fix to PySide: Converts PyCObject to void
pointer.

Changes by Greg Schussman, Aug. 2014 The keyPressEvent function now passes keysym instead of None.

Changes by Alex Tsui, Apr. 2015 Port from PyQt4 to PyQt5.

Changes by Fabian Wenzel, Jan. 2016 Support for Python3

Changes by Tobias Hänel, Sep. 2018 Support for PySide2

Changes by Ruben de Bruin, Aug. 2019 Fixes to the keyPressEvent function

Changes by Chen Jintao, Aug. 2021 Support for PySide6

Changes by Eric Larson and Guillaume Favelier, Apr. 2022 Support for PyQt6

Module Contents

Classes

QVTKRenderWindowInteractor A QVTKRenderWindowInteractor for Python and Qt. Uses a vtkGenericRenderWindowInteractor to handle the interactions. Use GetRenderWindow() to get the vtkRenderWindow. Create with the keyword stereo=1 in order to generate a stereo-capable window.

Functions

_get_event_pos
QVTKRenderWidgetConeExample A simple example that uses the QVTKRenderWindowInteractor class.

Data

QVTKRWIBase
_keysyms_for_ascii
_keysyms

8.2. Python 103

VTK

API

vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRWIBase

‘QWidget’

vtkmodules.qt.QVTKRenderWindowInteractor._get_event_pos(ev)

class vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor(parent=None,
**kw)

Bases: vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRWIBaseClass

A QVTKRenderWindowInteractor for Python and Qt. Uses a vtkGenericRenderWindowInteractor to handle the
interactions. Use GetRenderWindow() to get the vtkRenderWindow. Create with the keyword stereo=1 in order
to generate a stereo-capable window.

The user interface is summarized in vtkInteractorStyle.h:

• Keypress j / Keypress t: toggle between joystick (position sensitive) and trackball (motion sensitive) styles.
In joystick style, motion occurs continuously as long as a mouse button is pressed. In trackball style, motion
occurs when the mouse button is pressed and the mouse pointer moves.

• Keypress c / Keypress o: toggle between camera and object (actor) modes. In camera mode, mouse events
affect the camera position and focal point. In object mode, mouse events affect the actor that is under the
mouse pointer.

• Button 1: rotate the camera around its focal point (if camera mode) or rotate the actor around its origin (if
actor mode). The rotation is in the direction defined from the center of the renderer’s viewport towards the
mouse position. In joystick mode, the magnitude of the rotation is determined by the distance the mouse is
from the center of the render window.

• Button 2: pan the camera (if camera mode) or translate the actor (if object mode). In joystick mode, the
direction of pan or translation is from the center of the viewport towards the mouse position. In trackball
mode, the direction of motion is the direction the mouse moves. (Note: with 2-button mice, pan is defined
as -Button 1.)

• Button 3: zoom the camera (if camera mode) or scale the actor (if object mode). Zoom in/increase scale
if the mouse position is in the top half of the viewport; zoom out/decrease scale if the mouse position is in
the bottom half. In joystick mode, the amount of zoom is controlled by the distance of the mouse pointer
from the horizontal centerline of the window.

• Keypress 3: toggle the render window into and out of stereo mode. By default, red-blue stereo pairs are
created. Some systems support Crystal Eyes LCD stereo glasses; you have to invoke SetStereoTypeToCrys-
talEyes() on the rendering window. Note: to use stereo you also need to pass a stereo=1 keyword argument
to the constructor.

• Keypress e: exit the application.

• Keypress f: fly to the picked point

• Keypress p: perform a pick operation. The render window interactor has an internal instance of vtk-
CellPicker that it uses to pick.

• Keypress r: reset the camera view along the current view direction. Centers the actors and moves the camera
so that all actors are visible.

• Keypress s: modify the representation of all actors so that they are surfaces.

104 Chapter 8. API

VTK

• Keypress u: invoke the user-defined function. Typically, this keypress will bring up an interactor that you
can type commands in.

• Keypress w: modify the representation of all actors so that they are wireframe.

Initialization

_CURSOR_MAP

None

__getattr__(attr)
Makes the object behave like a vtkGenericRenderWindowInteractor

Finalize()

Call internal cleanup method on VTK objects

CreateTimer(obj, evt)

DestroyTimer(obj, evt)

TimerEvent()

CursorChangedEvent(obj, evt)
Called when the CursorChangedEvent fires on the render window.

HideCursor()

Hides the cursor.

ShowCursor()

Shows the cursor.

closeEvent(evt)

sizeHint()

paintEngine()

paintEvent(ev)

resizeEvent(ev)

_GetKeyCharAndKeySym(ev)
Convert a Qt key into a char and a vtk keysym.

This is essentially copied from the c++ implementation in GUISupport/Qt/QVTKInteractorAdapter.cxx.

_GetCtrlShift(ev)

static _getPixelRatio()

_setEventInformation(x, y, ctrl, shift, key, repeat=0, keysum=None)

enterEvent(ev)

leaveEvent(ev)

mousePressEvent(ev)

mouseReleaseEvent(ev)

8.2. Python 105

VTK

mouseMoveEvent(ev)

keyPressEvent(ev)

keyReleaseEvent(ev)

wheelEvent(ev)

GetRenderWindow()

Render()

vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWidgetConeExample()

A simple example that uses the QVTKRenderWindowInteractor class.

vtkmodules.qt.QVTKRenderWindowInteractor._keysyms_for_ascii

(None, None, None, None, None, None, None, None, None, ‘Tab’, None, None, None, None, None, None, No. . .

vtkmodules.qt.QVTKRenderWindowInteractor._keysyms

None

Package Contents

Data

PyQtImpl
QVTKRWIBase
__all__

API

vtkmodules.qt.PyQtImpl

None

vtkmodules.qt.QVTKRWIBase

‘QWidget’

vtkmodules.qt.__all__

[‘QVTKRenderWindowInteractor’]

vtkmodules.wx

wxPython widgets for VTK.

106 Chapter 8. API

VTK

Submodules

vtkmodules.wx.wxVTKRenderWindow

A simple VTK widget for wxPython.

Find wxPython info at http://wxPython.org

Created by David Gobbi, December 2001 Based on vtkTkRenderWindget.py

Updated to new wx namespace and some cleaning by Andrea Gavana, December 2006

Module Contents

Classes

wxVTKRenderWindow A wxRenderWindow for wxPython. Use GetRenderWindow() to get the vtkRenderWindow. Create with the keyword stereo=1 in order to generate a stereo-capable window.

Functions

wxVTKRenderWindowConeExample Like it says, just a simple example.

Data

baseClass
_useCapture

API

vtkmodules.wx.wxVTKRenderWindow.baseClass

None

vtkmodules.wx.wxVTKRenderWindow._useCapture

None

class vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow(parent, ID, *args, **kw)
Bases: vtkmodules.wx.wxVTKRenderWindow.baseClass

A wxRenderWindow for wxPython. Use GetRenderWindow() to get the vtkRenderWindow. Create with the
keyword stereo=1 in order to generate a stereo-capable window.

8.2. Python 107

http://wxPython.org
http://vtkTkRenderWindget.py

VTK

Initialization

Default class constructor. @param parent: parent window @param ID: window id @param **kw: wxPython
keywords (position, size, style) plus the ‘stereo’ keyword

SetDesiredUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetDesiredUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

SetStillUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetStillUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

OnPaint(event)
Handles the wx.EVT_PAINT event for wxVTKRenderWindow.

_OnSize(event)
Handles the wx.EVT_SIZE event for wxVTKRenderWindow.

OnSize(event)
Overridable event.

OnMove(event)
Overridable event.

_OnEnterWindow(event)
Handles the wx.EVT_ENTER_WINDOW event for wxVTKRenderWindow.

OnEnterWindow(event)
Overridable event.

_OnLeaveWindow(event)
Handles the wx.EVT_LEAVE_WINDOW event for wxVTKRenderWindow.

OnLeaveWindow(event)
Overridable event.

OnSetFocus(event)
Overridable event.

OnKillFocus(event)
Overridable event.

_OnButtonDown(event)
Handles the wx.EVT_LEFT/RIGHT/MIDDLE_DOWN events for wxVTKRenderWindow.

OnButtonDown(event)
Overridable event.

OnLeftDown(event)
Overridable event.

OnRightDown(event)
Overridable event.

108 Chapter 8. API

VTK

OnMiddleDown(event)
Overridable event.

_OnButtonUp(event)
Handles the wx.EVT_LEFT/RIGHT/MIDDLE_UP events for wxVTKRenderWindow.

OnButtonUp(event)
Overridable event.

OnLeftUp(event)
Overridable event.

OnRightUp(event)
Overridable event.

OnMiddleUp(event)
Overridable event.

OnMotion(event)
Overridable event.

OnChar(event)
Overridable event.

OnKeyDown(event)
Handles the wx.EVT_KEY_DOWN events for wxVTKRenderWindow.

OnKeyUp(event)
Overridable event.

GetZoomFactor()

Returns the current zoom factor.

GetRenderWindow()

Returns the render window (vtkRenderWindow).

GetPicker()

Returns the current picker (vtkCellPicker).

Render()

Actually renders the VTK scene on screen.

UpdateRenderer(event)
UpdateRenderer will identify the renderer under the mouse and set up _CurrentRenderer, _CurrentCamera,
and _CurrentLight.

GetCurrentRenderer()

Returns the current renderer.

Rotate(event)
Rotates the scene (camera).

Pan(event)
Pans the scene (camera).

Zoom(event)
Zooms the scene (camera).

8.2. Python 109

VTK

Reset(event=None)
Resets the camera.

Wireframe()

Sets the current actor representation as wireframe.

Surface()

Sets the current actor representation as surface.

PickActor(event)
Picks an actor.

vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindowConeExample()

Like it says, just a simple example.

vtkmodules.wx.wxVTKRenderWindowInteractor

A VTK RenderWindowInteractor widget for wxPython.

Find wxPython info at http://wxPython.org

Created by Prabhu Ramachandran, April 2002 Based on wxVTKRenderWindow.py

Fixes and updates by Charl P. Botha 2003-2008

Updated to new wx namespace and some cleaning up by Andrea Gavana, December 2006

Module Contents

Classes

EventTimer Simple wx.Timer class.
wxVTKRenderWindowInteractor A wxRenderWindow for wxPython. Use GetRenderWindow() to get the vtkRenderWindow. Create with the keyword stereo=1 in order to generate a stereo-capable window.

Functions

wxVTKRenderWindowInteractorConeExample Like it says, just a simple example

Data

baseClass
_useCapture

110 Chapter 8. API

http://wxPython.org
http://wxVTKRenderWindow.py

VTK

API

vtkmodules.wx.wxVTKRenderWindowInteractor.baseClass

None

vtkmodules.wx.wxVTKRenderWindowInteractor._useCapture

None

class vtkmodules.wx.wxVTKRenderWindowInteractor.EventTimer(iren)
Bases: wx.Timer

Simple wx.Timer class.

Initialization

Default class constructor. @param iren: current render window

Notify()

The timer has expired.

class vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor(parent, ID,
*args, **kw)

Bases: vtkmodules.wx.wxVTKRenderWindowInteractor.baseClass

A wxRenderWindow for wxPython. Use GetRenderWindow() to get the vtkRenderWindow. Create with the
keyword stereo=1 in order to generate a stereo-capable window.

Initialization

Default class constructor. @param parent: parent window @param ID: window id @param **kw: wxPython
keywords (position, size, style) plus the ‘stereo’ keyword

USE_STEREO

False

BindEvents()

Binds all the necessary events for navigation, sizing, drawing.

__getattr__(attr)
Makes the object behave like a vtkGenericRenderWindowInteractor.

CreateTimer(obj, evt)
Creates a timer.

DestroyTimer(obj, evt)
The timer is a one shot timer so will expire automatically.

_CursorChangedEvent(obj, evt)
Change the wx cursor if the renderwindow’s cursor was changed.

CursorChangedEvent(obj, evt)
Called when the CursorChangedEvent fires on the render window.

HideCursor()

Hides the cursor.

8.2. Python 111

VTK

ShowCursor()

Shows the cursor.

GetDisplayId()

Function to get X11 Display ID from WX and return it in a format that can be used by VTK Python.

We query the X11 Display with a new call that was added in wxPython 2.6.0.1. The call returns a SWIG
object which we can query for the address and subsequently turn into an old-style SWIG-mangled string
representation to pass to VTK.

OnMouseCaptureLost(event)
This is signalled when we lose mouse capture due to an external event, such as when a dialog box is shown.
See the wx documentation.

OnPaint(event)
Handles the wx.EVT_PAINT event for wxVTKRenderWindowInteractor.

OnSize(event)
Handles the wx.EVT_SIZE event for wxVTKRenderWindowInteractor.

OnMotion(event)
Handles the wx.EVT_MOTION event for wxVTKRenderWindowInteractor.

OnEnter(event)
Handles the wx.EVT_ENTER_WINDOW event for wxVTKRenderWindowInteractor.

OnLeave(event)
Handles the wx.EVT_LEAVE_WINDOW event for wxVTKRenderWindowInteractor.

OnButtonDown(event)
Handles the wx.EVT_LEFT/RIGHT/MIDDLE_DOWN events for wxVTKRenderWindowInteractor.

OnButtonUp(event)
Handles the wx.EVT_LEFT/RIGHT/MIDDLE_UP events for wxVTKRenderWindowInteractor.

OnMouseWheel(event)
Handles the wx.EVT_MOUSEWHEEL event for wxVTKRenderWindowInteractor.

OnKeyDown(event)
Handles the wx.EVT_KEY_DOWN event for wxVTKRenderWindowInteractor.

OnKeyUp(event)
Handles the wx.EVT_KEY_UP event for wxVTKRenderWindowInteractor.

GetRenderWindow()

Returns the render window (vtkRenderWindow).

Render()

Actually renders the VTK scene on screen.

SetRenderWhenDisabled(newValue)
Change value of __RenderWhenDisabled ivar.

If __RenderWhenDisabled is false (the default), this widget will not call Render() on the RenderWindow
if the top level frame (i.e. the containing frame) has been disabled.

This prevents recursive rendering during wx.SafeYield() calls. wx.SafeYield() can be called during the
ProgressMethod() callback of a VTK object to have progress bars and other GUI elements updated - it does

112 Chapter 8. API

VTK

this by disabling all windows (disallowing user-input to prevent re-entrancy of code) and then handling all
outstanding GUI events.

However, this often triggers an OnPaint() method for wxVTKRWIs, resulting in a Render(), resulting in
Update() being called whilst still in progress.

vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractorConeExample()

Like it says, just a simple example

Package Contents

Data

__all__

API

vtkmodules.wx.__all__

[‘wxVTKRenderWindow’, ‘wxVTKRenderWindowInteractor’]

vtkmodules.numpy_interface

Utility modules for the VTK-Python wrappers.

Submodules

vtkmodules.numpy_interface.internal_algorithms

Module Contents

Functions

_cell_derivatives
_cell_quality
_matrix_math_filter
abs Returns the absolute values of an array of scalars/vectors/tensors.
all Returns the min value of an array of scalars/vectors/tensors.
area Returns the surface area of each cell in a mesh.
aspect Returns the aspect ratio of each cell in a mesh.
aspect_gamma Returns the aspect ratio gamma of each cell in a mesh.
condition Returns the condition number of each cell in a mesh.
cross Return the cross product for two 3D vectors from two arrays of 3D vectors.
curl Returns the curl of an array of 3D vectors.
divergence Returns the divergence of an array of 3D vectors.
det Returns the determinant of an array of 2D square matrices.

continues on next page

8.2. Python 113

VTK

Table 34 – continued from previous page
determinant Returns the determinant of an array of 2D square matrices.
diagonal Returns the diagonal length of each cell in a dataset.
dot Returns the dot product of two scalars/vectors of two array of scalars/vectors.
eigenvalue Returns the eigenvalue of an array of 2D square matrices.
eigenvector Returns the eigenvector of an array of 2D square matrices.
gradient Returns the gradient of an array of scalars/vectors.
inv Returns the inverse an array of 2D square matrices.
inverse Returns the inverse of an array of 2D square matrices.
jacobian Returns the jacobian of an array of 2D square matrices.
laplacian Returns the jacobian of an array of scalars.
ln Returns the natural logarithm of an array of scalars/vectors/tensors.
log Returns the natural logarithm of an array of scalars/vectors/tensors.
log10 Returns the base 10 logarithm of an array of scalars/vectors/tensors.
max Returns the maximum value of an array of scalars/vectors/tensors.
max_angle Returns the maximum angle of each cell in a dataset.
mag Returns the magnigude of an array of scalars/vectors.
matmul Return the product of the inputs. Inputs can be vectors/tensors.
mean Returns the mean value of an array of scalars/vectors/tensors.
min Returns the min value of an array of scalars/vectors/tensors.
min_angle Returns the minimum angle of each cell in a dataset.
norm Returns the normalized values of an array of scalars/vectors.
shear Returns the shear of each cell in a dataset.
skew Returns the skew of each cell in a dataset.
strain Returns the strain of an array of 3D vectors.
sum Returns the min value of an array of scalars/vectors/tensors.
surface_normal Returns the surface normal of each cell in a dataset.
trace Returns the trace of an array of 2D square matrices.
var Returns the mean value of an array of scalars/vectors/tensors.
volume Returns the volume of each cell in a dataset.
vorticity Returns the vorticity/curl of an array of 3D vectors.
vertex_normal Returns the vertex normal of each point in a dataset.
make_vector

API

vtkmodules.numpy_interface.internal_algorithms._cell_derivatives(narray, dataset, attribute_type,
filter)

vtkmodules.numpy_interface.internal_algorithms._cell_quality(dataset, quality)

vtkmodules.numpy_interface.internal_algorithms._matrix_math_filter(narray, operation)

vtkmodules.numpy_interface.internal_algorithms.abs(narray)
Returns the absolute values of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.all(narray, axis=None)
Returns the min value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.area(dataset)
Returns the surface area of each cell in a mesh.

vtkmodules.numpy_interface.internal_algorithms.aspect(dataset)
Returns the aspect ratio of each cell in a mesh.

114 Chapter 8. API

VTK

vtkmodules.numpy_interface.internal_algorithms.aspect_gamma(dataset)
Returns the aspect ratio gamma of each cell in a mesh.

vtkmodules.numpy_interface.internal_algorithms.condition(dataset)
Returns the condition number of each cell in a mesh.

vtkmodules.numpy_interface.internal_algorithms.cross(x, y)
Return the cross product for two 3D vectors from two arrays of 3D vectors.

vtkmodules.numpy_interface.internal_algorithms.curl(narray, dataset=None)
Returns the curl of an array of 3D vectors.

vtkmodules.numpy_interface.internal_algorithms.divergence(narray, dataset=None)
Returns the divergence of an array of 3D vectors.

vtkmodules.numpy_interface.internal_algorithms.det(narray)
Returns the determinant of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.determinant(narray)
Returns the determinant of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.diagonal(dataset)
Returns the diagonal length of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.dot(a1, a2)
Returns the dot product of two scalars/vectors of two array of scalars/vectors.

vtkmodules.numpy_interface.internal_algorithms.eigenvalue(narray)
Returns the eigenvalue of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.eigenvector(narray)
Returns the eigenvector of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.gradient(narray, dataset=None)
Returns the gradient of an array of scalars/vectors.

vtkmodules.numpy_interface.internal_algorithms.inv(narray)
Returns the inverse an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.inverse(narray)
Returns the inverse of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.jacobian(dataset)
Returns the jacobian of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.laplacian(narray, dataset=None)
Returns the jacobian of an array of scalars.

vtkmodules.numpy_interface.internal_algorithms.ln(narray)
Returns the natural logarithm of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.log(narray)
Returns the natural logarithm of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.log10(narray)
Returns the base 10 logarithm of an array of scalars/vectors/tensors.

8.2. Python 115

VTK

vtkmodules.numpy_interface.internal_algorithms.max(narray, axis=None)
Returns the maximum value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.max_angle(dataset)
Returns the maximum angle of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.mag(a)
Returns the magnigude of an array of scalars/vectors.

vtkmodules.numpy_interface.internal_algorithms.matmul(a, b)
Return the product of the inputs. Inputs can be vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.mean(narray, axis=None)
Returns the mean value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.min(narray, axis=None)
Returns the min value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.min_angle(dataset)
Returns the minimum angle of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.norm(a)
Returns the normalized values of an array of scalars/vectors.

vtkmodules.numpy_interface.internal_algorithms.shear(dataset)
Returns the shear of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.skew(dataset)
Returns the skew of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.strain(narray, dataset=None)
Returns the strain of an array of 3D vectors.

vtkmodules.numpy_interface.internal_algorithms.sum(narray, axis=None)
Returns the min value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.surface_normal(dataset)
Returns the surface normal of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.trace(narray)
Returns the trace of an array of 2D square matrices.

vtkmodules.numpy_interface.internal_algorithms.var(narray, axis=None)
Returns the mean value of an array of scalars/vectors/tensors.

vtkmodules.numpy_interface.internal_algorithms.volume(dataset)
Returns the volume of each cell in a dataset.

vtkmodules.numpy_interface.internal_algorithms.vorticity(narray, dataset=None)
Returns the vorticity/curl of an array of 3D vectors.

vtkmodules.numpy_interface.internal_algorithms.vertex_normal(dataset)
Returns the vertex normal of each point in a dataset.

vtkmodules.numpy_interface.internal_algorithms.make_vector(ax, ay, az=None)

116 Chapter 8. API

VTK

vtkmodules.numpy_interface.dataset_adapter

This module provides classes that allow Numpy-type access to VTK datasets and arrays. This is best described with
some examples.

To normalize a VTK array:

from vtkmodules.vtkImagingCore vtkRTAnalyticSource import vtkmodules.numpy_interface.dataset_adapter as dsa
import vtkmodules.numpy_interface.algorithms as algs

rt = vtkRTAnalyticSource() rt.Update() image = dsa.WrapDataObject(rt.GetOutput()) rtdata = im-
age.PointData[‘RTData’] rtmin = algs.min(rtdata) rtmax = algs.max(rtdata) rtnorm = (rtdata - rtmin) / (rtmax -
rtmin) image.PointData.append(rtnorm, ‘RTData - normalized’) print image.GetPointData().GetArray(‘RTData -
normalized’).GetRange()

To calculate gradient:

grad= algs.gradient(rtnorm)

To access subsets:

grad[0:10] VTKArray([[0.10729134, 0.03763443, 0.03136338], [0.02754352,
0.03886006, 0.032589], [0.02248248, 0.04127144, 0.03500038], [0.02678365,
0.04357527, 0.03730421], [0.01765099, 0.04571581, 0.03944477], [0.02344007,
0.04763837, 0.04136734], [0.01089381, 0.04929155, 0.04302051], [0.01769151,
0.05062952, 0.04435848], [0.002764 , 0.05161414, 0.04534309], [0.01010841,
0.05221677, 0.04594573]])

grad[:, 0] VTKArray([0.10729134, 0.02754352, 0.02248248, . . . , -0.02748174, -
0.02410045, 0.05509736])

All of this functionality is also supported for composite datasets even though their data arrays may be spread across
multiple datasets. We have implemented a VTKCompositeDataArray class that handles many Numpy style operators
and is supported by all algorithms in the algorithms module.

This module also provides an API to access composite datasets. For example:

from vtkmodules.vtkCommonDataModel import vtkMultiBlockDataSet mb = vtkMultiBlockDataSet()
mb.SetBlock(0, image.VTKObject) mb.SetBlock(1e, image.VTKObject) cds = dsa.WrapDataObject(mb) for
block in cds: print block

Note that this module implements only the wrappers for datasets and arrays. The classes implement many useful
operators. However, to make best use of these classes, take a look at the algorithms module.

Module Contents

Classes

ArrayAssociation Easy access to vtkDataObject.AttributeTypes
VTKObjectWrapper Superclass for classes that wrap VTK objects with Python objects. This class holds a reference to the wrapped VTK object. It also forwards unresolved methods to the underlying object by overloading __get__attr.
VTKArrayMetaClass
VTKArray This is a sub-class of numpy ndarray that stores a reference to a vtk array as well as the owning dataset. The numpy array and vtk array should point to the same memory location.
VTKNoneArrayMetaClass
VTKNoneArray VTKNoneArray is used to represent a “void” array. An instance of this class (NoneArray) is returned instead of None when an array that doesn’t exist in a DataSetAttributes is requested. All operations on the NoneArray return NoneArray. The main reason for this is to support operations in parallel where one of the processes may be working on an empty dataset. In such cases, the process is still expected to evaluate a whole expression because some of the functions may perform bulk MPI communication. None cannot be used in these instances because it cannot properly override operators such as add, sub etc. This is the main raison d’etre for VTKNoneArray.
VTKCompositeDataArrayMetaClass
VTKCompositeDataArray This class manages a set of arrays of the same name contained within a composite dataset. Its main purpose is to provide a Numpy-type interface to composite data arrays which are naturally nothing but a collection of vtkDataArrays. A VTKCompositeDataArray makes such a collection appear as a single Numpy array and support all array operations that this module and the associated algorithm module support. Note that this is not a subclass of a Numpy array and as such cannot be passed to native Numpy functions. Instead VTK modules should be used to process composite arrays.

continues on next page

8.2. Python 117

VTK

Table 35 – continued from previous page
DataSetAttributes This is a python friendly wrapper of vtkDataSetAttributes. It returns VTKArrays. It also provides the dictionary interface. Note that the stored array should have a shape that matches the number of elements. E.g. for a PointData, narray.shape[0] should be equal to dataset.GetNumberOfPoints()
CompositeDataSetAttributes This is a python friendly wrapper for vtkDataSetAttributes for composite datasets. Since composite datasets themselves don’t have attribute data, but the attribute data is associated with the leaf nodes in the composite dataset, this class simulates a DataSetAttributes interface by taking a union of DataSetAttributes associated with all leaf nodes.
CompositeDataIterator Wrapper for a vtkCompositeDataIterator class to satisfy the python iterator protocol. This iterator iterates over non-empty leaf nodes. To iterate over empty or non-leaf nodes, use the vtkCompositeDataIterator directly.
MultiCompositeDataIterator Iterator that can be used to iterate over multiple composite datasets together. This iterator works only with arrays that were copied from an original using CopyStructured. The most common use case is to use CopyStructure, then iterate over input and output together while creating output datasets from corresponding input datasets.
DataObject A wrapper for vtkDataObject that makes it easier to access FielData arrays as VTKArrays
Table A wrapper for vtkTable that makes it easier to access RowData array as VTKArrays
HyperTreeGrid A wrapper for vtkHyperTreeGrid that makes it easier to access CellData arrays as VTKArrays.
CompositeDataSet A wrapper for vtkCompositeData and subclasses that makes it easier to access Point/Cell/Field data as VTKCompositeDataArrays. It also provides a Python type iterator.
DataSet This is a python friendly wrapper of a vtkDataSet that defines a few useful properties.
PointSet This is a python friendly wrapper of a vtkPointSet that defines a few useful properties.
PolyData This is a python friendly wrapper of a vtkPolyData that defines a few useful properties.
UnstructuredGrid This is a python friendly wrapper of a vtkUnstructuredGrid that defines a few useful properties.
Graph This is a python friendly wrapper of a vtkGraph that defines a few useful properties.
Molecule This is a python friendly wrapper of a vtkMolecule that defines a few useful properties.

Functions

reshape_append_ones Returns a list with the two arguments, any of them may be processed. If the arguments are numpy.ndarrays, append 1s to the shape of the array with the smallest number of dimensions until the arrays have the same number of dimensions. Does nothing if the arguments are not ndarrays or the arrays have the same number of dimensions.
vtkDataArrayToVTKArray Given a vtkDataArray and a dataset owning it, returns a VTKArray.
numpyTovtkDataArray Given a numpy array or a VTKArray and a name, returns a vtkDataArray. The resulting vtkDataArray will store a reference to the numpy array: the numpy array is released only when the vtkDataArray is destroyed.
_make_tensor_array_contiguous
_metaclass For compatibility between python 2 and python 3.
WrapDataObject Returns a Numpy friendly wrapper of a vtkDataObject.

Data

NoneArray

API

vtkmodules.numpy_interface.dataset_adapter.reshape_append_ones(a1, a2)
Returns a list with the two arguments, any of them may be processed. If the arguments are numpy.ndarrays,
append 1s to the shape of the array with the smallest number of dimensions until the arrays have the same
number of dimensions. Does nothing if the arguments are not ndarrays or the arrays have the same number of
dimensions.

class vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

Easy access to vtkDataObject.AttributeTypes

POINT

None

CELL

None

FIELD

None

118 Chapter 8. API

VTK

ROW

None

class vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper(vtkobject)
Bases: object

Superclass for classes that wrap VTK objects with Python objects. This class holds a reference to the wrapped
VTK object. It also forwards unresolved methods to the underlying object by overloading __get__attr.

Initialization

__getattr__(name)
Forwards unknown attribute requests to VTK object.

vtkmodules.numpy_interface.dataset_adapter.vtkDataArrayToVTKArray(array, dataset=None)
Given a vtkDataArray and a dataset owning it, returns a VTKArray.

vtkmodules.numpy_interface.dataset_adapter.numpyTovtkDataArray(array, name='numpy_array',
array_type=None)

Given a numpy array or a VTKArray and a name, returns a vtkDataArray. The resulting vtkDataArray will store
a reference to the numpy array: the numpy array is released only when the vtkDataArray is destroyed.

vtkmodules.numpy_interface.dataset_adapter._make_tensor_array_contiguous(array)

vtkmodules.numpy_interface.dataset_adapter._metaclass(mcs)
For compatibility between python 2 and python 3.

class vtkmodules.numpy_interface.dataset_adapter.VTKArrayMetaClass

Bases: type

__new__(name, parent, attr)
We overwrite numerical/comparison operators because we might need to reshape one of the arrays to per-
form the operation without broadcast errors. For instance:

An array G of shape (n,3) resulted from computing the gradient on a scalar array S of shape (n,) cannot
be added together without reshaping. G + expand_dims(S,1) works, G + S gives an error: ValueError:
operands could not be broadcast together with shapes (n,3) (n,)

This metaclass overwrites operators such that it computes this reshape operation automatically by append-
ing 1s to the dimensions of the array with fewer dimensions.

class vtkmodules.numpy_interface.dataset_adapter.VTKArray(shape, dtype=float, buffer=None,
offset=0, strides=None, order=None)

Bases: numpy.ndarray

This is a sub-class of numpy ndarray that stores a reference to a vtk array as well as the owning dataset. The
numpy array and vtk array should point to the same memory location.

8.2. Python 119

VTK

Initialization

_numeric_op(other, attr_name)
Used to implement numpy-style numerical operations such as add, mul, etc.

_reverse_numeric_op(other, attr_name)
Used to implement numpy-style numerical operations such as add, mul, etc.

__new__(input_array, array=None, dataset=None)

__array_finalize__(obj)

__getattr__(name)
Forwards unknown attribute requests to VTK array.

__array_wrap__(out_arr, context=None)

property DataSet

Get the dataset this array is associated with. The reference to the dataset is held through a vtkWeakReference
to ensure it doesn’t prevent the dataset from being collected if necessary.

class vtkmodules.numpy_interface.dataset_adapter.VTKNoneArrayMetaClass

Bases: type

__new__(name, parent, attr)
Simplify the implementation of the numeric/logical sequence API.

class vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray

Bases: object

VTKNoneArray is used to represent a “void” array. An instance of this class (NoneArray) is returned instead
of None when an array that doesn’t exist in a DataSetAttributes is requested. All operations on the NoneArray
return NoneArray. The main reason for this is to support operations in parallel where one of the processes may be
working on an empty dataset. In such cases, the process is still expected to evaluate a whole expression because
some of the functions may perform bulk MPI communication. None cannot be used in these instances because
it cannot properly override operators such as add, sub etc. This is the main raison d’etre for VTKNoneArray.

__getitem__(index)

_op(other, op)
Used to implement numpy-style numerical operations such as add, mul, etc.

astype(dtype)
Implements numpy array’s astype method.

vtkmodules.numpy_interface.dataset_adapter.NoneArray

‘VTKNoneArray(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArrayMetaClass

Bases: type

__new__(name, parent, attr)
Simplify the implementation of the numeric/logical sequence API.

class vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray(arrays=[],
dataset=None,
name=None,
association=None)

120 Chapter 8. API

VTK

Bases: object

This class manages a set of arrays of the same name contained within a composite dataset. Its main purpose
is to provide a Numpy-type interface to composite data arrays which are naturally nothing but a collection of
vtkDataArrays. A VTKCompositeDataArray makes such a collection appear as a single Numpy array and support
all array operations that this module and the associated algorithm module support. Note that this is not a subclass
of a Numpy array and as such cannot be passed to native Numpy functions. Instead VTK modules should be
used to process composite arrays.

Initialization

Construct a composite array given a container of arrays, a dataset, name and association. It is sufficient to define
a container of arrays to define a composite array. It is also possible to initialize an array by defining the dataset,
name and array association. In that case, the underlying arrays will be created lazily when they are needed. It is
recommended to use the latter method when initializing from an existing composite dataset.

__init_from_composite()

GetSize()

Returns the number of elements in the array.

size

‘property(. . .)’

GetArrays()

Returns the internal container of VTKArrays. If necessary, this will populate the array list from a composite
dataset.

Arrays

‘property(. . .)’

__getitem__(index)
Overwritten to refer indexing to underlying VTKArrays. For the most part, this will behave like Numpy.
Note that indexing is done per array - arrays are never treated as forming a bigger array. If the index is
another composite array, a one-to-one mapping between arrays is assumed.

_numeric_op(other, op)
Used to implement numpy-style numerical operations such as add, mul, etc.

_reverse_numeric_op(other, op)
Used to implement numpy-style numerical operations such as add, mul, etc.

__str__()

astype(dtype)
Implements numpy array’s as array method.

class vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes(vtkobject, dataset,
association)

Bases: vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper

This is a python friendly wrapper of vtkDataSetAttributes. It returns VTKArrays. It also provides the dictionary
interface. Note that the stored array should have a shape that matches the number of elements. E.g. for a
PointData, narray.shape[0] should be equal to dataset.GetNumberOfPoints()

8.2. Python 121

VTK

Initialization

__getitem__(idx)
Implements the [] operator. Accepts an array name or index.

GetArray(idx)
Given an index or name, returns a VTKArray.

keys()

Returns the names of the arrays as a list.

values()

Returns the arrays as a list.

PassData(other)
A wrapper for vtkDataSet.PassData.

append(narray, name)
Appends narray to the dataset attributes.

If narray is a scalar, create an array with this scalar for each element. If narray is an array with a size not
matching the array association (e.g. size should be equal to GetNumberOfPoints() for PointData), copy the
input narray for each element. This is intended to ease initialization, typically using same 3d vector for
each element. In any case, be careful about memory explosion.

class vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes(dataset,
association)

This is a python friendly wrapper for vtkDataSetAttributes for composite datasets. Since composite datasets
themselves don’t have attribute data, but the attribute data is associated with the leaf nodes in the composite
dataset, this class simulates a DataSetAttributes interface by taking a union of DataSetAttributes associated with
all leaf nodes.

Initialization

__determine_arraynames()

keys()

Returns the names of the arrays as a list.

__getitem__(idx)
Implements the [] operator. Accepts an array name.

append(narray, name)
Appends a new array to the composite dataset attributes.

GetArray(idx)
Given a name, returns a VTKCompositeArray.

PassData(other)
Emulate PassData for composite datasets.

class vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator(cds)
Bases: object

Wrapper for a vtkCompositeDataIterator class to satisfy the python iterator protocol. This iterator iterates over
non-empty leaf nodes. To iterate over empty or non-leaf nodes, use the vtkCompositeDataIterator directly.

122 Chapter 8. API

VTK

Initialization

__iter__()

__next__()

next()

__getattr__(name)
Returns attributes from the vtkCompositeDataIterator.

class vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator(cds)
Bases: vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator

Iterator that can be used to iterate over multiple composite datasets together. This iterator works only with arrays
that were copied from an original using CopyStructured. The most common use case is to use CopyStructure,
then iterate over input and output together while creating output datasets from corresponding input datasets.

Initialization

__next__()

next()

class vtkmodules.numpy_interface.dataset_adapter.DataObject(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.VTKObjectWrapper

A wrapper for vtkDataObject that makes it easier to access FielData arrays as VTKArrays

Initialization

GetAttributes(type)
Returns the attributes specified by the type as a DataSetAttributes instance.

HasAttributes(type)
Returns if current object support this attributes type

GetFieldData()

Returns the field data as a DataSetAttributes instance.

FieldData

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.Table(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkTable that makes it easier to access RowData array as VTKArrays

8.2. Python 123

VTK

Initialization

GetRowData()

Returns the row data as a DataSetAttributes instance.

HasAttributes(type)
Returns if current object support this attributes type

RowData

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkHyperTreeGrid that makes it easier to access CellData arrays as VTKArrays.

Initialization

GetCellData()

Returns the cell data as DataSetAttributes instance.

HasAttributes(type)
Returns if current object support this attributes type

CellData

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

A wrapper for vtkCompositeData and subclasses that makes it easier to access Point/Cell/Field data as VTK-
CompositeDataArrays. It also provides a Python type iterator.

Initialization

__iter__()

Creates an iterator for the contained datasets.

GetNumberOfElements(assoc)
Returns the total number of cells or points depending on the value of assoc which can be ArrayAssocia-
tion.POINT or ArrayAssociation.CELL.

GetNumberOfPoints()

Returns the total number of points of all datasets in the composite dataset. Note that this traverses the whole
composite dataset every time and should not be called repeatedly for large composite datasets.

GetNumberOfCells()

Returns the total number of cells of all datasets in the composite dataset. Note that this traverses the whole
composite dataset every time and should not be called repeatedly for large composite datasets.

GetAttributes(type)
Returns the attributes specified by the type as a CompositeDataSetAttributes instance.

HasAttributes(type)
Returns true if every leaves of current composite object support this attributes type

124 Chapter 8. API

VTK

GetPointData()

Returns the point data as a DataSetAttributes instance.

GetCellData()

Returns the cell data as a DataSetAttributes instance.

GetFieldData()

Returns the field data as a DataSetAttributes instance.

GetPoints()

Returns the points as a VTKCompositeDataArray instance.

PointData

‘property(. . .)’

CellData

‘property(. . .)’

FieldData

‘property(. . .)’

Points

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.DataSet(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkDataSet that defines a few useful properties.

Initialization

GetPointData()

Returns the point data as a DataSetAttributes instance.

GetCellData()

Returns the cell data as a DataSetAttributes instance.

HasAttributes(type)
Returns if current object support this attributes type

PointData

‘property(. . .)’

CellData

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.PointSet(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataSet

This is a python friendly wrapper of a vtkPointSet that defines a few useful properties.

8.2. Python 125

VTK

Initialization

GetPoints()

Returns the points as a VTKArray instance. Returns None if the dataset has implicit points.

SetPoints(pts)
Given a VTKArray instance, sets the points of the dataset.

Points

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.PolyData(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.PointSet

This is a python friendly wrapper of a vtkPolyData that defines a few useful properties.

Initialization

GetPolygons()

Returns the polys as a VTKArray instance.

Polygons

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.PointSet

This is a python friendly wrapper of a vtkUnstructuredGrid that defines a few useful properties.

Initialization

GetCellTypes()

Returns the cell types as a VTKArray instance.

GetCellLocations()

Returns the cell locations as a VTKArray instance.

GetCells()

Returns the cells as a VTKArray instance.

SetCells(cellTypes, cellLocations, cells)
Given cellTypes, cellLocations, cells as VTKArrays, populates the unstructured grid data structures.

CellTypes

‘property(. . .)’

CellLocations

‘property(. . .)’

Cells

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.Graph(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkGraph that defines a few useful properties.

126 Chapter 8. API

VTK

Initialization

GetVertexData()

Returns the vertex data as a DataSetAttributes instance.

GetEdgeData()

Returns the edge data as a DataSetAttributes instance.

VertexData

‘property(. . .)’

EdgeData

‘property(. . .)’

class vtkmodules.numpy_interface.dataset_adapter.Molecule(vtkobject)
Bases: vtkmodules.numpy_interface.dataset_adapter.DataObject

This is a python friendly wrapper of a vtkMolecule that defines a few useful properties.

Initialization

GetAtomData()

Returns the atom data as a DataSetAttributes instance.

GetBondData()

Returns the bond data as a DataSetAttributes instance.

AtomData

‘property(. . .)’

BondData

‘property(. . .)’

vtkmodules.numpy_interface.dataset_adapter.WrapDataObject(ds)
Returns a Numpy friendly wrapper of a vtkDataObject.

vtkmodules.numpy_interface.algorithms

This module provides a number of algorithms that can be used with the dataset classes defined in the dataset_adapter
module. See the documentation of the dataset_adapter for some examples. These algorithms work in serial and in
parallel as long as the data is partitioned according to VTK data parallel execution guidelines. For details, see the
documentation of individual algorithms.

Module Contents

Functions

_apply_func2 Apply a function to each member of a VTKCompositeDataArray. Returns a list of arrays.
apply_ufunc Apply a function to each member of a VTKCompositeDataArray. VTKArray and numpy arrays are also supported.
_make_ufunc Given a ufunc, creates a closure that applies it to each member of a VTKCompositeDataArray.
apply_dfunc Apply a two argument function to each member of a VTKCompositeDataArray and another argument The second argument can be a VTKCompositeDataArray, in which case a one-to-one match between arrays is assumed. Otherwise, the function is applied to the composite array with the second argument repeated. VTKArray and numpy arrays are also supported.

continues on next page

8.2. Python 127

VTK

Table 38 – continued from previous page
_make_dfunc Given a function that requires two arguments, creates a closure that applies it to each member of a VTKCompositeDataArray.
_make_dsfunc Given a function that requires two arguments (one array, one dataset), creates a closure that applies it to each member of a VTKCompositeDataArray. Note that this function is mainly for internal use by this module.
_make_dsfunc2 Given a function that requires a dataset, creates a closure that applies it to each member of a VTKCompositeDataArray.
_lookup_mpi_type
_reduce_dims
_global_func
bitwise_or Implements element by element or (bitwise, | in C/C++) operation. If one of the arrays is a NoneArray, this will return the array that is not NoneArray, treating NoneArray as 0 in the or operation.
make_point_mask_from_NaNs This method will create a ghost array corresponding to an input with NaN values. For each NaN value, the output array will have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT. These values are also combined with any ghost values that the dataset may have.
make_cell_mask_from_NaNs This method will create a ghost array corresponding to an input with NaN values. For each NaN value, the output array will have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENCELL. These values are also combined with any ghost values that the dataset may have.
make_mask_from_NaNs This method will create a ghost array corresponding to an input with NaN values. For each NaN value, the output array will have a corresponding value of vtkmodules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT or HIDDENCELL is the is_cell argument is true. If an input ghost_array is passed, the array is bitwise_or’ed with it, simply adding the new ghost values to it.
sum Returns the sum of all values along a particular axis (dimension). Given an array of m tuples and n components:
max Returns the max of all values along a particular axis (dimension). Given an array of m tuples and n components:
min Returns the min of all values along a particular axis (dimension). Given an array of m tuples and n components:
_global_per_block
sum_per_block Returns the sum of all values along a particular axis (dimension) for each block of an VTKCompositeDataArray.
count_per_block Return the number of elements of each block in a VTKCompositeDataArray along an axis.
mean_per_block Returns the mean of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray.
max_per_block Returns the max of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray. Given an array of m tuples and n components:
min_per_block Returns the min of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray. Given an array of m tuples and n components:
all Returns True if all values of an array evaluate to True, returns False otherwise. This is useful to check if all values of an array match a certain condition such as:
_local_array_count
_array_count
mean Returns the mean of all values along a particular axis (dimension). Given an array of m tuples and n components:
var Returns the variance of all values along a particular axis (dimension). Given an array of m tuples and n components:
std Returns the standard deviation of all values along a particular axis (dimension). Given an array of m tuples and n components:
shape Returns the shape (dimensions) of an array.
make_vector Given 2 or 3 scalar arrays, returns a vector array. If only 2 scalars are provided, the third component will be set to 0.
unstructured_from_composite_arrays Given a set of VTKCompositeDataArrays, creates a vtkUnstructuredGrid. The main goal of this function is to transform the output of XXX_per_block() methods to a single dataset that can be visualized and further processed. Here arrays is an iterable (e.g. list) of (array, name) pairs. Here is an example:

Data

in1d
isnan
sqrt
negative
reciprocal
square
exp
floor
ceil
rint
sin
cos
tan
arcsin
arccos
arctan
arctan2
sinh

continues on next page

128 Chapter 8. API

VTK

Table 39 – continued from previous page
cosh
tanh
arcsinh
arccosh
arctanh
where
flatnonzero
nonzero
expand_dims
abs
area
aspect
aspect_gamma
condition
cross
curl
divergence
det
determinant
diagonal
dot
eigenvalue
eigenvector
gradient
inv
inverse
jacobian
laplacian
ln
log
log10
max_angle
mag
matmul
min_angle
norm
shear
skew
strain
surface_normal
trace
volume
vorticity
vertex_normal
logical_not
divide
multiply
add
subtract
mod
remainder
power

continues on next page

8.2. Python 129

VTK

Table 39 – continued from previous page
hypot

API

vtkmodules.numpy_interface.algorithms._apply_func2(func, array, args)
Apply a function to each member of a VTKCompositeDataArray. Returns a list of arrays.

Note that this function is mainly for internal use by this module.

vtkmodules.numpy_interface.algorithms.apply_ufunc(func, array, args=())
Apply a function to each member of a VTKCompositeDataArray. VTKArray and numpy arrays are also sup-
ported.

vtkmodules.numpy_interface.algorithms._make_ufunc(ufunc)
Given a ufunc, creates a closure that applies it to each member of a VTKCompositeDataArray.

Note that this function is mainly for internal use by this module.

vtkmodules.numpy_interface.algorithms.apply_dfunc(dfunc, array1, val2)
Apply a two argument function to each member of a VTKCompositeDataArray and another argument The second
argument can be a VTKCompositeDataArray, in which case a one-to-one match between arrays is assumed.
Otherwise, the function is applied to the composite array with the second argument repeated. VTKArray and
numpy arrays are also supported.

vtkmodules.numpy_interface.algorithms._make_dfunc(dfunc)
Given a function that requires two arguments, creates a closure that applies it to each member of a VTKCom-
positeDataArray.

Note that this function is mainly for internal use by this module.

vtkmodules.numpy_interface.algorithms._make_dsfunc(dsfunc)
Given a function that requires two arguments (one array, one dataset), creates a closure that applies it to each
member of a VTKCompositeDataArray. Note that this function is mainly for internal use by this module.

vtkmodules.numpy_interface.algorithms._make_dsfunc2(dsfunc)
Given a function that requires a dataset, creates a closure that applies it to each member of a VTKComposite-
DataArray.

Note that this function is mainly for internal use by this module.

vtkmodules.numpy_interface.algorithms._lookup_mpi_type(ntype)

vtkmodules.numpy_interface.algorithms._reduce_dims(array, comm)

vtkmodules.numpy_interface.algorithms._global_func(impl, array, axis, controller)

vtkmodules.numpy_interface.algorithms.bitwise_or(array1, array2)
Implements element by element or (bitwise, | in C/C++) operation. If one of the arrays is a NoneArray, this will
return the array that is not NoneArray, treating NoneArray as 0 in the or operation.

vtkmodules.numpy_interface.algorithms.make_point_mask_from_NaNs(dataset, array)
This method will create a ghost array corresponding to an input with NaN values.
For each NaN value, the output array will have a corresponding value of vtkmod-
ules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT. These values are also combined with
any ghost values that the dataset may have.

130 Chapter 8. API

VTK

vtkmodules.numpy_interface.algorithms.make_cell_mask_from_NaNs(dataset, array)
This method will create a ghost array corresponding to an input with NaN values.
For each NaN value, the output array will have a corresponding value of vtkmod-
ules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENCELL. These values are also combined with
any ghost values that the dataset may have.

vtkmodules.numpy_interface.algorithms.make_mask_from_NaNs(array, ghost_array=dsa.NoneArray,
is_cell=False)

This method will create a ghost array corresponding to an input with NaN values.
For each NaN value, the output array will have a corresponding value of vtkmod-
ules.vtkCommonDataModel.vtkDataSetAttributes.HIDDENPOINT or HIDDENCELL is the is_cell argument
is true. If an input ghost_array is passed, the array is bitwise_or’ed with it, simply adding the new ghost values
to it.

vtkmodules.numpy_interface.algorithms.sum(array, axis=None, controller=None)
Returns the sum of all values along a particular axis (dimension). Given an array of m tuples and n components:

• Default is to return the sum of all values in an array.

• axis=0: Sum values of all components and return a one tuple, n-component array.

• axis=1: Sum values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will sum across processes when a controller argument is passed or the
global controller is defined. To disable parallel summing when running in parallel, pass a dummy controller as
follows:

sum(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.max(array, axis=None, controller=None)
Returns the max of all values along a particular axis (dimension). Given an array of m tuples and n components:

• Default is to return the max of all values in an array.

• axis=0: Return the max values of all tuples and return a one tuple, n-component array.

• axis=1: Return the max values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the max across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

max(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.min(array, axis=None, controller=None)
Returns the min of all values along a particular axis (dimension). Given an array of m tuples and n components:

• Default is to return the min of all values in an array.

• axis=0: Return the min values of all tuples and return a one tuple, n-component array.

• axis=1: Return the min values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the min across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

min(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms._global_per_block(impl, array, axis=None, controller=None)

8.2. Python 131

VTK

vtkmodules.numpy_interface.algorithms.sum_per_block(array, axis=None, controller=None)
Returns the sum of all values along a particular axis (dimension) for each block of an VTKCompositeDataArray.

Given an array of m tuples and n components:

• Default is to return the sum of all values in an array.

• axis=0: Sum values of all components and return a one tuple, n-component array.

• axis=1: Sum values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will sum across processes when a controller argument is passed or the
global controller is defined. To disable parallel summing when running in parallel, pass a dummy controller as
follows:

sum_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.count_per_block(array, axis=None, controller=None)
Return the number of elements of each block in a VTKCompositeDataArray along an axis.

• if axis is None, the number of all elements (ntuples * ncomponents) is returned.

• if axis is 0, the number of tuples is returned.

vtkmodules.numpy_interface.algorithms.mean_per_block(array, axis=None, controller=None)
Returns the mean of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray.

Given an array of m tuples and n components:

• Default is to return the mean of all values in an array.

• axis=0: Return the mean values of all components and return a one tuple, n-component array.

• axis=1: Return the mean values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the mean across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

mean(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.max_per_block(array, axis=None, controller=None)
Returns the max of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

• Default is to return the max of all values in an array.

• axis=0: Return the max values of all components and return a one tuple, n-component array.

• axis=1: Return the max values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the max across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

max_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.min_per_block(array, axis=None, controller=None)
Returns the min of all values along a particular axis (dimension) for each block of a VTKCompositeDataArray.
Given an array of m tuples and n components:

• Default is to return the min of all values in an array.

• axis=0: Return the min values of all components and return a one tuple, n-component array.

• axis=1: Return the min values of all components of each tuple and return an m-tuple, 1-component array.

132 Chapter 8. API

VTK

When called in parallel, this function will compute the min across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

min_per_block(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.all(array, axis=None, controller=None)
Returns True if all values of an array evaluate to True, returns False otherwise. This is useful to check if all
values of an array match a certain condition such as:

algorithms.all(array > 5)

vtkmodules.numpy_interface.algorithms._local_array_count(array, axis)

vtkmodules.numpy_interface.algorithms._array_count(array, axis, controller)

vtkmodules.numpy_interface.algorithms.mean(array, axis=None, controller=None, size=None)
Returns the mean of all values along a particular axis (dimension). Given an array of m tuples and n components:

• Default is to return the mean of all values in an array.

• axis=0: Return the mean values of all components and return a one tuple, n-component array.

• axis=1: Return the mean values of all components of each tuple and return an m-tuple, 1-component array.

When called in parallel, this function will compute the mean across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

mean(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.var(array, axis=None, controller=None)
Returns the variance of all values along a particular axis (dimension). Given an array of m tuples and n compo-
nents:

• Default is to return the variance of all values in an array.

• axis=0: Return the variance values of all components and return a one tuple, n-component array.

• axis=1: Return the variance values of all components of each tuple and return an m-tuple, 1-component
array.

When called in parallel, this function will compute the variance across processes when a controller argument is
passed or the global controller is defined. To disable parallel summing when running in parallel, pass a dummy
controller as follows:

var(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

vtkmodules.numpy_interface.algorithms.std(array, axis=None, controller=None)
Returns the standard deviation of all values along a particular axis (dimension). Given an array of m tuples and
n components:

• Default is to return the standard deviation of all values in an array.

• axis=0: Return the standard deviation values of all components and return a one tuple, n-component array.

• axis=1: Return the standard deviation values of all components of each tuple and return an m-tuple, 1-
component array.

When called in parallel, this function will compute the standard deviation across processes when a controller
argument is passed or the global controller is defined. To disable parallel summing when running in parallel,
pass a dummy controller as follows:

std(array, controller=vtkmodules.vtkParallelCore.vtkDummyController()).

8.2. Python 133

VTK

vtkmodules.numpy_interface.algorithms.shape(array)
Returns the shape (dimensions) of an array.

vtkmodules.numpy_interface.algorithms.make_vector(arrayx, arrayy, arrayz=None)
Given 2 or 3 scalar arrays, returns a vector array. If only 2 scalars are provided, the third component will be set
to 0.

vtkmodules.numpy_interface.algorithms.unstructured_from_composite_arrays(points, arrays,
controller=None)

Given a set of VTKCompositeDataArrays, creates a vtkUnstructuredGrid. The main goal of this function is to
transform the output of XXX_per_block() methods to a single dataset that can be visualized and further pro-
cessed. Here arrays is an iterable (e.g. list) of (array, name) pairs. Here is an example:

centroid = mean_per_block(composite_data.Points) T = mean_per_block(composite_data.PointData[‘Temperature’])
ug = unstructured_from_composite_arrays(centroid, (T, ‘Temperature’))

When called in parallel, this function makes sure that each array in the input dataset is represented only on 1
process. This is important because methods like mean_per_block() return the same value for blocks that are
partitioned on all of the participating processes. If the same point were to be created across multiple processes
in the output, filters like histogram would report duplicate values erroneously.

vtkmodules.numpy_interface.algorithms.in1d

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.isnan

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.sqrt

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.negative

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.reciprocal

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.square

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.exp

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.floor

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.ceil

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.rint

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.sin

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.cos

‘_make_ufunc(. . .)’

134 Chapter 8. API

VTK

vtkmodules.numpy_interface.algorithms.tan

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arcsin

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arccos

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arctan

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arctan2

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.sinh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.cosh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.tanh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arcsinh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arccosh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.arctanh

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.where

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.flatnonzero

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.nonzero

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.expand_dims

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.abs

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.area

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.aspect

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.aspect_gamma

‘_make_dsfunc2(. . .)’

8.2. Python 135

VTK

vtkmodules.numpy_interface.algorithms.condition

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.cross

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.curl

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.divergence

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.det

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.determinant

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.diagonal

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.dot

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.eigenvalue

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.eigenvector

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.gradient

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.inv

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.inverse

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.jacobian

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.laplacian

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.ln

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.log

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.log10

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.max_angle

‘_make_dsfunc2(. . .)’

136 Chapter 8. API

VTK

vtkmodules.numpy_interface.algorithms.mag

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.matmul

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.min_angle

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.norm

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.shear

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.skew

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.strain

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.surface_normal

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.trace

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.volume

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.vorticity

‘_make_dsfunc(. . .)’

vtkmodules.numpy_interface.algorithms.vertex_normal

‘_make_dsfunc2(. . .)’

vtkmodules.numpy_interface.algorithms.logical_not

‘_make_ufunc(. . .)’

vtkmodules.numpy_interface.algorithms.divide

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.multiply

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.add

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.subtract

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.mod

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.remainder

‘_make_dfunc(. . .)’

8.2. Python 137

VTK

vtkmodules.numpy_interface.algorithms.power

‘_make_dfunc(. . .)’

vtkmodules.numpy_interface.algorithms.hypot

‘_make_dfunc(. . .)’

Package Contents

Data

__all__

API

vtkmodules.numpy_interface.__all__

[‘algorithms’, ‘dataset_adapter’]

vtkmodules.gtk

pyGTK widgets for VTK.

Submodules

vtkmodules.gtk.GtkVTKRenderWindow

Description:

Provides a simple VTK widget for pyGtk. This embeds a vtkRenderWindow inside a GTK widget. This is based on
vtkTkRenderWidget.py. The GtkVTKRenderWindowBase class provides the abstraction necessary for someone to use
their own interaction behaviour. The method names are similar to those in vtkInteractorStyle.h.

The class uses the gtkgl.GtkGLArea widget (gtkglarea). This avoids a lot of problems with flicker.

There is a working example at the bottom.

Credits:

Thanks to Dave Reed for testing the code under various platforms and for his suggestion to use the GtkGLArea widget
to avoid flicker related issues.

Created by Prabhu Ramachandran, March 2001.

Using GtkGLArea, March, 2002.

Bugs:

(*) There is a focus related problem. Tkinter has a focus object that handles focus events. I don’t know of an equivalent
object under GTK. So, when an ‘enter_notify_event’ is received on the GtkVTKRenderWindow I grab the focus but I
don’t know what to do when I get a ‘leave_notify_event’.

(*) Will not work under Win32 because it uses the XID of a window in OnRealize. Suggestions to fix this will be
appreciated.

138 Chapter 8. API

http://vtkTkRenderWidget.py

VTK

Module Contents

Classes

GtkVTKRenderWindowBase A base class that enables one to embed a vtkRenderWindow into a pyGTK widget. This class embeds the RenderWindow correctly. Provided are some empty methods that can be overloaded to provide a user defined interaction behaviour. The event handling functions have names that are somewhat similar to the ones in the vtkInteractorStyle class included with VTK.
GtkVTKRenderWindow An example of a fully functional GtkVTKRenderWindow that is based on the vtkRenderWidget.py provided with the VTK sources.

Functions

main

API

class vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase(*args)
Bases: gtkgl.GtkGLArea

A base class that enables one to embed a vtkRenderWindow into a pyGTK widget. This class embeds the
RenderWindow correctly. Provided are some empty methods that can be overloaded to provide a user defined
interaction behaviour. The event handling functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

Initialization

ConnectSignals()

GetRenderWindow()

GetRenderer()

SetDesiredUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetDesiredUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

SetStillUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetStillUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

Render()

OnRealize(*args)

OnConfigure(wid, event=None)

OnExpose(*args)

OnDestroy(event=None)

8.2. Python 139

http://vtkRenderWidget.py

VTK

OnButtonDown(wid, event)
Mouse button pressed.

OnButtonUp(wid, event)
Mouse button released.

OnMouseMove(wid, event)
Mouse has moved.

OnEnter(wid, event)
Entering the vtkRenderWindow.

OnLeave(wid, event)
Leaving the vtkRenderWindow.

OnKeyPress(wid, event)
Key pressed.

OnKeyRelease(wid, event)
Key released.

class vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow(*args)
Bases: vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase

An example of a fully functional GtkVTKRenderWindow that is based on the vtkRenderWidget.py provided with
the VTK sources.

Initialization

OnButtonDown(wid, event)

OnButtonUp(wid, event)

OnMouseMove(wid, event=None)

OnEnter(wid, event=None)

OnLeave(wid, event)

OnKeyPress(wid, event=None)

GetZoomFactor()

SetZoomFactor(zf)

GetPicker()

Render()

UpdateRenderer(x, y)
UpdateRenderer will identify the renderer under the mouse and set up _CurrentRenderer, _CurrentCamera,
and _CurrentLight.

GetCurrentRenderer()

StartMotion(wid, event=None)

EndMotion(wid, event=None)

140 Chapter 8. API

http://vtkRenderWidget.py

VTK

Rotate(x, y)

Pan(x, y)

Zoom(x, y)

Reset()

Wireframe()

Surface()

PickActor(x, y)

vtkmodules.gtk.GtkVTKRenderWindow.main()

vtkmodules.gtk.GtkGLExtVTKRenderWindow

Description:

This provides a VTK widget for pyGtk. This embeds a vtkRenderWindow inside a GTK widget. This is based on
GtkVTKRenderWindow.py.

The extensions here allow the use of gtkglext rather than gtkgl and pygtk-2 rather than pygtk-0. It requires pygtk-2.0.0
or later.

There is a working example at the bottom.

Credits:

John Hunter jdhunter@ace.bsd.uchicago.edu developed and tested this code based on VTK’s GtkVTKRenderWin-
dow.py and extended it to work with pygtk-2.0.0.

License:

VTK license.

Module Contents

Classes

GtkGLExtVTKRenderWindowBase A base class that enables one to embed a vtkRenderWindow into a pyGTK widget. This class embeds the RenderWindow correctly. Provided are some empty methods that can be overloaded to provide a user defined interaction behaviour. The event handling functions have names that are somewhat similar to the ones in the vtkInteractorStyle class included with VTK.
GtkGLExtVTKRenderWindow An example of a fully functional GtkGLExtVTKRenderWindow that is based on the vtkRenderWidget.py provided with the VTK sources.

Functions

main

8.2. Python 141

http://GtkVTKRenderWindow.py
mailto:jdhunter@ace.bsd.uchicago.edu
http://GtkVTKRenderWindow.py
http://GtkVTKRenderWindow.py
http://vtkRenderWidget.py

VTK

API

class vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase(*args)
Bases: gtk.gtkgl.DrawingArea

A base class that enables one to embed a vtkRenderWindow into a pyGTK widget. This class embeds the
RenderWindow correctly. Provided are some empty methods that can be overloaded to provide a user defined
interaction behaviour. The event handling functions have names that are somewhat similar to the ones in the
vtkInteractorStyle class included with VTK.

Initialization

ConnectSignals()

GetRenderWindow()

GetRenderer()

SetDesiredUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetDesiredUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

SetStillUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetStillUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

Render()

OnRealize(*args)

Created()

OnConfigure(widget, event)

OnExpose(*args)

OnDestroy(*args)

OnButtonDown(wid, event)
Mouse button pressed.

OnButtonUp(wid, event)
Mouse button released.

OnMouseMove(wid, event)
Mouse has moved.

OnEnter(wid, event)
Entering the vtkRenderWindow.

OnLeave(wid, event)
Leaving the vtkRenderWindow.

142 Chapter 8. API

VTK

OnKeyPress(wid, event)
Key pressed.

OnKeyRelease(wid, event)
Key released.

class vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow(*args)
Bases: vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase

An example of a fully functional GtkGLExtVTKRenderWindow that is based on the vtkRenderWidget.py pro-
vided with the VTK sources.

Initialization

OnButtonDown(wid, event)

OnButtonUp(wid, event)

OnMouseMove(wid, event=None)

OnEnter(wid, event=None)

OnKeyPress(wid, event=None)

GetZoomFactor()

SetZoomFactor(zf)

GetPicker()

Render()

UpdateRenderer(x, y)
UpdateRenderer will identify the renderer under the mouse and set up _CurrentRenderer, _CurrentCamera,
and _CurrentLight.

GetCurrentRenderer()

GetCurrentCamera()

StartMotion(wid, event=None)

EndMotion(wid, event=None)

Rotate(x, y)

Pan(x, y)

Zoom(x, y)

Reset()

Wireframe()

Surface()

PickActor(x, y)

vtkmodules.gtk.GtkGLExtVTKRenderWindow.main()

8.2. Python 143

http://vtkRenderWidget.py

VTK

vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

Description:

Provides a pyGtk vtkRenderWindowInteractor widget. This embeds a vtkRenderWindow inside a GTK widget and uses
the vtkGenericRenderWindowInteractor for the event handling. This is similar to GtkVTKRenderWindowInteractor.py.

The extensions here allow the use of gtkglext rather than gtkgl and pygtk-2 rather than pygtk-0. It requires pygtk-2.0.0
or later.

There is a working example at the bottom.

Credits:

John Hunter jdhunter@ace.bsd.uchicago.edu developed and tested this code based on VTK’s GtkVTKRenderWin-
dow.py and extended it to work with pygtk-2.0.0.

License:

VTK license.

Module Contents

Classes

GtkGLExtVTKRenderWindowInteractor Embeds a vtkRenderWindow into a pyGTK widget and uses vtkGenericRenderWindowInteractor for the event handling. This class embeds the RenderWindow correctly. A getattr hook is provided that makes the class behave like a vtkGenericRenderWindowInteractor.

Functions

main

API

class vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor(*args)
Bases: gtk.gtkgl.DrawingArea

Embeds a vtkRenderWindow into a pyGTK widget and uses vtkGenericRenderWindowInteractor for the event
handling. This class embeds the RenderWindow correctly. A getattr hook is provided that makes the class
behave like a vtkGenericRenderWindowInteractor.

Initialization

set_size_request(w, h)

ConnectSignals()

__getattr__(attr)
Makes the object behave like a vtkGenericRenderWindowInteractor

CreateTimer(obj, event)

144 Chapter 8. API

http://GtkVTKRenderWindowInteractor.py
mailto:jdhunter@ace.bsd.uchicago.edu
http://GtkVTKRenderWindow.py
http://GtkVTKRenderWindow.py

VTK

DestroyTimer(obj, event)
The timer is a one shot timer so will expire automatically.

GetRenderWindow()

Render()

OnRealize(*args)

OnConfigure(widget, event)

OnExpose(*args)

OnDestroy(event=None)

_GetCtrlShift(event)

OnButtonDown(wid, event)
Mouse button pressed.

OnButtonUp(wid, event)
Mouse button released.

OnMouseMove(wid, event)
Mouse has moved.

OnEnter(wid, event)
Entering the vtkRenderWindow.

OnLeave(wid, event)
Leaving the vtkRenderWindow.

OnKeyPress(wid, event)
Key pressed.

OnKeyRelease(wid, event)
Key released.

Initialize()

SetPicker(picker)

GetPicker(picker)

vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.main()

vtkmodules.gtk.GtkVTKRenderWindowInteractor

Description:

Provides a pyGtk vtkRenderWindowInteractor widget. This embeds a vtkRenderWindow inside a GTK widget and
uses the vtkGenericRenderWindowInteractor for the event handling. This is based on vtkTkRenderWindow.py.

The class uses the gtkgl.GtkGLArea widget (gtkglarea). This avoids a lot of problems with flicker.

There is a working example at the bottom.

Created by Prabhu Ramachandran, April 2002.

Bugs:

8.2. Python 145

http://vtkTkRenderWindow.py

VTK

(*) There is a focus related problem. Tkinter has a focus object that handles focus events. I don’t know of an equivalent
object under GTK. So, when an ‘enter_notify_event’ is received on the GtkVTKRenderWindow I grab the focus but I
don’t know what to do when I get a ‘leave_notify_event’.

(*) Will not work under Win32 because it uses the XID of a window in OnRealize. Suggestions to fix this will be
appreciated.

Module Contents

Classes

GtkVTKRenderWindowInteractor Embeds a vtkRenderWindow into a pyGTK widget and uses vtkGenericRenderWindowInteractor for the event handling. This class embeds the RenderWindow correctly. A getattr hook is provided that makes the class behave like a vtkGenericRenderWindowInteractor.

Functions

main

API

class vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor(*args)
Bases: gtkgl.GtkGLArea

Embeds a vtkRenderWindow into a pyGTK widget and uses vtkGenericRenderWindowInteractor for the event
handling. This class embeds the RenderWindow correctly. A getattr hook is provided that makes the class
behave like a vtkGenericRenderWindowInteractor.

Initialization

set_usize(w, h)

ConnectSignals()

__getattr__(attr)
Makes the object behave like a vtkGenericRenderWindowInteractor

CreateTimer(obj, event)

DestroyTimer(obj, event)
The timer is a one shot timer so will expire automatically.

GetRenderWindow()

Render()

OnRealize(*args)

OnConfigure(wid, event=None)

OnExpose(*args)

146 Chapter 8. API

VTK

OnDestroy(event=None)

_GetCtrlShift(event)

OnButtonDown(wid, event)
Mouse button pressed.

OnButtonUp(wid, event)
Mouse button released.

OnMouseMove(wid, event)
Mouse has moved.

OnEnter(wid, event)
Entering the vtkRenderWindow.

OnLeave(wid, event)
Leaving the vtkRenderWindow.

OnKeyPress(wid, event)
Key pressed.

OnKeyRelease(wid, event)
Key released.

Initialize()

vtkmodules.gtk.GtkVTKRenderWindowInteractor.main()

Package Contents

Data

__all__

API

vtkmodules.gtk.__all__

[‘GtkVTKRenderWindow’, ‘GtkVTKRenderWindowInteractor’, ‘GtkGLExtVTKRenderWindow’, ‘Gtk-
GLExtVTKRender. . .

vtkmodules.test

Modules used for testing VTK-Python wrappers and writing tests for VTK using Python.

8.2. Python 147

VTK

Submodules

vtkmodules.test.BlackBox

Module Contents

Classes

Tester

API

class vtkmodules.test.BlackBox.Tester(debug=0)

Initialization

setDebug(val)
Sets debug value of the vtkMethodParser. 1 is verbose and 0 is not. 0 is default.

testParse(obj)
Testing if the object is parseable.

testGetSet(obj, excluded_methods=[])
Testing Get/Set methods.

testBoolean(obj, excluded_methods=[])
Testing boolean (On/Off) methods.

test(obj)
Test the given vtk object.

vtkmodules.test.Testing

This module attempts to make it easy to create VTK-Python unittests. The module uses unittest for the test interface.
For more documentation on what unittests are and how to use them, please read these:

http://www.python.org/doc/current/lib/module-unittest.html

http://www.diveintopython.org/roman_divein.html

This VTK-Python test module supports image based tests with multiple images per test suite and multiple images per
individual test as well. It also prints information appropriate for CDash (http://open.kitware.com/).

This module defines several useful classes and functions to make writing tests easy. The most important of these are:

class vtkTest: Subclass this for your tests. It also has a few useful internal functions that can be used to do some simple
blackbox testing.

compareImage(renwin, img_fname, threshold=0.15): Compares renwin with image and generates image if it does not
exist. The threshold determines how closely the images must match. The function also handles multiple images and
finds the best matching image.

148 Chapter 8. API

http://www.python.org/doc/current/lib/module-unittest.html
http://www.diveintopython.org/roman_divein.html
http://open.kitware.com/

VTK

compareImageWithSavedImage(src_img, img_fname, threshold=0.15): Compares given source image (in the form of
a vtkImageData) with saved image and generates the image if it does not exist. The threshold determines how closely
the images must match. The function also handles multiple images and finds the best matching image.

getAbsImagePath(img_basename): Returns the full path to the image given the basic image name.

main(cases): Does the testing given a list of tuples containing test classes and the starting string of the functions used
for testing.

interact(): Interacts with the user if necessary. The behavior of this is rather trivial and works best when using Tkinter. It
does not do anything by default and stops to interact with the user when given the appropriate command line arguments.

isInteractive(): If interact() is not good enough, use this to find if the mode is interactive or not and do whatever is
necessary to generate an interactive view.

Examples:

The best way to learn on how to use this module is to look at a few examples. The end of this file contains a trivial
example. Please also look at the following examples:

Rendering/Testing/Python/TestTkRenderWidget.py,
Rendering/Testing/Python/TestTkRenderWindowInteractor.py

Created: September, 2002

Prabhu Ramachandran prabhu@aero.iitb.ac.in

Module Contents

Classes

vtkTest A simple default VTK test class that defines a few useful blackbox tests that can be readily used. Derive your test cases from this class and use the following if you’d like to.

Functions

skip Cause the test to be skipped due to insufficient requirements.
interact Interacts with the user if necessary.
isInteractive Returns if the currently chosen mode is interactive or not based on command line options.
getAbsImagePath Returns the full path to the image given the basic image name.
_getTempImagePath
compareImageWithSavedImage Compares a source image (src_img, which is a vtkImageData) with the saved image file whose name is given in the second argument. If the image file does not exist the image is generated and stored. If not the source image is compared to that of the figure. This function also handles multiple images and finds the best matching image.
compareImage Compares renwin’s (a vtkRenderWindow) contents with the image file whose name is given in the second argument. If the image file does not exist the image is generated and stored. If not the image in the render window is compared to that of the figure. This function also handles multiple images and finds the best matching image.
_printCDashImageError Prints the XML data necessary for CDash.
_printCDashImageNotFoundError Prints the XML data necessary for Dart when the baseline image is not found.
_printCDashImageSuccess Prints XML data for Dart when image test succeeded.
_handleFailedImage Writes all the necessary images when an image comparison failed.
main Pass a list of tuples containing test classes and the starting string of the functions used for testing.
test Pass a list of tuples containing test classes and the functions used for testing.
usage
parseCmdLine
processCmdLine

8.2. Python 149

mailto:prabhu@aero.iitb.ac.in

VTK

Data

VTK_DATA_ROOT
VTK_DATA_PATHS
VTK_BASELINE_ROOT
VTK_TEMP_DIR
VTK_BASELINE_PATHS
_VERBOSE
_INTERACT
_NO_IMAGE

API

vtkmodules.test.Testing.VTK_DATA_ROOT = <Multiline-String>

vtkmodules.test.Testing.VTK_DATA_PATHS

[]

vtkmodules.test.Testing.VTK_BASELINE_ROOT = <Multiline-String>

vtkmodules.test.Testing.VTK_TEMP_DIR = <Multiline-String>

vtkmodules.test.Testing.VTK_BASELINE_PATHS

[]

vtkmodules.test.Testing._VERBOSE

0

vtkmodules.test.Testing._INTERACT

0

vtkmodules.test.Testing._NO_IMAGE

0

vtkmodules.test.Testing.skip()

Cause the test to be skipped due to insufficient requirements.

class vtkmodules.test.Testing.vtkTest(methodName='runTest')
Bases: unittest.TestCase

A simple default VTK test class that defines a few useful blackbox tests that can be readily used. Derive your
test cases from this class and use the following if you’d like to.

Note: Unittest instantiates this class (or your subclass) each time it tests a method. So if you do not want that to
happen when generating VTK pipelines you should create the pipeline in the class definition as done below for
_blackbox.

150 Chapter 8. API

VTK

Initialization

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the
instance does not have a method with the specified name.

_blackbox

‘Tester(. . .)’

dl

‘vtkDebugLeaks(. . .)’

_testParse(obj)
Does a blackbox test by attempting to parse the class for its various methods using vtkMethodParser. This
is a useful test because it gets all the methods of the vtkObject, parses them and sorts them into different
classes of objects.

_testGetSet(obj, excluded_methods=[])
Checks the Get/Set method pairs by setting the value using the current state and making sure that it equals
the value it was originally. This effectively calls _testParse internally.

_testBoolean(obj, excluded_methods=[])
Checks the Boolean methods by setting the value on and off and making sure that the GetMethod returns
the set value. This effectively calls _testParse internally.

pathToData(filename)
Given a filename with no path (i.e., no leading directories prepended), return the full path to a file as
specified on the command line with a ‘-D’ option.

As an example, if a test is run with “-D /path/to/grid.vtu” then calling

self.pathToData('grid.vtu')

in your test will return “/path/to/grid.vtu”. This is useful in combination with ExternalData, where data
may be staged by CTest to a user-configured directory at build time.

In order for this method to work, you must specify the JUST_VALID option for your test in CMake.

pathToValidatedOutput(filename)
Given a filename with no path (i.e., no leading directories prepended), return the full path to a file as
specified on the command line with a ‘-V’ option.

As an example, if a test is run with “-V /path/to/validImage.png” then calling

self.pathToData('validImage.png')

in your test will return “/path/to/validImage.png”. This is useful in combination with ExternalData, where
data may be staged by CTest to a user-configured directory at build time.

In order for this method to work, you must specify the JUST_VALID option for your test in CMake.

prepareTestImage(interactor, **kwargs)

assertImageMatch(renwin, baseline, **kwargs)
Throw an error if a rendering in the render window does not match the baseline image.

This method accepts a threshold keyword argument (with a default of 0.15) that specifies how different a
baseline may be before causing a failure.

8.2. Python 151

VTK

vtkmodules.test.Testing.interact()

Interacts with the user if necessary.

vtkmodules.test.Testing.isInteractive()

Returns if the currently chosen mode is interactive or not based on command line options.

vtkmodules.test.Testing.getAbsImagePath(img_basename)
Returns the full path to the image given the basic image name.

vtkmodules.test.Testing._getTempImagePath(img_fname)

vtkmodules.test.Testing.compareImageWithSavedImage(src_img, img_fname, threshold=0.15)
Compares a source image (src_img, which is a vtkImageData) with the saved image file whose name is given in
the second argument. If the image file does not exist the image is generated and stored. If not the source image
is compared to that of the figure. This function also handles multiple images and finds the best matching image.

vtkmodules.test.Testing.compareImage(renwin, img_fname, threshold=0.15)
Compares renwin’s (a vtkRenderWindow) contents with the image file whose name is given in the second argu-
ment. If the image file does not exist the image is generated and stored. If not the image in the render window is
compared to that of the figure. This function also handles multiple images and finds the best matching image.

vtkmodules.test.Testing._printCDashImageError(img_err, err_index, img_base)
Prints the XML data necessary for CDash.

vtkmodules.test.Testing._printCDashImageNotFoundError(img_fname)
Prints the XML data necessary for Dart when the baseline image is not found.

vtkmodules.test.Testing._printCDashImageSuccess(img_err, err_index)
Prints XML data for Dart when image test succeeded.

vtkmodules.test.Testing._handleFailedImage(idiff , pngr, img_fname)
Writes all the necessary images when an image comparison failed.

vtkmodules.test.Testing.main(cases)
Pass a list of tuples containing test classes and the starting string of the functions used for testing.

Example:

main ([(vtkTestClass, ‘test’), (vtkTestClass1, ‘test’)])

vtkmodules.test.Testing.test(cases)
Pass a list of tuples containing test classes and the functions used for testing.

It returns a unittest._TextTestResult object.

Example:

test = test_suite([(vtkTestClass, ‘test’), (vtkTestClass1, ‘test’)])

vtkmodules.test.Testing.usage()

vtkmodules.test.Testing.parseCmdLine()

vtkmodules.test.Testing.processCmdLine()

152 Chapter 8. API

VTK

vtkmodules.test.ErrorObserver

Module Contents

Classes

vtkErrorObserver

API

class vtkmodules.test.ErrorObserver.vtkErrorObserver

Bases: object

Initialization

__call__(caller, event, data)

_check(seen, actual, expect, what)

check_error(expect)

check_warning(expect)

reset()

property saw_error

property error_message

property saw_warning

property warning_message

vtkmodules.test.rtImageTest

Module Contents

Functions

_GetController
main Run a regression test, and compare the contents of the window against against a valid image. This will use arguments from sys.argv to set the testing options via the vtkTesting class, run the test script, and then call vtkTesting.RegressionTest() to validate the image. The return value will the one provided by vtkTesting.RegressionTest().

8.2. Python 153

VTK

API

vtkmodules.test.rtImageTest._GetController()

vtkmodules.test.rtImageTest.main(test_script)
Run a regression test, and compare the contents of the window against against a valid image. This will use argu-
ments from sys.argv to set the testing options via the vtkTesting class, run the test script, and then call vtkTest-
ing.RegressionTest() to validate the image. The return value will the one provided by vtkTesting.RegressionTest().

Package Contents

Data

__all__

API

vtkmodules.test.__all__

[‘Testing’, ‘BlackBox’, ‘ErrorObserver’, ‘rtImageTest’]

vtkmodules.tk

Tkinter widgets for VTK.

Submodules

vtkmodules.tk.vtkTkRenderWidget

A simple vtkTkRenderWidget for tkinter.

Created by David Gobbi, April 1999

May ??, 1999 - Modifications performed by Heather Drury, to rewrite _pan to match method in TkInteractor.tcl May
11, 1999 - Major rewrite by David Gobbi to make the interactor bindings identical to the TkInteractor.tcl bindings.
July 14, 1999 - Added modification by Ken Martin for VTK 2.4, to use vtk widgets instead of Togl. Aug 29, 1999 -
Renamed file to vtkRenderWidget.py Nov 14, 1999 - Added support for keyword ‘rw’ Mar 23, 2000 - Extensive but
backwards compatible changes, improved documentation

A few important notes:

This class is meant to be used as a base-class widget for doing VTK rendering in Python.

In VTK (and C++) there is a very important distinction between public ivars (attributes in pythonspeak), protected
ivars, and private ivars. When you write a python class that you want to ‘look and feel’ like a VTK class, you should
follow these rules.

1) Attributes should never be public. Attributes should always be either protected (prefixed with a single underscore)
or private (prefixed with a double underscore). You can provide access to attributes through public Set/Get
methods (same as VTK).

154 Chapter 8. API

http://vtkRenderWidget.py

VTK

2) Use a single underscore to denote a protected attribute, e.g. self._RenderWindow is protected (can be accessed
from this class or a derived class).

3) Use a double underscore to denote a private attribute, e.g. self.__InExpose cannot be accessed outside of this
class.

All attributes should be ‘declared’ in the init() function i.e. set to some initial value. Don’t forget that ‘None’ means
‘NULL’ - the python/vtk wrappers guarantee their equivalence.

Module Contents

Classes

vtkTkRenderWidget A vtkTkRenderWidget for Python.

Functions

vtkRenderWidgetConeExample Like it says, just a simple example

API

class vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget(master, cnf={}, **kw)
Bases: tkinter.Widget

A vtkTkRenderWidget for Python.

Use GetRenderWindow() to get the vtkRenderWindow.

Create with the keyword stereo=1 in order to generate a stereo-capable window.

Create with the keyword focus_on_enter=1 to enable focus-follows-mouse. The default is for a click-to-focus
mode.

Initialization

Constructor.

Keyword arguments:

rw – Use passed render window instead of creating a new one.

stereo – If True, generate a stereo-capable window. Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode. Defaults to False where the widget will use a click-
to-focus mode.

__getattr__(attr)

BindTkRenderWidget()

Bind some default actions.

GetZoomFactor()

8.2. Python 155

VTK

SetDesiredUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetDesiredUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

SetStillUpdateRate(rate)
Mirrors the method with the same name in vtkRenderWindowInteractor.

GetStillUpdateRate()

Mirrors the method with the same name in vtkRenderWindowInteractor.

GetRenderWindow()

GetPicker()

Expose()

Render()

UpdateRenderer(x, y)
UpdateRenderer will identify the renderer under the mouse and set up _CurrentRenderer, _CurrentCamera,
and _CurrentLight.

GetCurrentRenderer()

Enter(x, y)

Leave(x, y)

StartMotion(x, y)

EndMotion(x, y)

Rotate(x, y)

Pan(x, y)

Zoom(x, y)

Reset(x, y)

Wireframe()

Surface()

PickActor(x, y)

vtkmodules.tk.vtkTkRenderWidget.vtkRenderWidgetConeExample()

Like it says, just a simple example

156 Chapter 8. API

VTK

vtkmodules.tk.vtkTkRenderWindowInteractor

A fully functional VTK widget for tkinter that uses vtkGenericRenderWindowInteractor. The widget is called vtk-
TkRenderWindowInteractor. The initialization part of this code is similar to that of the vtkTkRenderWidget.

Created by Prabhu Ramachandran, April 2002

Module Contents

Classes

vtkTkRenderWindowInteractor A vtkTkRenderWidndowInteractor for Python.

Functions

vtkRenderWindowInteractorConeExample Like it says, just a simple example

API

class vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor(master, cnf={},
**kw)

Bases: tkinter.Widget

A vtkTkRenderWidndowInteractor for Python.

Use GetRenderWindow() to get the vtkRenderWindow.

Create with the keyword stereo=1 in order to generate a stereo-capable window.

Create with the keyword focus_on_enter=1 to enable focus-follows-mouse. The default is for a click-to-focus
mode.

getattr is used to make the widget also behave like a vtkGenericRenderWindowInteractor.

Initialization

Constructor.

Keyword arguments:

rw – Use passed render window instead of creating a new one.

stereo – If True, generate a stereo-capable window. Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode. Defaults to False where the widget will use a click-
to-focus mode.

__getattr__(attr)

BindEvents()

Bind all the events.

8.2. Python 157

VTK

CreateTimer(obj, evt)

DestroyTimer(obj, event)
The timer is a one shot timer so will expire automatically.

_GrabFocus(enter=0)

MouseMoveEvent(event, ctrl, shift)

LeftButtonPressEvent(event, ctrl, shift)

LeftButtonReleaseEvent(event, ctrl, shift)

MiddleButtonPressEvent(event, ctrl, shift)

MiddleButtonReleaseEvent(event, ctrl, shift)

RightButtonPressEvent(event, ctrl, shift)

RightButtonReleaseEvent(event, ctrl, shift)

MouseWheelEvent(event, ctrl, shift)

MouseWheelForwardEvent(event, ctrl, shift)

MouseWheelBackwardEvent(event, ctrl, shift)

KeyPressEvent(event, ctrl, shift)

KeyReleaseEvent(event, ctrl, shift)

ConfigureEvent(event)

EnterEvent(event, ctrl, shift)

LeaveEvent(event, ctrl, shift)

ExposeEvent()

GetRenderWindow()

Render()

vtkmodules.tk.vtkTkRenderWindowInteractor.vtkRenderWindowInteractorConeExample()

Like it says, just a simple example

vtkmodules.tk.vtkTkPhotoImage

A subclass of tkinter.PhotoImage that connects a vtkImageData to a photo widget.

Created by Daniel Blezek, August 2002

158 Chapter 8. API

VTK

Module Contents

Classes

vtkTkPhotoImage A subclass of PhotoImage with helper functions for displaying vtkImageData

API

class vtkmodules.tk.vtkTkPhotoImage.vtkTkPhotoImage(**kw)
Bases: tkinter.PhotoImage

A subclass of PhotoImage with helper functions for displaying vtkImageData

Initialization

Create an image with NAME.

Valid resource names: data, format, file, gamma, height, palette, width.

PutImageSlice(image, z, orientation='transverse', window=256, level=128)

vtkmodules.tk.vtkLoadPythonTkWidgets

Module Contents

Functions

vtkLoadPythonTkWidgets vtkLoadPythonTkWidgets(interp) – load vtk-tk widget extensions

API

vtkmodules.tk.vtkLoadPythonTkWidgets.vtkLoadPythonTkWidgets(interp)
vtkLoadPythonTkWidgets(interp) – load vtk-tk widget extensions

This is a mess of mixed python and tcl code that searches for the shared object file that contains the python-vtk-tk
widgets. Both the python path and the tcl path are searched.

8.2. Python 159

VTK

vtkmodules.tk.vtkTkImageViewerWidget

A vtkTkImageViewerWidget for python, which is based on the vtkTkImageWindowWidget.

Specify double=1 to get a double-buffered window.

Created by David Gobbi, Nov 1999

Module Contents

Classes

vtkTkImageViewerWidget A vtkTkImageViewerWidget for Python.

API

class vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget(master, cnf={}, **kw)
Bases: tkinter.Widget

A vtkTkImageViewerWidget for Python.

Use GetImageViewer() to get the vtkImageViewer.

Create with the keyword double=1 in order to generate a double-buffered viewer.

Create with the keyword focus_on_enter=1 to enable focus-follows-mouse. The default is for a click-to-focus
mode.

Initialization

Constructor.

Keyword arguments:

iv – Use passed image viewer instead of creating a new one.

double – If True, generate a double-buffered viewer. Defaults to False.

focus_on_enter – If True, use a focus-follows-mouse mode. Defaults to False where the widget will use a click-
to-focus mode.

__getattr__(attr)

GetImageViewer()

Render()

BindTkImageViewer()

_GrabFocus()

EnterTkViewer()

LeaveTkViewer()

160 Chapter 8. API

VTK

ExposeTkImageViewer()

StartWindowLevelInteraction(x, y)

EndWindowLevelInteraction()

UpdateWindowLevelInteraction(x, y)

ResetTkImageViewer()

StartQueryInteraction(x, y)

EndQueryInteraction()

UpdateQueryInteraction(x, y)

Package Contents

Data

__all__

API

vtkmodules.tk.__all__

[‘vtkTkRenderWidget’, ‘vtkTkImageViewerWidget’, ‘vtkTkRenderWindowInteractor’, ‘vtkTkPhotoImage’]

Submodules

vtkmodules.generate_pyi

This program will generate .pyi files for all the VTK modules in the “vtkmodules” package (or whichever package you
specify). These files are used for type checking and autocompletion in some Python IDEs.

The VTK modules must be in Python’s path when you run this script. Options are as follows:

-p PACKAGE The package to generate .pyi files for [vtkmodules] -o OUTPUT The output directory [default is the
package directory] -e EXT The file suffix [.pyi] -i IMPORTER The static module importer (for static builds only) -h
HELP

With no arguments, the script runs with the defaults (the .pyi files are put inside the existing vtkmodules package). This
is equivalent to the following:

python -m vtkmodules.generate_pyi -p vtkmodules

To put the pyi files somewhere else, perhaps with a different suffix:

python -m vtkmodules.generate_pyi -o /path/to/vtkmodules -e .pyi

To generate pyi files for just one or two modules:

8.2. Python 161

VTK

python -m vtkmodules.generate_pyi -p vtkmodules vtkCommonCore vtkCommonDataModel

To generate pyi files for your own modules in your own package:

python -m vtkmodules.generate_pyi -p mypackage mymodule [mymodule2 ...]

Module Contents

Classes

Graph A graph for topological sorting.
Node A node for the graph.

Functions

isvtkmethod Check for VTK’s custom method descriptor
isnamespace Check for namespaces within a module
isenum Check for enums (currently derived from int)
typename Generate a typename that can be used for annotation.
typename_forward Generate a typename, or if necessary, a forward reference.
build_graph Build a graph from a module’s dictionary.
sorted_graph_helper Helper for topological sorting.
sorted_graph Sort a graph and return the sorted items.
topologically_sorted_items Return the items from a module’s dictionary, topologically sorted.
parse_error Print a parse error, syntax or otherwise.
annotation_text Return the new text to be used for an annotation.
fix_annotations Fix the annotations in a method definition. The signature must be a single-line function def, no decorators.
push_signature Process a method signature and add it to the list.
get_signatures Return a list of method signatures found in the docstring.
get_constructors Get constructors from the class documentation.
handle_static If method has no “self”, add @static decorator.
add_indent Add the given indent before every line in the string.
namespace_pyi Fake a namespace by creating a dummy class.
class_pyi Generate all the method stubs for a class.
module_pyi Generate the contents of a .pyi file for a VTK module.
main

Data

types
ismethod
isclass
vtkmethod
template

continues on next page

162 Chapter 8. API

VTK

Table 67 – continued from previous page
string
identifier
indent
has_self
keychar

API

vtkmodules.generate_pyi.types

‘set(. . .)’

vtkmodules.generate_pyi.ismethod

None

vtkmodules.generate_pyi.isclass

None

vtkmodules.generate_pyi.vtkmethod

‘type(. . .)’

vtkmodules.generate_pyi.template

‘type(. . .)’

vtkmodules.generate_pyi.isvtkmethod(m)

Check for VTK’s custom method descriptor

vtkmodules.generate_pyi.isnamespace(m)

Check for namespaces within a module

vtkmodules.generate_pyi.isenum(m)

Check for enums (currently derived from int)

vtkmodules.generate_pyi.typename(o)
Generate a typename that can be used for annotation.

vtkmodules.generate_pyi.typename_forward(o)
Generate a typename, or if necessary, a forward reference.

class vtkmodules.generate_pyi.Graph

A graph for topological sorting.

Initialization

__getitem__(name)

__setitem__(name, node)

class vtkmodules.generate_pyi.Node(o, d)
A node for the graph.

8.2. Python 163

VTK

Initialization

vtkmodules.generate_pyi.build_graph(d)
Build a graph from a module’s dictionary.

vtkmodules.generate_pyi.sorted_graph_helper(graph, m, visited, items)
Helper for topological sorting.

vtkmodules.generate_pyi.sorted_graph(graph)
Sort a graph and return the sorted items.

vtkmodules.generate_pyi.topologically_sorted_items(d)
Return the items from a module’s dictionary, topologically sorted.

vtkmodules.generate_pyi.string

‘compile(. . .)’

vtkmodules.generate_pyi.identifier

‘compile(. . .)’

vtkmodules.generate_pyi.indent

‘compile(. . .)’

vtkmodules.generate_pyi.has_self

‘compile(. . .)’

vtkmodules.generate_pyi.keychar

‘compile(. . .)’

vtkmodules.generate_pyi.parse_error(message, text, begin, pos)
Print a parse error, syntax or otherwise.

vtkmodules.generate_pyi.annotation_text(a, text, is_return)
Return the new text to be used for an annotation.

vtkmodules.generate_pyi.fix_annotations(signature)
Fix the annotations in a method definition. The signature must be a single-line function def, no decorators.

vtkmodules.generate_pyi.push_signature(o, l, signature)
Process a method signature and add it to the list.

vtkmodules.generate_pyi.get_signatures(o)
Return a list of method signatures found in the docstring.

vtkmodules.generate_pyi.get_constructors(c)
Get constructors from the class documentation.

vtkmodules.generate_pyi.handle_static(o, signature)
If method has no “self”, add @static decorator.

vtkmodules.generate_pyi.add_indent(s, indent)
Add the given indent before every line in the string.

vtkmodules.generate_pyi.namespace_pyi(c, mod)
Fake a namespace by creating a dummy class.

vtkmodules.generate_pyi.class_pyi(c)
Generate all the method stubs for a class.

164 Chapter 8. API

VTK

vtkmodules.generate_pyi.module_pyi(mod, output)
Generate the contents of a .pyi file for a VTK module.

vtkmodules.generate_pyi.main(argv=sys.argv)

Package Contents

Functions

_windows_dll_path
_load_vtkmodules_static

Data

__all__
__version__

API

vtkmodules._windows_dll_path()

vtkmodules._load_vtkmodules_static()

vtkmodules.__all__

[‘vtkCommonCore’, ‘vtkWebCore’, ‘vtkCommonMath’, ‘vtkCommonTransforms’, ‘vtkCommonDataModel’,
‘vtkCo. . .

vtkmodules.__version__

‘9.2.6’

8.2.2 Doxygen-style documentation

VTK is implemented in C++ and it is made available in Python via its Python Wrappers. Although, the VTK doxygen
documentation is derived from the C++ API, the corresponding Python API uses the same classes and methods. There
are however some conventions in place for how wrapping is constructed. To quickly inspect the available methods of a
class you can use the help method:

>> import vtk
help(vtk.vtkSphereSource)

Help on vtkSphereSource object:

class vtkSphereSource(vtkmodules.vtkCommonExecutionModel.vtkPolyDataAlgorithm)
| vtkSphereSource - create a polygonal sphere centered at the origin
|
| Superclass: vtkPolyDataAlgorithm
|

(continues on next page)

8.2. Python 165

http://vtk.org/doc/nightly/html

VTK

(continued from previous page)

| vtkSphereSource creates a sphere (represented by polygons) of
| specified radius centered at the origin. The resolution (polygonal
| discretization) in both the latitude (phi) and longitude (theta)
| directions can be specified. It also is possible to create partial
| spheres by specifying maximum phi and theta angles. By default, the
| surface tessellation of the sphere uses triangles; however you can
| set LatLongTessellation to produce a tessellation using
| quadrilaterals.
|
| @warning
| Resolution means the number of latitude or longitude lines for a
| complete sphere. If you create partial spheres the number of
| latitude/longitude lines may be off by one.
|
| Method resolution order:
| vtkSphereSource
| vtkmodules.vtkCommonExecutionModel.vtkPolyDataAlgorithm
| vtkmodules.vtkCommonExecutionModel.vtkAlgorithm
| vtkmodules.vtkCommonCore.vtkObject
| vtkmodules.vtkCommonCore.vtkObjectBase
| builtins.object
|
| Methods defined here:
|
| GenerateNormalsOff(...)
| GenerateNormalsOff(self) -> None
| C++: virtual void GenerateNormalsOff()
|
| GenerateNormalsOn(...)
| GenerateNormalsOn(self) -> None
| C++: virtual void GenerateNormalsOn()
|
| GetCenter(...)
| GetCenter(self) -> (float, float, float)
| C++: virtual double *GetCenter()
...

For a more in-depth description of the Python Wrappers see the dedicated section.

8.3 CMake

For a thorough description of the module system see the Module System section.

The CMake API can be separated into several categories:

• Module APIs module

This category includes functions to find and build VTK modules. A module is a set of related functionality. These
are then compiled together into libraries at the “kit” level. Each module may be enabled or disabled individually
and its dependencies will be built as needed.

All functions strictly check their arguments. Any unrecognized or invalid values for a function cause errors to
be raised.

166 Chapter 8. API

VTK

• Internal APIs module-internal

The VTK module system provides some API functions for use by other code which consumes VTK modules
(primarily language wrappers). This file documents these APIs. They may start with _vtk_module, but they are
intended for use in cases of language wrappers or dealing with trickier third party packages.

• Implementation APIs module-impl

These functions are purely internal implementation details. No guarantees are made for them and they may
change at any time (including wrapping code calls). Note that these functions are usually very lax in their
argument parsing.

• Python Wrapping APIs module-wrapping-python

APIs for wrapping modules for Python.

• Java Wrapping APIs module-wrapping-java

APIs for wrapping modules for Java.

• Support APIs module-support

Miscellaneous utilities.

8.3.1 Module System

VTK 9.0 introduces a new build system compared to previous versions. This version uses CMake’s built-in functionality
for behaviors that were performed manually in the previous iteration of the build system.

Terminology

• module: A unit of API provided by a project. This is the core of the system and there are lots of features available
through this mechanism that are not provided by CMake’s library or other usage requirements.

• group: A configure-time collection of modules. These may be used to control whether member modules will be
built or not with a single flag.

• kit: A collection of modules for which all the compiled code is placed in a single library.

• property: An attribute of a module. Only of real interest to developers of the module system and its extensions.

• autoinit: A mechanism for triggering registration to global registries based on the complete set of linked-to
libraries.

• third party: A module representing an external dependency.

• enable status: A 4-way state to allow for “weak” and “strong” selection or deselection of a module or group for
building.

Principles

The module system was designed with a number of principles in mind. These should be followed as much as possible
when developing extensions as well.

• The minimum CMake version required by the module system should be as low as possible to get the required
features. For example, if a new feature is available in 3.15 that improves core module functionality, that’d be a
reasonable reason to require it. But a bugfix in 3.10 that can be worked around should not bump the minimum
version. Currently CMake 3.8 is expected to work, though various features (such as kits) are only available with
newer CMake versions.

8.3. CMake 167

VTK

• Build tree looks like the install tree. The layout of the build tree is set up to mirror the layout of the install tree.
This allows more code content to be shared between build and install time.

• Convention over configuration. CMake conventions should be followed. Of note, projects are assumed to be
“well-behaved” including, but not limited to:

– use of BUILD_SHARED_LIBS to control shared vs. static library compilation;

– use of GNUInstallDirs; and

– sensible defaults based on things like CMAKE_PROJECT_NAME as set by the project() function.

• Configuration through API. Where configuration is provided, instead of using global state or “magic” variables,
configuration should be provided through parameters to the API functions provided. Concessions are made for
rarely-used functionality or where the API would be complicated to plumb through the required information.
These variables (which are typically parameterized) are documented at the end of this document. Such variables
should be named so that it is unambiguous that they are for the module system.

• Don’t pollute the environment. Variables should be cleaned up at the end of macros and functions should use
variable names that don’t conflict with the caller environment (usually by prefixing with _function_name_ or
the like).

• Relocatable installs. Install trees should not bake-in paths from the build tree or build machine (at least by
default). This makes it easier to create packages from install trees instead of having to run a post-processing step
over it before it may be used for distributable packages.

Build process

Building modules involves two phases. The first phase is called “scanning” and involves collecting all the information
necessary for the second phase, “building”. Scanning uses the vtk_module_scan() function to search the vtk.module
files for metadata, gathers the set of modules to build and returns them to the caller. That list of modules is eventually
passed to vtk_module_build() which sorts the modules for their build order and then builds each module in turn.
This separation allows for scanning and building modules in different groups. For example, the main set of modules may
be scanned to determine which of some internal set of modules are required by those which is then scanned separately
with different options.

Scanning should occur from the leaf-most module set and work its way inward to the lower levels. This is done so that
modules in the lower level that are required higher up can be enabled gracefully. Builds should start at the lower level
and move up the tree so that targets required by the higher groups exist when they are built.

Modules

Modules are described by vtk.module files. These files are “scanned” using the vtk_module_scan() function. They
provide all the information necessary for the module system to:

• provide cache variables for selecting the module (e.g., VTK_MODULE_ENABLE_ModuleName);

• construct the dependency tree to automatically enable or disable modules based on whether it is built or not;

• provide module-level metadata (such as exclusion from any wrapping and marking modules as third party)

The vtk.module files are read and “parsed”, but not executed directly. This ensures that the module files do not contain
any procedural CMake code. The files may contain comments starting with # like CMake code. They may either be
passed manually to vtk_module_scan() or discovered by using the vtk_module_find_modules() convenience
function.

The most important (and only required) parameter is the NAME of a module. This is used as the target name in CMake
and is how the module’s target should be referred to in all CMake code, inside the build and from the find_package

168 Chapter 8. API

https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html
https://cmake.org/cmake/help/latest/variable/CMAKE_PROJECT_NAME.html
https://cmake.org/cmake/help/latest/command/project.html
https://cmake.org/cmake/help/latest/command/find_package.html

VTK

which provides the module. To change the name of the compiled artifact (library or executable), the LIBRARY_NAME
argument may be used.

It is highly recommended to provide a DESCRIPTION for the module. This is added to the documentation for the cache
variable so that the user has more than just the module name to know what the module’s purpose is.

Modules may also belong to groups which are created implicitly by adding modules to the same-named group. Groups
are listed under the GROUPS argument and are checked in order for a non-default setting to use.

A module may be hidden by using the CONDITION argument. The values passed to this field is added into a CMake
if statement and checked for validity (all quoting is passed along verbatim). If the condition evaluates to FALSE, the
module is treated as if it did not exist at all.

Module metadata

A number of pieces of metadata are considered important enough to indicate them at the module level. These are used
for managing slightly different workflows for modules which have these properties.

• EXCLUDE_WRAP: This marks the module with a flag that all language wrapping facilities should use to know that
this module is not meant for wrapping in any language. Usually this is for modules containing user interface
classes, low-level functionality, or logic that is language specific.

• IMPLEMENTABLE and IMPLEMENTS: These are used by the autoinit functionality to trigger the static factory
registration calls. A module which is listed under an IMPLEMENTS list must be marked as IMPLEMENTABLE
itself.

• THIRD_PARTY: Indicates that the module represents a third party dependency. It may be internal or external to
the source tree, but may be used as an additional configuration point if necessary. These modules are implicitly
EXCLUDE_WRAP, not IMPLEMENTABLE and do not IMPLEMENTS any module.

Enabling modules for build

Modules are enabled in a number of ways. These ways allow for project control and user control of which modules
should be built or not. There are 4 states for controlling a module’s enable status as well as a DEFAULT setting which
is used to allow for other mechanisms to select the enable status:

• YES: The module must be built.

• NO: The module must not be built. If a YES module has a NO module in its dependency tree, an error is raised.

• WANT: The module should be built. It will not be built, however, if it depends on a NO module.

• DONT_WANT: The module doesn’t need to be built. It will be built if a YES or WANT module depends on it.

• DEFAULT: Look at other metadata to determine the status.

The first check for modules are via the REQUEST_MODULES and REJECT_MODULES arguments to the vtk_module_scan
function. Modules passed to REQUEST_MODULES are treated as if they use YES and REJECT_MODULES as if they use
NO. A module may not be passed to both arguments. Modules selected in this way do not have CMake cache variables
exposed for them (since it is assumed they are selected via some other mechanism outside the module system).

The next selector is the VTK_MODULE_ENABLE_ variable for the module. This is added to the cache and defaults to
DEFAULT. Assuming HIDE_MODULES_FROM_CACHE is not set to ON, this setting is exposed in the cache and allows
users to change the status of modules not handled via the REQUEST_MODULES and REJECT_MODULES mechanism.

If a module is still selected as DEFAULT, the list of GROUPS it is a member of is used. In order, each group is looked at
for a non-DEFAULT value. If so, its value is used for the module. Groups also default to using DEFAULT for their setting,
but a project may set the _vtk_module_group_default_${group} variable to change this default value.

8.3. CMake 169

VTK

After all of the above logic, if a module is still marked as DEFAULT, the WANT_BY_DEFAULT argument to
vtk_module_scan() is used to determine whether it is treated as a WANT or DONT_WANT request.

Now that all modules have a non-DEFAULT enable setting, the set of modules and kits that are available may be deter-
mined by traversing the dependency tree of the modules.

Dependencies

Modules have three types of dependencies:

• DEPENDS: These are dependencies which must be available and are transitively provided to modules depending
on this module. The API of the module may be affected by changes in these modules. This includes, but is not
limited to, classes in this module inherit or expose classes from the dependent modules.

• PRIVATE_DEPENDS: Dependencies which are only used in the implementation details of the module. The API
of the module is not affected by changes in these modules.

• OPTIONAL_DEPENDS: Dependencies which will be used if available, but the implementation can cope with their
absence. These are always treated as PRIVATE_DEPENDS if they are available.

Modules which are listed in DEPENDS or PRIVATE_DEPENDS are always available to the module and can be assumed
to exist if the module is being built. Modules listed in OPTIONAL_DEPENDS cannot be assumed to exist. In CMake
code, a TARGET optional_depend condition may be used to detect whether it is available or not. The module system
will add a VTK_MODULE_ENABLE_${module} compilation definition set to either 0 or 1 if it is available for use in the
module’s code. This flag is made preprocessor-safe by replacing any :: in the module name with _. So an optional
dependency on Namespace::Target will use a flag named VTK_MODULE_ENABLE_Namespace_Target.

At this stage, the dependency tree for all scanned modules is traversed, marking dependencies of YES modules as those
that should be built, marking modules depending on NO modules as not to be built (and triggering an error if a conflict
is found). Any WANT modules that have not been found in the trees of YES or NO modules are then enabled with their
dependencies.

There is a script to help figuring out dependencies when building your own modules or VTK-dependant code (*.cxx,
*.h) in order to generate a find_package command. The required json argument is only available in a build tree
though.

Utilities/Maintenance/FindNeededModules.py -s /path/to/sources -j path/to/vtk_build/
modules.json

Testing

There is some support for testing in the module system, but it is not as comprehensive as the build side. This is because
testing infrastructure and strategies vary wildly between projects. Rather than trying to handle the minimum baseline
of any plausible testing infrastructure or framework, the module system merely handles dependency management for
testing and entering a subdirectory with the tests.

Modules may have TEST_DEPENDS and TEST_OPTIONAL_DEPENDS lists provided as well. These modules are required
or optionally used by the testing code for the module.

When scanning, the ENABLE_TESTS argument may be set to ON, OFF, WANT (the default), or DEFAULT. Modules which
appear in TEST_DEPENDS for the module are affected by this setting.

• ON: Modules required for testing are treated as required. Tests will be enabled.

• OFF: Tests will not be enabled.

• WANT: If possible, TEST_DEPENDS modules will also be enabled if they are not disabled in some other way.

170 Chapter 8. API

https://cmake.org/cmake/help/latest/command/find_package.html

VTK

• DEFAULT: Check when tests are checked whether all of TEST_DEPENDS are available. If they are, enable testing
for the module, otherwise skip it.

The only guarantee for testing provided is that all modules in the TEST_DEPENDS will be available before the testing
is added and TEST_OPTIONAL_DEPENDS are available if they’d be available at all (i.e., they won’t be made available
later).

Modules may also have TEST_LABELS set to ease labeling all tests for the module. The module system itself does
nothing with this other than set a global property with the value. It is up to any test infrastructure used within the
module’s CMake code to make use of the value.

The tests for a module are expected to live in a subdirectory of the module code itself. The name of this directory is
given by the TEST_DIRECTORY_NAME argument to the vtk_module_build() function. If the directory is available
and the module’s testing is enabled, the module system will add_subdirectory this directory at the appropriate time.
This is decoupled so that testing code can depend on modules that depend on the module that is being tested and the
same TARGET ${dependency} check can be used for optional module dependencies.

Building modules

After scanning is complete, vtk_module_scan() returns a list of modules and kits to build in the variables given
by the PROVIDES_MODULES and PROVIDES_KITS arguments to it. It also provides lists of modules that were
found during scanning that were not scanned by that call. These are given back in the variables passed to the
UNRECOGNIZED_MODULES and REQUIRES_MODULES variables.

The UNRECOGNIZED_MODULES list contains modules passed to REQUIRES_MODULES and REJECT_MODULES that were
not found during the scan. This typically indicates that the values passed to those arguments were not constructed
properly. However, it may also mean that they should be passed on to further scans if they may be found elsewhere.
Callers should handle the variable as necessary for their use case.

The REQUIRES_MODULES are modules that were named as dependencies of the scanned modules and need to be provided
in some way before building the provided modules (the build step will require that they exist when it tries to build the
modules which required them). These can be passed on to future REQUIRES_MODULES arguments in future scans or
used to error out depending on the use case of the caller.

When using vtk_module_build(), the PROVIDES_MODULES and PROVIDES_KITS from a single scan should be
passed together. Multiple scans may be built together as well if they all use the same build parameters as each other.

Build-time parameters

The vtk_module_build() function is where the decision to build with or without kits is decided through the
BUILD_WITH_KITS option. Only if this is set will kits be built for this set of modules.

The decision to default third party modules to using an external or internal copy (where such a decision is possible) is
done using the USE_EXTERNAL argument.

Where build artifacts end up in the build tree are left to CMake’s typical variables for controlling these locations:

• CMAKE_ARCHIVE_OUTPUT_DIRECTORY

• CMAKE_LIBRARY_OUTPUT_DIRECTORY

• CMAKE_RUNTIME_OUTPUT_DIRECTORY

The defaults for these place outputs into the binary directory where the targets were added. The module system will
set these to be sensible for itself if they are not already set, but it is recommended to set these at the top-level so that
targets not built under vtk_module_build() also end up at a sensible location.

8.3. CMake 171

https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://cmake.org/cmake/help/latest/variable/CMAKE_ARCHIVE_OUTPUT_DIRECTORY.html
https://cmake.org/cmake/help/latest/variable/CMAKE_LIBRARY_OUTPUT_DIRECTORY.html
https://cmake.org/cmake/help/latest/variable/CMAKE_RUNTIME_OUTPUT_DIRECTORY.html

VTK

Library parameters

When building libraries, it is sometimes useful to have top-level control of library metadata. For example, VTK suffixes
its library filenames with a version number. The variables that control this include:

• LIBRARY_NAME_SUFFIX: If non-empty, all libraries and executable names will be suffixed with this value pre-
fixed with a hyphen (e.g., a suffix of foo will make Namespace::Target’s library be named Target-foo or,
if the module sets its LIBRARY_NAME to nsTarget, nsTarget-foo).

• VERSION: Controls the VERSION property for all library modules.

• SOVERSION: Controls the SOVERSION property for all library modules.

Installation support

vtk_module_build() also offers arguments to aid in installing module artifacts. These include destinations for pieces
that are installed, CMake packaging controls, and components to use for the installations.

A number of destinations control arguments are provided:

• ARCHIVE_DESTINATION

• HEADERS_DESTINATION

• LIBRARY_DESTINATION

• RUNTIME_DESTINATION

• CMAKE_DESTINATION

• LICENSE_DESTINATION

• HIERARCHY_DESTINATION

See the API documentation for default values for each which are based on GNUInstallDirs variables. Note that all
installation destinations are expected to be relative paths. This is because the conveniences provided by the module
system are all assumed to be installed to a single prefix (CMAKE_INSTALL_PREFIX) and placed underneath it.

Suppression of header installation is provided via the INSTALL_HEADERS argument to vtk_module_build(). Setting
this to OFF will suppress the installation of:

• headers

• CMake package files

• hierarchy files (since their use requires headers)

Basically, suppression of headers means that SDK components for the built modules are not available in the install tree.

Components for the installation are provided via the HEADERS_COMPONENT and TARGETS_COMPONENT arguments. The
former is used for SDK bits and the latter for runtime bits (libraries, executables, etc.).

For CMake package installation, the PACKAGE and INSTALL_EXPORT arguments are available. The former controls
the names used by the CMake files created by the module system while the former is the export set to use for the
member modules when creating those CMake files. Non-module targets may also exist in this export set when
vtk_module_build() is called, but the export set is considered “closed” afterwards since it has already been ex-
ported (if INSTALL_HEADERS is true).

172 Chapter 8. API

https://cmake.org/cmake/help/latest/prop_tgt/VERSION.html
https://cmake.org/cmake/help/latest/prop_tgt/SOVERSION.html
https://cmake.org/cmake/help/latest/module/GNUInstallDirs.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html

VTK

Test data information

The directory that is looked for in each module is specified by using the TEST_DIRECTORY_NAME argument. If it is set
to the value of NONE, no testing directories will be searched for. It defaults to Testing due to VTK’s conventions.

The module system, due to VTK’s usage of it, has convenience parameters for controlling the ExternalData module
that is available to testing infrastructure. These include:

• TEST_DATA_TARGET: The data target to use for tests.

• TEST_INPUT_DATA_DIRECTORY: Where ExternalData should look for data files.

• TEST_OUTPUT_DATA_DIRECTORY: Where ExternalData should place the downloaded data files.

• TEST_OUTPUT_DIRECTORY: Where tests should place output files.

Each is provided in the testing subdirectory as _vtk_build_${name}, so the TEST_DATA_TARGET argument is avail-
able as _vtk_build_TEST_DATA_TARGET.

Building a module

Building a module is basically the same as a normal CMake library or executable, but is wrapped to use arguments to
facilitate wrapping, exporting, and installation of the tools as well.

There are two main functions provided for this:

• vtk_module_add_module()

• vtk_module_add_executable()

The former creates a library for the module being built while the latter can create an executable for the module itself
or create utility executable associated with the module. The module system requires that the CMakeLists.txt for a
module create a target with the name of the module. In the case of INTERFACE modules, it suffices to create the module
manually in many cases.

Libraries

Most modules end up being libraries that can be linked against by other libraries. Due to cross-platform support
generally being a good thing, the EXPORT_MACRO_PREFIX argument is provided to specify the prefix for macro names
to be used by GenerateExportHeader. By default, the LIBRARY_NAME for the module is transformed to uppercase
to make the prefix.

Some modules may need to add additional information to the library name that will be used that is not statically know
and depends on other environmental settings. The LIBRARY_NAME_SUFFIXmay be specified to add an additional suffix
to the LIBRARY_NAME for the module. The vtk_module_build() LIBRARY_NAME_SUFFIX argument value will be
appended to this name as well.

Normally, libraries are built according to the BUILD_SHARED_LIBS variable, however, some modules may need to be
built statically all the time. The FORCE_STATIC parameter exists for this purpose. This is generally only necessary if
the module is in some other must-be-static library’s dependency tree (which may happen for a number of reasons). It is
not an escape hatch for general usage; it is there because use cases which only support static libraries (even in a shared
build) exist.

If a library module is part of a kit and it is being built via the vtk_module_build() BUILD_WITH_KITS argument, it
will be built as an OBJECT library and the kit machinery in vtk_module_build() will create the resulting kit library
artifact.

Header-only modules must pass HEADER_ONLY to create an INTERFACE library instead of expecting a linkable artifact.

8.3. CMake 173

https://cmake.org/cmake/help/latest/module/ExternalData.html
https://cmake.org/cmake/help/latest/module/GenerateExportHeader.html
https://cmake.org/cmake/help/latest/variable/BUILD_SHARED_LIBS.html
https://cmake.org/cmake/help/latest/command/add_library.html

VTK

Note: HEADER_ONLY modules which are part of kits is currently untested. This should be supported, but might not
work at the moment.

Source listing

Instead of using CMake’s “all sources in a single list” pattern for add_library, vtk_module_add_module() classi-
fies its source files explicitly:

• SOURCES

• HEADERS

• TEMPLATES

The HEADERS and TEMPLATES are installed into the HEADERS_DESTINATION specified to vtk_module_build()
and may be added to a subdirectory of this destination by using the HEADERS_SUBDIR argument. Note that the
structure of the header paths passed is ignored. If more structure is required from the installed header layout,
vtk_module_install_headers() should be used.

Files passed via HEADERS are treated as the API interface to the code of the module and are added to properties so that
language wrappers can discover the API of the module.

Note: Only headers passed via HEADERS are eligible for wrapping; those installed via
vtk_module_install_headers() are not. This is a known limitation at the moment.

There are also private variations for HEADERS and TEMPLATES named PRIVATE_HEADERS and PRIVATE_TEMPLATES
respectively. These are never installed nor exposed to wrapping mechanisms.

There are also a couple of convenience parameters that use VTK’s file naming conventions to ease usage. These include:

• CLASSES: For each value <class>, adds <class>.cxx to SOURCES and <class>.h to HEADERS.

• TEMPLATE_CLASSES: For each value <class>, adds <class>.txx to TEMPLATES and <class>.h to HEADERS.

• PRIVATE_CLASSES: For each value <class>, adds <class>.cxx to SOURCES and <class>.h to
PRIVATE_HEADERS.

• PRIVATE_TEMPLATE_CLASSES: For each value <class>, adds <class>.txx to PRIVATE_TEMPLATES and
<class>.h to PRIVATE_HEADERS.

Executables

Executables may be created using vtk_module_add_executable(). The first argument is the name of the executable
to build. Since the scanning phase does not know what kind of target will be created for each module (and it may change
based on other configuration values), an executable module which claims it is part of a kit raises an error since this is
not possible to do.

For modules that are executables using this function, the metadata from the module information is used to set the
relevant properties. The module dependencies are also automatically linked in the same way as a library module would
do so.

For utility executables, NO_INSTALLmay be passed to keep it within the build tree. It will not be available to consumers
of the project. If the name of the executable is different from the target name, BASENAME may be used to change the
executable’s name.

174 Chapter 8. API

VTK

Module APIs

All of CMake’s target_ function calls have analogues for modules. This is primarily due to the kits feature which
causes the target name created by the module system that is required to use the target_ functions dependent on
whether the module is a member of a kit and kits are being built. The CMake version of the function and the module
API analogue (as well as differences, if any) is:

• set_target_properties becomes vtk_module_set_properties()

• set_property(TARGET) becomes vtk_module_set_property()

• get_property(TARGET) becomes vtk_module_get_property()

• add_dependencies becomes vtk_module_depend()

• target_include_directories becomes vtk_module_include()

• target_compile_definitions becomes vtk_module_definitions()

• target_compile_options becomes vtk_module_compile_options()

• target_compile_features becomes vtk_module_compile_features()

• target_link_libraries becomes vtk_module_link(): When kits are enabled, any PRIVATE links are forwarded
to the kit itself. This necessitates making all of these targets globally scoped rather than locally scoped.

• target_link_options becomes vtk_module_link_options()

Packaging support

Getting installed packages to work for CMake is, unfortunately, not trivial. The module system provides some support
for helping with this, but it does place some extra constraints on the project so that some assumptions that vastly simplify
the process can be made.

Assumptions

The main assumption is that all modules passed to a single vtk_module_build() have the same CMake names-
pace (the part up to and including the ::, if any, in a module name. For exporting dependencies, that namespace
matches the PACKAGE argument for vtk_module_build(). These are done so that the generated code can use
CMAKE_FIND_PACKAGE_NAME variable can be used to discover information about the package that is being found.

The package support also assumes that all modules may be queried using COMPONENTS and OPTIONAL_COMPONENTS
and that the component name for a module corresponds to the name of a module without the namespace.

These rules basically mean that a module named Namespace::Target will be found using
find_package(Namespace), that COMPONENTS Target may be passed to ensure that that module exists, and
OPTIONAL_COMPONENTS Target may be passed to allow the component to not exist while not failing the main
find_package call.

8.3. CMake 175

https://cmake.org/cmake/help/latest/command/set_target_properties.html
https://cmake.org/cmake/help/latest/command/set_property.html
https://cmake.org/cmake/help/latest/command/get_property.html
https://cmake.org/cmake/help/latest/command/add_dependencies.html
https://cmake.org/cmake/help/latest/command/target_include_directories.html
https://cmake.org/cmake/help/latest/command/target_compile_definitions.html
https://cmake.org/cmake/help/latest/command/target_compile_options.html
https://cmake.org/cmake/help/latest/command/target_compile_features.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://cmake.org/cmake/help/latest/command/target_link_options.html
https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_PACKAGE_NAME.html
https://cmake.org/cmake/help/latest/command/find_package.html

VTK

Creating a full package

The module system provides no support for the top-level file that is used by find_package. This is because this logic
is highly project-specific and hard to generalize in a useful way. Instead, files are generated which should be included
from the main file.

Here, the list of files generated are based on the PACKAGE argument passed to vtk_module_build():

• <PACKAGE>-targets.cmake: The CMake-generated export file for the targets in the INSTALL_EXPORT.

• <PACKAGE>-vtk-module-properties.cmake: Properties for the targets exported into the build.

The module properties file must be included after the targets file so that they exist when it tries to add properties to the
imported targets.

External dependencies

Since the module system is heavily skewed towards using imported targets, these targets show up by name in the
find_package of the project as well. This means that these external projects need to be found to recreate their im-
ported targets at that time. To this end, there is the vtk_module_export_find_packages() function. This function
writes a file named according to its FILE_NAME argument and place it in the build and install trees according to its
CMAKE_DESTINATION argument.

This file will be populated with logic to determine whether third party packages found using
vtk_module_find_package() are required during the find_package of the package or not. It will forward
REQUIRED and QUIET parameters to other find_package calls as necessary based on the REQUIRED and QUIET flags
for the package and whether that call is involved in a non-optional COMPONENT (a component-less find_package call
is assumed to mean “all components”).

This file should be included after the <PACKAGE>-vtk-module-properties.cmake file generated by the
vtk_module_build() call so that it can use the module dependency information set via that file.

After this file is included, for each component that it checks, it will set
${CMAKE_FIND_PACKAGE_NAME}_<component>_FOUND to 0 if it is not valid and append a reason to
${CMAKE_FIND_PACKAGE_NAME}_<component>_NOT_FOUND_MESSAGE so that the package can collate the
reason why things are not available.

Setting the _FOUND variable

The module system does not currently help in determining the top-level ${CMAKE_FIND_PACKAGE_NAME}_FOUND
variable based on the results of the components that were requested and the status of dependent packages. This may
be provided at some point, but there has not currently been enough experience to determine what patterns are available
for factoring it out as a utility function.

The general pattern should be to go through the list of components requested, determine whether targets for those
components exist. Then for each found component, use the module dependency information to ensure that all
targets in the dependency trees are found (propagating not-found statuses through the dependency tree). The
${CMAKE_FIND_PACKAGE_NAME}_NOT_FOUND_MESSAGE should be built up based on the reasons the find_package
call did not work based on these discoveries.

This is the process for modules in a package, but packages may contain non-module components, and it is hard for the
module system to provide support for them, so they are not attempted. See the CMake documentation for more details
about creating a package configuration.

176 Chapter 8. API

https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#creating-a-package-configuration-file

VTK

Advanced topics

There are a number of advanced features provided by the module system that are not normally required in a simple
project.

Kits

Kits are described in vtk.kit files which act much like vtk.module files. However, they only have NAME, LIBRARY_NAME,
and DESCRIPTION fields. These all act just like they do in the vtk.module context. These files may either be passed
manually to vtk_module_scan() or discovered by using the vtk_module_find_kits() convenience function.

Before a module may be a member of a kit, a vtk.kit must declare it and be scanned at the same time. This means
that kits may only contain modules that are scanned with them and cannot be extended later nor may kits be made of
modules that they do not know about.

Requirements

In order to actually use kits, CMake 3.12 is necessary in order to do the OBJECT library manipulations done behind the
scenes to make it Just Work. 3.8 is still the minimum version for using a project that is built with kits however. This is
only checked when kits are actually in use, so projects requiring older CMake versions as their minimum version may
still provide kits so that users with newer CMake versions can use them.

Kits create a single library on disk, but the usage requirements of the modules should still be the same (except for that
which is inherently required to be different by combining libraries). So include directories, compile definitions, and
other usage requirements should not leak from other modules that are members of the same kit.

Autoinit

The module system supports a mechanism for triggering static code construction for modules which require it. This
cannot be done through normal CMake usage requirements because the requirements are intersectional. For example,
a module F having a factory where module I provides an implementation for it means that a target linking to both F
and I needs to ensure that I registers its implementation to the factory code. There is no such support in CMake and
due to the complexities and code generation involved with this support, it is unlikely to exist.

Code which uses modules may call the vtk_module_autoinit() function to use this functionality. The list of mod-
ules passed to the function are used to compute the defines necessary to trigger the registration to factories when
necessary.

For details on the implementation of the autoinit system, please see the relevant section in the API documentation.

8.3. CMake 177

https://cmake.org/cmake/help/latest/command/add_library.html

VTK

Wrapping

VTK comes with support for wrapping its classes into other languages. Currently, VTK supports wrapping its classes
for use in the Python and Java languages. In order to wrap a set of modules for a language, a separate function is used
for each language.

All languages read the headers of classes with a __VTK_WRAP__ preprocessor definition defined. This may be used to
hide methods or other details from the wrapping code if wanted.

Python

For Python, the vtk_module_wrap_python() function must be used. This function takes a list of modules in its
MODULES argument and creates Python modules for use under the PYTHON_PACKAGE package. No __init__.py for
this package is created automatically and must be provided in some other way.

A target named by the TARGET argument is created and installed. This target may be linked to in order to be
able to import static Python modules. In this case, a header and function named according to the basename of
TARGET (e.g., VTK::PythonWrapped has a basename of PythonWrapped) must be used. The header is named
<TARGET_BASENAME>.h and the function which adds the wrapped modules to the static import table is <void
TARGET_BASENAME>_load(). This function is also created in shared builds, but does nothing so that it may always
be called in static or shared builds.

The modules will be installed under the MODULE_DESTINATION given to the function into the PYTHON_PACKAGE di-
rectory needed for it. The vtk_module_python_default_destination() function is used to determine a default
if one is not passed.

The Python wrappers define a __VTK_WRAP_PYTHON__ preprocessor definition when reading code which may be used
to hide methods or other details from the Python wrapping code.

Java

For Java, the vtk_module_wrap_java() function must be used. This function creates Java sources for classes in the
modules passed in its MODULES argument. The sources are written to a JAVA_OUTPUT directory. These then can be
compiled by CMake normally.

For this purpose, there are <MODULE>Java targets which contain a _vtk_module_java_files properties containing
a list of .java sources generated for the given module. There is also a <MODULE>Java-java-sources target which
may be depended upon if just the source generation needs to used in an add_dependencies call.

The Java wrappers define a __VTK_WRAP_JAVA__ preprocessor definition when reading code which may be used to
hide methods or other details from the Java wrapping code.

Hierarchy files

Hierarchy files are used by the language wrapper tools to know the class inheritance for classes within a module. Each
module has a hierarchy file associated with it. The path to a module’s hierarchy file is stored in its hierarchy module
property.

178 Chapter 8. API

https://cmake.org/cmake/help/latest/command/add_dependencies.html

VTK

Third party

The module system has support for representing third party modules in its build. These may be built as part of the
project or represented using other mechanisms (usually find_package and a set of imported targets from it).

The primary API is vtk_module_third_party()which creates a VTK_MODULE_USE_EXTERNAL_Namespace_Target
option for the module to switch between an internal and external source for the third party code. This
value defaults to the setting of the USE_EXTERNAL argument for the calling vtk_module_build() func-
tion. Arguments passed under the INTERNAL and EXTERNAL arguments to this command are then passed on to
vtk_module_third_party_internal() or vtk_module_third_party_external(), respectively, depending
on the VTK_MODULE_USE_EXTERNAL_Namespace_Target option.

Note that third party modules (marked as such by adding the THIRD_PARTY keyword to a vtk.module file) may not
be part of a kit, be wrapped, or participate in autoinit.

External third party modules

External modules are found using CMake’s find_package mechanism. In addition to the arguments supported by
vtk_module_find_package() (except PRIVATE and PRIVATE_IF_SHARED), information about the found package
is used to construct a module target which represents the third party package. The preferred mechanism is to give a list
of imported targets to the LIBRARIES argument. These will be added to the INTERFACE of the module and provide the
third party package for use within the module system.

If imported targets are not available (they really should be created if not), variable names may be passed to
INCLUDE_DIRS, LIBRARIES, and DEFINITIONS to create the module interface.

In addition, any variables which should be forwarded from the package to the rest of the build may be specified using
the USE_VARIABLES argument.

The STANDARD_INCLUDE_DIRS argument creates an include interface for the module target which includes the “stan-
dard” module include directories to. Basically, the source and binary directories of the module.

Internal third party modules

Internal modules are those that may be built as part of the build. These should ideally specify a set of LICENSE_FILES
indicating the license status of the third party code. These files will be installed along with the third party package to
aid in any licensing requirements of the code. It is also recommended to set the VERSION argument so that it is known
what version of the code is provided at a glance.

By default, the LIBRARY_NAME of the module is used as the name of the subdirectory to include, but this may be
changed by using the SUBDIRECTORY argument.

Header-only third party modules may be indicated by using the HEADER_ONLY argument. Modules which represent
multiple libraries at once from a project may use the INTERFACE argument.

The STANDARD_INCLUDE_DIRS argument creates an include interface for the module target which includes the “stan-
dard” module include directories to. Basically, the source and binary directories of the module. A subdirectory may
be used by setting the HEADERS_SUBDIR option. It is implied for HEADERS_ONLY third party modules.

After the subdirectory is added a target with the module’s name must exist. However, a target is automatically created
if it is HEADERS_ONLY.

8.3. CMake 179

https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/find_package.html

VTK

Properly shipping internal third party code

There are many things that really should be done to ship internal third party code (also known as vendoring) properly.
The issue is mainly that the internal code may conflict with other code bringing in another copy of the same package
into a process. Most platforms do not behave well in this situation.

In order to avoid conflicts at every level possible, a process called “name mangling” should be performed. A non-
exhaustive list of name manglings that must be done to fully handle this case includes:

• moving headers to a subdirectory (to avoid compilations from finding incompatible headers);

• changing the library name (to avoid DLL lookups from finding incompatible copies); and

• mangling symbols (to avoid symbol lookup from confusing two copies in the same process).

Some projects may need further work like editing CMake APIs or the like to be mangled as well.

Moving headers and changing library names is fairly straightforward by editing CMake code. Mangling symbols usually
involves creating a header which has a #define for each public symbol to change its name at runtime to be distinct
from another copy that may end up existing in the same process from another project.

Typically, a header needs to be created at the module level which hides the differences between third party code which
may or may not be provided by an external package. In this case, it is recommended that code using the third party
module use unmangled names and let the module interface and mangling headers handle the mangling at that level.

Debugging

The module system can output debugging information about its inner workings by using the _vtk_module_log vari-
able. This variable is a list of “domains” to log about, or the special ALL value causes all domains to log output. The
following domains are used in the internals of the module system:

• kit: discovery and membership of kits

• module: discovery and CONDITION results of modules

• enable: resolution of the enable status of modules

• provide: determination of module provision

• building: when building a module occurs

• testing: missing test dependencies

It is encouraged that projects expose user-friendly flags to control logging rather than exposing _vtk_module_log
directly.

Control variables

These variables do not follow the API convention and are used if set:

• _vtk_module_warnings: If enabled, “strict” warnings are generated. These are not strictly problems, but may
be used as linting for improving usage of the module system.

• _vtk_module_log: A list of “domains” to output debugging information.

• _vtk_module_group_default_${group}: used to set a non-DEFAULT default for group settings.

Some mechanisms use global properties instead:

• _vtk_module_autoinit_include: The file that needs to be included in order to make the
VTK_MODULE_AUTOINIT symbol available for use in the autoinit support.

180 Chapter 8. API

VTK

SPDX files generation

The generation of VTK module SPDX files relies on three components:

• SPDX arguments in vtk_module_build()

• SPDX arguments in each vtk.module

• SPDX Tags in the sources files

SPDX files are named after <ModuleName>.spdx and are generated for all VTK modules.

Generated SPDX files are based on the SPDX 2.2 specification.

If some information is missing, VTK will warn during configuration or during build but the SPDX file will still be
generated with unknown fields being attributed a NOASSERTION or other default value.

The collected license identifiers are joined together using AND keyword.

Similarly all collected copyright texts are joined using a new line.

SPDX arguments in vtk_module_build

Support for SPDX file generation requires to specify the following vtk_module_build() arguments:

• GENERATE_SPDX

• SPDX_DOCUMENT_NAMESPACE

• SPDX_DOWNLOAD_LOCATION

GENERATE_SPDX is used to enable the generation and install of SPDX file for each modules. Set this to ON to enable it.

SPDX_DOCUMENT_NAMESPACE is used as a basename for the DocumentNamespace SPDX field. The name of the mod-
ule will simply be appended to the basename. If not provided, https://vtk.org/spdx will be used. This is the
value VTK project uses as well. Note that the namespace does not need to be an actual website URL, but just a unique
Uniform Resource Identifier (URI).

Caution: If VTK decide to host SPDX files in the future, the namespace in use for the VTK SPDX files may
change accordingly.

SPDX_DOWNLOAD_LOCATION is used as a basename for the PackageDownloadLocation when not provided
at module level. The relative path to the module will simply be appended in order to generate the actual
PackageDownloadLocation SPDX field. If not provided at module or in vtk_module_build(), NOASSERTION
will be used.

SPDX arguments in vtk.module

Defining these three arguments in vtk.module is required:

• SPDX_LICENSE_IDENTIFIER

• SPDX_COPYRIGHT_TEXT

• SPDX_DOWNLOAD_LOCATION

SPDX_LICENSE_IDENTIFIER is an expected field corresponding to the PackageLicenseDeclared SPDX field that
is considered as the global license for all files of the module that are not parsed during generation. This field is used to
set the PackageLicenseConcluded SPDX field.

8.3. CMake 181

https://spdx.dev/specifications/

VTK

Note: The SPDX generation system do not and cannot replace the LICENSE_FILES mechanism. Indeed, certains
license (e.g Apache 2.0) requires additional files (e.g NOTICE) to also be distributed.

SPDX_COPYRIGHT_TEXT is an expected field that correspond to the copyright applying to all files that are not parsed
during generation, it is used to generate PackageCopyrightText.

SPDX_DOWNLOAD_LOCATION is a optional field for modules (see above for setting this in vtk_module_build) and
expected field for third parties. If provided, it is used as is for the PackageDownloadLocation SPDX field.

SPDX arguments in vtk_module_add_module

It is possible to specify a SPDX_SKIP_REGEX when adding a module in order to skip specific file during SPDX tags
parsing. It is a python regex which is used to match with the filename of the source files.

Custom license support

If the VTK module contains a custom license that is not part of the SPDX license list then adding a custom license may
be needed.

The SPDX generation system support to specify exactly one custom license by module, supplemental to standard
licenses. The text of this license should be made available in a file and added to the module definition using
SPDX_CUSTOM_LICENSE_FILE , the name of the license should be specified using SPDX_CUSTOM_LICENSE_NAME
(eg: LicenseName and the SPDX_LICENSE_IDENTIFIER for this license should be LicenseRef- followed by the
name (eg: LicenseRef-licenseName). See this entry for more info.

Note: If this custom license is to be added to VTK proper, it must be compatible with the BSD-3-Clause license of
VTK and not add more restriction to the code.

SPDX Tags in the sources files

For VTK modules (except the one declared as THIRD_PARTY), sources files are parsed for specific SPDX tags in a
specific order.

First N lines of with the the SPDX-FileCopyrightText tag, then one line with the SPDX-License-Identifier tag.
Like this:

// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: BSD-3-Clause

If a source file does not contain both SPDX-FileCopyrightText and SPDX-License-Identifier tags, a warning
at build time is reported.

182 Chapter 8. API

https://spdx.org/licenses/

VTK

Limitations

• Correctness of the SPDX-FileCopyrightText and SPDX-License-Identifier tags is not ensured. The
value will be used as is.

• The generated SPDX files only include the Package information section. This means that there are no File
information sections describing source files or build artifacts.

• Third party source files are not parsed for SPDX tags.

• Adding empty lines between // SPDX-FileCopyrightText and // SPDX-License-Identifier tags is not
supported.

• Certain files are not parsed at all, eg: cmake files, python files, test files, . . .

8.3.2 vtkModule

_vtk_module_debug

Conditionally output debug statements module-internal

The _vtk_module_debug() function is provided to assist in debugging. It is controlled by the _vtk_module_log
variable which contains a list of “domains” to debug.

_vtk_module_debug(<domain> <format>)

If the domain is enabled for debugging, the format argument is configured and printed. It should contain @
variable expansions to replace rather than it being done outside. This helps to avoid the cost of generating large
strings when debugging is disabled.

vtk_module_find_kits

Find vtk.kit files in a set of directories module

vtk_module_find_kits(<output> [<directory>...])

This scans the given directories recursively for vtk.kit files and put the paths into the output variable.

vtk_module_find_modules

Find vtk.module files in a set of directories module

vtk_module_find_modules(<output> [<directory>...])

This scans the given directories recursively for vtk.module files and put the paths into the output variable. Note
that module files are assumed to live next to the CMakeLists.txt file which will build the module.

_vtk_module_split_module_name

Split a module name into a namespace and target component module-internal

Module names may include a namespace. This function splits the name into a namespace and target name part.

_vtk_module_split_module_name(<name> <prefix>)

The <prefix>_NAMESPACE and <prefix>_TARGET_NAME variables will be set in the calling scope.

_vtk_module_optional_dependency_exists

Detect whether an optional dependency exists or not. module-internal

Optional dependencies need to be detected namespace and target name part.

8.3. CMake 183

https://spdx.github.io/spdx-spec/v2.2.2/package-information/
https://spdx.github.io/spdx-spec/v2.2.2/file-information/
https://spdx.github.io/spdx-spec/v2.2.2/file-information/

VTK

_vtk_module_optional_dependency_exists(<dependency>
SATISFIED_VAR <var>)

The result will be returned in the variable specified by SATISFIED_VAR.

vtk.module file contents

The vtk.module file is parsed and used as arguments to a CMake function which stores information about the module
for use when building it. Note that no variable expansion is allowed and it is not CMake code, so no control flow is
allowed. Comments are supported and any content after a # on a line is treated as a comment. Due to the breakdown
of the content, quotes are not meaningful within the files.

Example:

NAME
VTK::CommonCore

LIBRARY_NAME
vtkCommonCore

DESCRIPTION
The base VTK library.

LICENSE_FILES
Copyright.txt

SPDX_COPYRIGHT_TEXT
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen

SPDX_LICENSE_IDENTIFIER
BSD-3-Clause

GROUPS
StandAlone

DEPENDS
VTK::kwiml

PRIVATE_DEPENDS
VTK::vtksys
VTK::utf8

All values are optional unless otherwise noted. The following arguments are supported:

• NAME: (Required) The name of the module.

• LIBRARY_NAME: The base name of the library file. It defaults to the module name, but any namespaces are
removed. For example, a NS::Foo module will have a default LIBRARY_NAME of Foo.

• DESCRIPTION: (Recommended) Short text describing what the module is for.

• KIT: The name of the kit the module belongs to (see Kits files for more information).

• IMPLEMENTABLE: If present, the module contains logic which supports the autoinit functionality.

• GROUPS: Modules may belong to “groups” which is exposed as a build option. This allows for enabling a set of
modules with a single build option.

• CONDITION: Arguments to CMake’s if command which may be used to hide the module for certain platforms
or other reasons. If the expression is false, the module is completely ignored.

• DEPENDS: A list of modules which are required by this module and modules using this module.

• PRIVATE_DEPENDS: A list of modules which are required by this module, but not by those using this module.

184 Chapter 8. API

VTK

• OPTIONAL_DEPENDS: A list of modules which are used by this module if enabled; these are treated as
PRIVATE_DEPENDS if they exist.

• ORDER_DEPENDS: Dependencies which only matter for ordering. This does not mean that the module will be
enabled, just guaranteed to build before this module.

• IMPLEMENTS: A list of modules for which this module needs to register with.

• TEST_DEPENDS: Modules required by the test suite for this module.

• TEST_OPTIONAL_DEPENDS: Modules used by the test suite for this module if available.

• TEST_LABELS: Labels to apply to the tests of this module. By default, the module name is applied as a label.

• EXCLUDE_WRAP: If present, this module should not be wrapped in any language.

• INCLUDE_MARSHAL: If present, this module opts into automatic code generation of (de)serializers. This option
requires that the module is not excluded from wrapping with EXCLUDE_WRAP.

• THIRD_PARTY: If present, this module is a third party module.

• LICENSE_FILES: A list of license files to install for the module.

• SPDX_LICENSE_IDENTIFIER: A license identifier for SPDX file generation.

• SPDX_DOWNLOAD_LOCATION: A download location for the SPDX file generation.

• SPDX_COPYRIGHT_TEXT: A copyright text for the SPDX file generation.

• SPDX_CUSTOM_LICENSE_FILE: A relative path to a single custom license file to include in generated SPDX file.

• SPDX_CUSTOM_LICENSE_NAME: The name of the single custom license, without the LicenseRef-

_vtk_module_parse_module_args

Parse vtk.module file contents

module-impl

This macro places all vtk.module keyword “arguments” into the caller’s scope prefixed with the value of
name_output which is set to the NAME of the module.

_vtk_module_parse_module_args(name_output <vtk.module args...>)

For example, this vtk.module file:

NAME
Namespace::Target

LIBRARY_NAME
nsTarget

called with _vtk_module_parse_module_args(name ...) will set the following variables in the calling
scope:

• name: Namespace::Target

• Namespace::Target_LIBRARY_NAME: nsTarget

With namespace support for module names, the variable should instead be referenced via
${${name}_LIBRARY_NAME} instead.

8.3. CMake 185

VTK

vtk.kit file contents

The vtk.kit file is parsed similarly to vtk.module files. Kits are intended to bring together related modules into a single
library in order to reduce the number of objects that linkers need to deal with.

Example:

NAME
VTK::Common

LIBRARY_NAME
vtkCommon

DESCRIPTION
Core utilities for VTK.

All values are optional unless otherwise noted. The following arguments are supported:

• NAME: (Required) The name of the kit.

• LIBRARY_NAME: The base name of the library file. It defaults to the module name, but any namespaces are
removed. For example, a NS::Foo module will have a default LIBRARY_NAME of Foo.

• DESCRIPTION: (Recommended) Short text describing what the kit contains.

_vtk_module_parse_kit_args

Parse vtk.kit file contents module-impl

Just like _vtk_module_parse_module_args(), but for kits.

Enable status values

Modules and groups are enable and disable preferences are specified using a 5-way flag setting:

• YES: The module or group must be built.

• NO: The module or group must not be built.

• WANT: The module or group should be built if possible.

• DONT_WANT: The module or group should only be built if required (e.g., via a dependency).

• DEFAULT: Acts as either WANT or DONT_WANT based on the group settings for the module or WANT_BY_DEFAULT
option to vtk_module_scan() if no other preference is specified. This is usually handled via another setting in
the main project.

If a YES module preference requires a module with a NO preference, an error is raised.

A module with a setting of DEFAULT will look for its first non-DEFAULT group setting and only if all of those are set to
DEFAULT is the WANT_BY_DEFAULT setting used.

_vtk_module_verify_enable_value

Verify enable values module-impl

Verifies that the variable named as the first parameter is a valid enable status value.

_vtk_module_verify_enable_value(var)

vtk_module_scan

Scan modules and kits module

Once all of the modules and kits files have been found, they are “scanned” to determine what modules are enabled
or required.

186 Chapter 8. API

VTK

vtk_module_scan(
MODULE_FILES <file>...
[KIT_FILES <file>...]
PROVIDES_MODULES <variable>
[PROVIDES_KITS <variable>]
[REQUIRES_MODULES <variable>]
[REQUEST_MODULES <module>...]
[REJECT_MODULES <module>...]
[UNRECOGNIZED_MODULES <variable>]
[WANT_BY_DEFAULT <ON|OFF>]
[HIDE_MODULES_FROM_CACHE <ON|OFF>]
[ENABLE_TESTS <ON|OFF|WANT|DEFAULT>])

The MODULE_FILES and PROVIDES_MODULES arguments are required. Modules which refer to kits must be
scanned at the same time as their kits. This is so that modules may not add themselves to kits declared prior. The
arguments are as follows:

• MODULE_FILES: (Required) The list of module files to scan.

• KIT_FILES: The list of kit files to scan.

• PROVIDES_MODULES: (Required) This variable will contain the list of modules which are enabled due to
this scan.

• PROVIDES_KITS: (Required if KIT_FILES are provided) This variable will contain the list of kits which
are enabled due to this scan.

• REQUIRES_MODULES: This variable will contain the list of modules required by the enabled modules that
were not scanned.

• REQUEST_MODULES: The list of modules required by previous scans.

• REJECT_MODULES: The list of modules to exclude from the scan. If any of these modules are required, an
error will be raised.

• UNRECOGNIZED_MODULES: This variable will contain the list of requested modules that were not scanned.

• WANT_BY_DEFAULT: (Defaults to OFF) Whether modules should default to being built or not.

• HIDE_MODULES_FROM_CACHE: (Defaults to OFF) Whether or not to hide the control variables from the
cache or not. If enabled, modules will not be built unless they are required elsewhere.

• ENABLE_TESTS: (Defaults to DEFAULT) Whether or not modules required by the tests for the scanned mod-
ules should be enabled or not.

– ON: Modules listed as TEST_DEPENDS will be required.

– OFF: Test modules will not be considered.

– WANT: Test dependencies will enable modules if possible. Note that this has known issues where mod-
ules required only via testing may not have their dependencies enabled.

– DEFAULT: Test modules will be enabled if their required dependencies are satisfied and skipped other-
wise.

To make error messages clearer, modules passed to REQUIRES_MODULES and REJECT_MODULES may have a
_vtk_module_reason_<MODULE> variable set to the reason for the module appearing in either argument. For
example, if the Package::Frobnitz module is required due to a ENABLE_FROBNITZ cache variable:

set("_vtk_module_reason_Package::Frobnitz"
"via the `ENABLE_FROBNITZ` setting")

8.3. CMake 187

VTK

Additionally, the reason for the WANT_BY_DEFAULT value may be provided via the
_vtk_module_reason_WANT_BY_DEFAULT variable.

Scanning multiple groups of modules

When scanning complicated projects, multiple scans may be required to get defaults set properly. The
REQUIRES_MODULES, REQUEST_MODULES, and UNRECOGNIZED_MODULES arguments are meant to deal with this case.
As an example, imagine a project with its source code, third party dependencies, as well as some utility modules which
should only be built as necessary. Here, the project would perform three scans, one for each “grouping” of modules:

Scan our modules first because we need to know what of the other groups we
need.
vtk_module_find_modules(our_modules "${CMAKE_CURRENT_SOURCE_DIR}/src")
vtk_module_scan(
MODULE_FILES ${our_modules}
PROVIDES_MODULES our_enabled_modules
REQUIRES_MODULES required_modules)

Scan the third party modules, requesting only those that are necessary, but
allowing them to be toggled during the build.
vtk_module_find_modules(third_party_modules "${CMAKE_CURRENT_SOURCE_DIR}/third-party")
vtk_module_scan(
MODULE_FILES ${third_party_modules}
PROVIDES_MODULES third_party_enabled_modules
These modules were requested by an earlier scan.
REQUEST_MODULES ${required_modules}
REQUIRES_MODULES required_modules
UNRECOGNIZED_MODULES unrecognized_modules)

These modules are internal and should only be built if necessary. There is no
need to support them being enabled independently, so hide them from the
cache.
vtk_module_find_modules(utility_modules "${CMAKE_CURRENT_SOURCE_DIR}/utilities")
vtk_module_scan(
MODULE_FILES ${utility_modules}
PROVIDES_MODULES utility_enabled_modules
These modules were either requested or unrecognized by an earlier scan.
REQUEST_MODULES ${required_modules}

${unrecognized_modules}
REQUIRES_MODULES required_modules
UNRECOGNIZED_MODULES unrecognized_modules
HIDE_MODULES_FROM_CACHE ON)

if (required_modules OR unrecognized_modules)
Not all of the modules we required were found. This should probably error out.

endif ()

188 Chapter 8. API

VTK

Module-as-target functions

Due to the nature of VTK modules supporting being built as kits, the module name might not be usable as a target to
CMake’s target_ family of commands. Instead, there are various wrappers around them which take the module name
as an argument. These handle the forwarding of relevant information to the kit library as well where necessary.

• vtk_module_set_properties()

• vtk_module_set_property()

• vtk_module_get_property()

• vtk_module_depend()

• vtk_module_include()

• vtk_module_definitions()

• vtk_module_compile_options()

• vtk_module_compile_features()

• vtk_module_link()

• vtk_module_link_options()

Module target internals

When manipulating modules as targets, there are a few functions provided for use in wrapping code to more easily
access them.

• _vtk_module_real_target()

• _vtk_module_real_target_kit()

_vtk_module_real_target

The real target for a module module-internal

_vtk_module_real_target(<var> <module>)

Sometimes the actual, core target for a module is required (e.g., setting CMake-level target properties or install
rules). This function returns the real target for a module.

_vtk_module_real_target_kit

The real target for a kit module-internal

_vtk_module_real_target_kit(<var> <kit>)

Sometimes the actual, core target for a module is required (e.g., setting CMake-level target properties or install
rules). This function returns the real target for a kit.

vtk_module_set_properties

Set multiple properties on a module module

A wrapper around set_target_properties that works for modules.

vtk_module_set_properties(<module>
[<property> <value>]...)

8.3. CMake 189

VTK

vtk_module_set_property

Set a property on a module. module

A wrapper around set_property(TARGET) that works for modules.

vtk_module_set_property(<module>
[APPEND] [APPEND_STRING]
PROPERTY <property>
VALUE <value>...)

vtk_module_get_property

Get a property from a module module

A wrapper around get_property(TARGET) that works for modules.

vtk_module_get_property(<module>
PROPERTY <property>
VARIABLE <variable>)

The variable name passed to the VARIABLE argument will be unset if the property is not set (rather than the empty
string).

_vtk_module_target_function

Generate arguments for target function wrappers module-impl

Create the INTERFACE, PUBLIC, and PRIVATE arguments for a function wrapping CMake’s target_ functions
to call the wrapped function.

This is necessary because not all of the functions support empty lists given a keyword.

vtk_module_depend

Add dependencies to a module module

A wrapper around add_dependencies that works for modules.

vtk_module_depend(<module> <depend>...)

vtk_module_sources

Add source files to a module. module

A wrapper around target_sources that works for modules.

vtk_module_sources(<module>
[PUBLIC <source>...]
[PRIVATE <source>...]
[INTERFACE <source>...])

vtk_module_include

Add include directories to a module module

A wrapper around target_include_directories that works for modules.

vtk_module_include(<module>
[SYSTEM]
[PUBLIC <directory>...]
[PRIVATE <directory>...]
[INTERFACE <directory>...])

190 Chapter 8. API

VTK

vtk_module_definitions

Add compile definitions to a module. module

A wrapper around target_compile_definitions that works for modules.

vtk_module_definitions(<module>
[PUBLIC <define>...]
[PRIVATE <define>...]
[INTERFACE <define>...])

vtk_module_compile_options

Add compile options to a module. module

A wrapper around target_compile_options that works for modules.

vtk_module_compile_options(<module>
[PUBLIC <option>...]
[PRIVATE <option>...]
[INTERFACE <option>...])

vtk_module_compile_features

Add compile features to a module. module

A wrapper around target_compile_features that works for modules.

vtk_module_compile_features(<module>
[PUBLIC <feature>...]
[PRIVATE <feature>...]
[INTERFACE <feature>...])

_vtk_private_kit_link_target

Manage the private link target for a module. module-impl

This function manages the private link target for a module.

_vtk_private_kit_link_target(<module>
[CREATE_IF_NEEDED]
[SETUP_TARGET_NAME <var>]
[USAGE_TARGET_NAME <var>])

vtk_module_link

Add link libraries to a module. module

A wrapper around target_link_libraries that works for modules. Note that this function does extra work in kit
builds, so circumventing it may break in kit builds.

The NO_KIT_EXPORT_IF_SHARED argument may be passed to additionally prevent leak-
ing PRIVATE link targets from kit builds. Intended to be used for targets coming from a
vtk_module_find_package(PRIVATE_IF_SHARED) call. Applies to all PRIVATE arguments; if differ-
ent treatment is needed for subsets of these arguments, use a separate call to vtk_module_link.

vtk_module_link(<module>
[NO_KIT_EXPORT_IF_SHARED]
[PUBLIC <link item>...]
[PRIVATE <link item>...]
[INTERFACE <link item>...])

8.3. CMake 191

VTK

vtk_module_link_options

Add link options to a module. module

A wrapper around target_link_options that works for modules.

vtk_module_link_options(<module>
[PUBLIC <option>...]
[PRIVATE <option>...]
[INTERFACE <option>...])

Module properties

module-internal

The VTK module system leverages CMake’s target propagation and storage. As such, there are a number of properties
added to the targets representing modules. These properties are intended for use by the module system and associated
functionality. In particular, more properties may be available by language wrappers.

Naming properties

When creating properties for use with the module system, they should be prefixed with INTERFACE_vtk_module_.
The INTERFACE_ portion is required in order to work with interface libraries. The vtk_module_ portion is to avoid
colliding with any other properties. This function assumes this naming scheme for some of its convenience features as
well.

Properties should be the same in the local build as well as when imported to ease use.

VTK module system properties

There are a number of properties that are used and expected by the core of the module system. These are
generally module metadata (module dependencies, whether to wrap or not, etc.). The properties all have the
INTERFACE_vtk_module_ prefix mentioned in the previous section.

• third_party: If set, the module represents a third party dependency and should be treated specially. Third
party modules are very restricted and generally do not have any other properties set on them.

• exclude_wrap: If set, the module should not be wrapped by an external language.

• depends: The list of dependent modules. Language wrappers will generally require this to satisfy references to
parent classes of the classes in the module.

• private_depends: The list of privately dependent modules. Language wrappers may require this to satisfy
references to parent classes of the classes in the module.

• optional_depends: The list of optionally dependent modules. Language wrappers may require this to satisfy
references to parent classes of the classes in the module.

• kit: The kit the module is a member of. Only set if the module is actually a member of the kit (i.e., the module
was built with BUILD_WITH_KITS ON).

• implements: The list of modules for which this module registers to. This is used by the autoinit subsystem and
generally is not required.

• implementable: If set, this module provides registries which may be populated by dependent modules. It is
used to check the implements property to help minimize unnecessary work from the autoinit subsystem.

192 Chapter 8. API

VTK

• needs_autoinit: If set, linking to this module requires the autoinit subsystem to ensure that registries in
modules are fully populated.

• headers: Paths to the public headers from the module. These are the headers which should be handled by
language wrappers.

• hierarchy: The path to the hierarchy file describing inheritance of the classes for use in language wrappers.

• forward_link: Usage requirements that must be forwarded even though the
module is linked to privately.

• include_marshal: If set, the whole module opts into automatic code generation of (de)serializers. Note that
only classes annotated with VTK_MARSHALAUTO are considered for code generation.

Kits have the following properties available (but only if kits are enabled):

• kit_modules: Modules which are compiled into the kit.

_vtk_module_set_module_property

Set a module property. module-internal

This function sets a module property on a module. The required prefix will automatically be added to the passed
name.

_vtk_module_set_module_property(<module>
[APPEND] [APPEND_STRING]
PROPERTY <property>
VALUE <value>...)

_vtk_module_get_module_property

Get a module property. module-internal

Get a module property from a module.

_vtk_module_get_module_property(<module>
PROPERTY <property>
VARIABLE <variable>)

As with vtk_module_get_property(), the output variable will be unset if the property is not set. The property
name is automatically prepended with the required prefix.

_vtk_module_check_destinations

Check that destinations are valid. module-internal

All installation destinations are expected to be relative so that CMAKE_INSTALL_PREFIX can be relied upon in
all code paths. This function may be used to verify that destinations are relative.

_vtk_module_check_destinations(<prefix> [<suffix>...])

For each suffix, prefix is prefixed to it and the resulting variable name is checked for validity as an install
prefix. Raises an error if any is invalid.

_vtk_module_write_import_prefix

Write an import prefix statement. module-internal

CMake files, once installed, may need to construct paths to other locations within the install prefix. This function
writes a prefix computation for file given its install destination.

_vtk_module_write_import_prefix(<file> <destination>)

8.3. CMake 193

VTK

The passed file is cleared so that it occurs at the top of the file. The prefix is available in the file as the
_vtk_module_import_prefix variable. It is recommended to unset the variable at the end of the file.

_vtk_module_export_properties

Export properties on modules and targets. module-internal

This function is intended for use in support functions which leverage the module system, not by general system
users. This function supports exporting properties from the build into dependencies via target properties which
are loaded from a project’s config file which is loaded via CMake’s find_package function.

_vtk_module_export_properties(
[MODULE <module>]
[KIT <kit>]
BUILD_FILE <path>
INSTALL_FILE <path>
[PROPERTIES <property>...]
[FROM_GLOBAL_PROPERTIES <property fragment>...]
[SPLIT_INSTALL_PROPERTIES <property fragment>...])

The BUILD_FILE and INSTALL_FILE arguments are required. Exactly one of MODULE and KIT is also required.
The MODULE or KIT argument holds the name of the module or kit that will have properties exported. The
BUILD_FILE and INSTALL_FILE paths are appended to. As such, when setting up these files, it should be
preceded with:

file(WRITE "${build_file}")
file(WRITE "${install_file}")

To avoid accidental usage of the install file from the build tree, it is recommended to store it under a CMakeFiles/
directory in the build tree with an additional .install suffix and use install(RENAME) to rename it at install
time.

The set of properties exported is computed as follows:

• PROPERTIES queries the module target for the given property and exports its value as-is to both the build
and install files. In addition, these properties are set on the target directly as the same name.

• FROM_GLOBAL_PROPERTIES queries the global _vtk_module_<MODULE>_<fragment> property and ex-
ports it to both the build and install files as INTERFACE_vtk_module_<fragment>.

• SPLIT_INSTALL_PROPERTIES queries the target for INTERFACE_vtk_module_<fragment> and exports
its value to the build file and INTERFACE_vtk_module_<fragment>_install to the install file as the
non-install property name. This is generally useful for properties which change between the build and
installation.

vtk_module_build

Build modules and kits. module

Once all of the modules have been scanned, they need to be built. Generally, there will be just one build necessary
for a set of scans, though they may be built distinctly as well. If there are multiple calls to this function, they
should generally in reverse order of their scans.

vtk_module_build(
MODULES <module>...
[KITS <kit>...]

[LIBRARY_NAME_SUFFIX <suffix>]
[VERSION <version>]

(continues on next page)

194 Chapter 8. API

VTK

(continued from previous page)

[SOVERSION <soversion>]

[PACKAGE <package>]

[BUILD_WITH_KITS <ON|OFF>]

[ENABLE_WRAPPING <ON|OFF>]
[ENABLE_SERIALIZATION <ON|OFF>]

[USE_EXTERNAL <ON|OFF>]

[INSTALL_HEADERS <ON|OFF>]
[HEADERS_COMPONENT <component>]
[HEADERS_EXCLUDE_FROM_ALL <ON|OFF>]
[USE_FILE_SETS <ON|OFF>]

[TARGETS_COMPONENT <component>]
[INSTALL_EXPORT <export>]

[TARGET_SPECIFIC_COMPONENTS <ON|OFF>]

[LICENSE_COMPONENT <component>]

[UTILITY_TARGET <target>]

[TEST_DIRECTORY_NAME <name>]
[TEST_DATA_TARGET <target>]
[TEST_INPUT_DATA_DIRECTORY <directory>]
[TEST_OUTPUT_DATA_DIRECTORY <directory>]
[TEST_OUTPUT_DIRECTORY <directory>]

[GENERATE_SPDX <ON|OFF>]
[SPDX_COMPONENT <component>]
[SPDX_DOCUMENT_NAMESPACE <uri>]
[SPDX_DOWNLOAD_LOCATION <url>]

[ARCHIVE_DESTINATION <destination>]
[HEADERS_DESTINATION <destination>]
[LIBRARY_DESTINATION <destination>]
[RUNTIME_DESTINATION <destination>]
[CMAKE_DESTINATION <destination>]
[LICENSE_DESTINATION <destination>]
[HIERARCHY_DESTINATION <destination>])

The only requirement of the function is the list of modules to build, the rest have reasonable defaults if not
specified.

• MODULES: (Required) The list of modules to build.

• KITS: (Required if BUILD_WITH_KITS is ON) The list of kits to build.

• LIBRARY_NAME_SUFFIX: (Defaults to "") A suffix to add to library names. If it is not empty, it is prefixed
with - to separate it from the kit name.

• VERSION: If specified, the VERSION property on built libraries will be set to this value.

8.3. CMake 195

VTK

• SOVERSION: If specified, the SOVERSION property on built libraries will be set to this value.

• PACKAGE: (Defaults to ${CMAKE_PROJECT_NAME}) The name the build is meant to be found as when using
find_package. Note that separate builds will require distinct PACKAGE values.

• BUILD_WITH_KITS: (Defaults to OFF) If enabled, kit libraries will be built.

• ENABLE_WRAPPING: (Default depends on the existence of VTK::WrapHierarchy or
VTKCompileTools::WrapHierarchy targets) If enabled, wrapping will be available to the mod-
ules built in this call.

• ENABLE_SERIALIZATION: (Defaults to OFF) If enabled, (de)serialization code will be autogenerated for
classes with the correct wrapping hints.

• USE_EXTERNAL: (Defaults to OFF) Whether third party modules should find external copies rather than
building their own copy.

• INSTALL_HEADERS: (Defaults to ON) Whether or not to install public headers.

• HEADERS_COMPONENT: (Defaults to development) The install component to use for header installation.
Note that other SDK-related bits use the same component (e.g., CMake module files).

• HEADERS_EXCLUDE_FROM_ALL: (Defaults to OFF) Whether to install the headers component in ALL or not.

• USE_FILE_SETS: (Defaults to OFF) Whether to use FILE_SET source specification or not.

• TARGETS_COMPONENT: Defaults to ``runtime) The install component to use for the libraries built.

• TARGET_SPECIFIC_COMPONENTS: (Defaults to OFF) If ON, place artifacts into target-specific install com-
ponents (<TARGET>-<COMPONENT>).

• LICENSE_COMPONENT: (Defaults to licenses) The install component to use for licenses.

• UTILITY_TARGET: If specified, all libraries and executables made by the VTK Module API will privately
link to this target. This may be used to provide things such as project-wide compilation flags or similar.

• TARGET_NAMESPACE: Defaults to ``\<AUTO\>) The namespace for installed targets. All targets must
have the same namespace. If set to \<AUTO\>, the namespace will be detected automatically.

• INSTALL_EXPORT: (Defaults to "") If non-empty, targets will be added to the given export. The export will
also be installed as part of this build command.

• TEST_DIRECTORY_NAME: (Defaults to Testing) The name of the testing directory to look for in each
module. Set to NONE to disable automatic test management.

• TEST_DATA_TARGET: (Defaults to <PACKAGE>-data) The target to add testing data download commands
to.

• TEST_INPUT_DATA_DIRECTORY: (Defaults to ${CMAKE_CURRENT_SOURCE_DIR}/Data) The directory
which will contain data for use by tests.

• TEST_OUTPUT_DATA_DIRECTORY: (Defaults to ${CMAKE_CURRENT_BINARY_DIR}/Data) The directory
which will contain data for use by tests.

• TEST_OUTPUT_DIRECTORY: (Defaults to ${CMAKE_BINARY_DIR}/<TEST_DIRECTORY_NAME>/
Temporary) The directory which tests may write any output files to.

• GENERATE_SPDX: (Defaults to OFF) Whether or not to generate and install SPDX file for each modules and
third parties.

• SPDX_COMPONENT: (Defaults to spdx) The install component to use for SPDX files.

• SPDX_DOCUMENT_NAMESPACE: (Defaults to "") Document namespace to use when generating SPDX files.

• SPDX_DOWNLOAD_LOCATION: (Defaults to "") Download location to use when generating SPDX files.

196 Chapter 8. API

VTK

The remaining arguments control where to install files related to the build. See CMake documentation for the
difference between ARCHIVE, LIBRARY, and RUNTIME.

• ARCHIVE_DESTINATION: (Defaults to ${CMAKE_INSTALL_LIBDIR}) The install destination for archive
files.

• HEADERS_DESTINATION: (Defaults to ${CMAKE_INSTALL_INCLUDEDIR}) The install destination for
header files.

• LIBRARY_DESTINATION: (Defaults to ${CMAKE_INSTALL_LIBDIR}) The install destination for library
files.

• RUNTIME_DESTINATION: (Defaults to ${CMAKE_INSTALL_BINDIR}) The install destination for runtime
files.

• CMAKE_DESTINATION: (Defaults to <LIBRARY_DESTINATION>/cmake/<PACKAGE>) The install destina-
tion for CMake files.

• LICENSE_DESTINATION: (Defaults to ${CMAKE_INSTALL_DATAROOTDIR}/licenses/
${CMAKE_PROJECT_NAME}) The install destination for license files.

• SPDX_DESTINATION: (Defaults to ${CMAKE_INSTALL_DATAROOTDIR}/doc/
${CMAKE_PROJECT_NAME}/spdx/) The install destination for SPDX files.

• HIERARCHY_DESTINATION: (Defaults to <LIBRARY_DESTINATION>/vtk/hierarchy/<PACKAGE>) The
install destination for hierarchy files (used for language wrapping).

_vtk_module_standard_includes

Add “standard” include directories to a module. module-impl

Add the “standard” includes for a module to its interface. These are the source And build directories for the
module itself. They are always either PUBLIC or INTERFACE (depending on the module’s target type).

_vtk_module_standard_includes(
[SYSTEM]
[INTERFACE]
TARGET <target>
[HEADERS_DESTINATION <destination>])

_vtk_module_default_library_name

Determine the default export macro for a module. module-impl

Determines the export macro to be used for a module from its metadata. Assumes it is called from within a
vtk_module_build call().

_vtk_module_default_library_name(<varname>)

Autoinit

module

When a module contains a factory which may be populated by other modules, these factories need to be populated
when the modules are loaded by the dynamic linker (for shared builds) or program load time (for static builds). To
provide for this, the module system contains an autoinit “subsystem”.

8.3. CMake 197

VTK

Leveraging the autoinit subsystem

The subsystem provides the following hooks for use by projects:

• In modules which IMPLEMENTS other modules, in the generated <module>Module.h header (which provides
export symbols as well) will include the modules which are implemented.

• In modules which are IMPLEMENTABLE or IMPLEMENTS another module, the generated <module>Module.h file
will include the following block:

#ifdef <module>_AUTOINIT_INCLUDE
#include <module>_AUTOINIT_INCLUDE
#endif
#ifdef <module>_AUTOINIT
#include <header>
VTK_MODULE_AUTOINIT(<module>)
#endif

The vtk_module_autoinit() function will generate an include file and provide its path via the
<module>_AUTOINIT_INCLUDE define. once it has been included, if the <module>_AUTOINIT symbol is de-
fined, a header is included which is intended to provide the VTK_MODULE_AUTOINIT macro. This macro is given
the module name and should use <module>_AUTOINIT to fill in the factories in the module with those from the
IMPLEMENTS modules listed in that symbol.

The <module>_AUTOINIT symbol’s value is:

<count>(<module1>,<module2>,<module3>)

where <count> is the number of modules in the parentheses and each module listed need to register something to
<module>.

If not provided via the AUTOINIT_INCLUDE argument to the vtk_module_add_module() function, the header to use
is fetched from the _vtk_module_autoinit_include global property. This only needs to be managed in modules
that IMPLEMENTS or are IMPLEMENTABLE. This should be provided by projects using the module system at its lowest
level. Projects not implementing the VTK_MODULE_AUTOINITmacro should have its value provided by find_package
dependencies in some way.

vtk_module_autoinit

Linking to autoinit-using modules. module

When linking to modules, in order for the autoinit system to work, modules need to declare their registration. In
order to do this, defines may need to be provided to targets in order to trigger registration. These defines may be
added to targets by using this function.

vtk_module_autoinit(
TARGETS <target>...
MODULES <module>...)

After this call, the targets given to the TARGETS argument will gain the preprocessor definitions to trigger regis-
trations properly.

_vtk_module_depfile_args

Compute supported depfile tracking arguments. module-internal

Support for add_custom_command(DEPFILE) has changed over the CMake timeline. Generate the required
arguments as supported for the current CMake version and generator.

198 Chapter 8. API

VTK

_vtk_module_depfile_args(
[MULTI_CONFIG_NEEDS_GENEX]
TOOL_ARGS <variable>
CUSTOM_COMMAND_ARGS <variable>
DEPFILE_PATH <path>
[SOURCE <path>]
[SOURCE_LANGUAGE <lang>]
[DEPFILE_NO_GENEX_PATH <path>]
[TOOL_FLAGS <flag>...])

The arguments to pass to the tool are returned in the variable given to TOOL_ARGS while the arguments for
add_custom_command itself are returned in the variable given to CUSTOM_COMMAND_ARGS. DEPFILE_PATH is
the path to the depfile to use. If a generator expression can optionally be used, DEPFILE_NO_GENEX_PATH can
be specified as a fallback in case of no generator expression support (unless MULTI_CONFIG_NEEDS_GENEX is
specified and a multi-config generator is used). TOOL_FLAGS specifies the flags the tool needs to specify the
depfile if used. If support is not available, the path given to SOURCE is used for IMPLICIT_DEPENDS using
SOURCE_LANGUAGE (which defaults to CXX).

_vtk_module_write_wrap_hierarchy

Generate the hierarchy for a module. module-impl

Write wrap hierarchy files for the module currently being built. This also installs the hierarchy file for use
by dependent projects if INSTALL_HEADERS is set. This function honors the HEADERS_COMPONENT, and
HEADERS_EXCLUDE_FROM_ALL arguments to vtk_module_build().

_vtk_module_write_wrap_hierarchy()

_vtk_module_add_file_set

Add a file set to a target. module-internal

_vtk_module_add_file_set(<target>
NAME <name>
[VIS <visibility>]
[TYPE <type>]
[BASE_DIRS <base directory>...]
FILES
[members...])

Add a file set to the <target> named <name>.

• NAME: The name of the file set.

• VIS: The visibility of the file set. Defaults to PRIVATE. Must be a valid CMake visibility (PUBLIC, PRIVATE,
or INTERFACE).

• TYPE: The type of the file set. Defaults to HEADERS. File sets types that are recognized and known to not
be supported by the CMake version in use will be added as PRIVATE sources not part of any file set.

• BASE_DIRS: Base directories for the files. Defaults to ${CMAKE_CURRENT_SOURCE_DIR} and
${CMAKE_CURRENT_BINARY_DIR} if not specified.

• FILES: The paths to add to the file set.

Note that prior to CMake 3.19, usage of FILE_SET with INTERFACE targets is severely restricted and instead
this function will do nothing. Any PUBLIC files specified this way need installed using standard mechanisms.

vtk_module_add_module

Create a module library. module

8.3. CMake 199

VTK

vtk_module_add_module(<name>
[NO_INSTALL] [FORCE_STATIC|FORCE_SHARED]
[HEADER_ONLY] [HEADER_DIRECTORIES]
[EXPORT_MACRO_PREFIX <prefix>]
[HEADERS_SUBDIR <subdir>]
[LIBRARY_NAME_SUFFIX <suffix>]
[CLASSES <class>...]
[TEMPLATE_CLASSES <template class>...]
[NOWRAP_CLASSES <nowrap class>...]
[NOWRAP_TEMPLATE_CLASSES <nowrap template class>...]
[SOURCES <source>...]
[HEADERS <header>...]
[NOWRAP_HEADERS <header>...]
[TEMPLATES <template>...]
[PRIVATE_CLASSES <class>...]
[PRIVATE_TEMPLATE_CLASSES <template class>...]
[PRIVATE_HEADERS <header>...]
[PRIVATE_TEMPLATES <template>...]
[SPDX_SKIP_REGEX <regex>])

The PRIVATE_ arguments are analogous to their non-PRIVATE_ arguments, but the associated files are not in-
stalled or available for wrapping (SOURCES are always private, so there is no PRIVATE_ variant for that argument).

• NO_INSTALL: Skip installation of the module and all its installation artifacts. Note that if this target is used
by any other target that is exported, this option may not be used because CMake (in addition to VTK module
APIs such as vtk_module_export_find_packages and ‘ ‘) will generate references to the target that are
expected to be satisfied. It is highly recommended to test that the build and install exports (as used) be
tested to make sure that the module is not actually referenced.

• FORCE_STATIC or FORCE_SHARED: For a static (respectively, shared) library to be created. If neither is
provided, BUILD_SHARED_LIBS will control the library type.

• HEADER_ONLY: The module only contains headers (or templates) and contains no compilation steps. Mu-
tually exclusive with FORCE_STATIC.

• HEADER_DIRECTORIES: The headers for this module are in a directory structure which should be preserved
in the install tree.

• EXPORT_MACRO_PREFIX: The prefix for the export macro definitions. Defaults to the library name of the
module in all uppercase.

• HEADERS_SUBDIR: The subdirectory to install headers into in the install tree.

• LIBRARY_NAME_SUFFIX: The suffix to the module’s library name if additional information is required.

• CLASSES: A list of classes in the module. This is a shortcut for adding <class>.cxx to SOURCES and
<class>.h to HEADERS.

• TEMPLATE_CLASSES: A list of template classes in the module. This is a shortcut for adding <class>.txx
to TEMPLATES and <class>.h to HEADERS.

• SOURCES: A list of source files which require compilation.

• HEADERS: A list of header files which will be available for wrapping and installed.

• NOWRAP_CLASSES: A list of classes which will not be available for wrapping but installed. This is a shortcut
for adding <class>.cxx to SOURCES and <class>.h to NOWRAP_HEADERS.

• NOWRAP_TEMPLATE_CLASSES: A list of template classes which will not be

200 Chapter 8. API

VTK

• available for wrapping but installed. This is a shortcut for adding <class>.txx to TEMPLATES and
<class>.h to NOWRAP_HEADERS.

• NOWRAP_HEADERS: A list of header files which will not be available for wrapping but installed.

• TEMPLATES: A list of template files which will be installed.

• SPDX_SKIP_REGEX: A python regex to skip a file based on its name
when parsing for SPDX headers.

_vtk_module_add_header_tests

Add header tests for a module. module-impl

Todo: Move this function out to be VTK-specific, probably into vtkModuleTesting.cmake. Each module would
then need to manually call this function. It currently assumes it is in VTK itself.

_vtk_module_add_header_tests()

_vtk_module_apply_properties

Apply properties to a module. module-internal

Apply build properties to a target. Generally only useful to wrapping code or other modules that cannot use
vtk_module_add_module() for some reason.

_vtk_module_apply_properties(<target>
[BASENAME <basename>])

If BASENAME is given, it will be used instead of the target name as the basis for OUTPUT_NAME. Full modules (as
opposed to third party or other non-module libraries) always use the module’s LIBRARY_NAME setting.

The following target properties are set based on the arguments to the calling vtk_module_build call()

• OUTPUT_NAME (based on the module’s LIBRARY_NAME and vtk_module_build(LIBRARY_NAME_SUFFIX))

• VERSION (based on vtk_module_build(VERSION))

• SOVERSION (based on vtk_module_build(SOVERSION))

• DEBUG_POSTFIX (on Windows unless already set via CMAKE_DEBUG_POSTFIX)

_vtk_module_install

Install a module target. module-internal

Install a target within the module context. Generally only useful to wrapping code, modules that cannot use
vtk_module_add_module() for some reason, or modules which create utility targets that need installed.

_vtk_module_install(<target>)

This function uses the various installation options to vtk_module_build() function to keep the install uniform.

vtk_module_add_executable

Create a module executable. module

Some modules may have associated executables with them. By using this function, the target will be installed
following the options given to the associated vtk_module_build() command. Its name will also be changed
according to the LIBRARY_NAME_SUFFIX option.

8.3. CMake 201

VTK

vtk_module_add_executable(<name>
[NO_INSTALL]
[DEVELOPMENT]
[BASENAME <basename>]
<source>...)

If NO_INSTALL is specified, the executable will not be installed. If BASENAME is given, it will be used as the
name of the executable rather than the target name.

If DEVELOPMENT is given, it marks the executable as a development tool and will not be installed if
INSTALL_HEADERS is not set for the associated vtk_module_build() command.

If the executable being built is the module, its module properties are used rather than BASENAME. In addition, the
dependencies of the module will be linked.

vtk_module_find_package

Find a package. module

A wrapper around find_package that records information for use so that the same targets may be found when
finding this package.

Modules may need to find external dependencies. CMake often provides modules to find these dependencies,
but when imported targets are involved, these.need to also be found from dependencies of the current project.
Since the benefits of imported targets greatly outweighs not using them, it is preferred to use them.

The module system provides the vtk_module_find_package() function in order to extend find_package
support to include finding the dependencies from an install of the project.

vtk_module_find_package(
[PRIVATE] [PRIVATE_IF_SHARED] [CONFIG_MODE]
PACKAGE <package>
[VERSION <version>]
[COMPONENTS <component>...]
[OPTIONAL_COMPONENTS <component>...]
[FORWARD_VERSION_REQ <MAJOR|MINOR|PATCH|EXACT>]
[VERSION_VAR <variable>])

• PACKAGE: The name of the package to find.

• VERSION: The minimum version of the package that is required.

• COMPONENTS: Components of the package which are required.

• OPTIONAL_COMPONENTS: Components of the package which may be missing.

• FORWARD_VERSION_REQ: If provided, the found version will be promoted to the minimum version required
matching the given version scheme.

• VERSION_VAR: The variable to use as the provided version (defaults to <PACKAGE>_VERSION). It may
contain @ in which case it will be configured. This is useful for modules which only provide components
of the actual version number.

• CONFIG_MODE: If present, pass CONFIG to the underlying find_package call.

• PRIVATE: The dependency should not be exported to the install.

• PRIVATE_IF_SHARED: The dependency should not be exported to the install if the module is built as a
SHARED library.

202 Chapter 8. API

VTK

The PACKAGE argument is the only required argument. The rest are optional.

Note that PRIVATE is only applicable for private dependencies on interface targets (basically, header libraries)
because some platforms require private shared libraries dependencies to be present when linking dependent
libraries and executables as well. Such usages should additionally be used only via a $<BUILD_INTERFACE>
generator expression to avoid putting the target name into the install tree at all.

vtk_module_export_find_packages

Export find_package calls for dependencies. module

When installing a project that is meant to be found via find_package from CMake, using imported targets in
the build means that imported targets need to be created during the find_package as well. This function writes
a file suitable for inclusion from a <package>-config.cmake file to satisfy dependencies. It assumes that the
exported targets are named ${CMAKE_FIND_PACKAGE_NAME}::${component}. Dependent packages will only
be found if a requested component requires the package to be found either directly or transitively.

vtk_module_export_find_packages(
CMAKE_DESTINATION <directory>
FILE_NAME <filename>
[COMPONENT <component>]
MODULES <module>...)

The file will be named according to the FILE_NAME argument will be installed into CMAKE_DESTINATION in the
build and install trees with the given filename. If not provided, the development component will be used.

The vtk_module_find_package calls made by the modules listed in MODULES will be exported to this file.

Third party support

module

The module system acknowledges that third party support is a pain and offers APIs to help wrangle them. Sometimes
third party code needs a shim introduced to make it behave better, so an INTERFACE library to add that in is very useful.
Other times, third party code is hard to ensure that it exists everywhere, so it is bundled. When that happens, the ability
to select between the bundled copy and an external copy is useful. All three (and more) of these are possible.

The following functions are used to handle third party modules:

• vtk_module_third_party()

• vtk_module_third_party_external()

• vtk_module_third_party_internal()

vtk_module_third_party

Third party module.|module|

When a project has modules which represent third party packages, there are some convenience functions to help
deal with them. First, there is the meta-wrapper:

vtk_module_third_party(
[INTERNAL <internal arguments>...]
[EXTERNAL <external arguments>...])

This offers a cache variable named VTK_MODULE_USE_EXTERNAL_<module name> that may be set to trig-
ger between the internal copy and an externally provided copy. This is available as a local variable named
VTK_MODULE_USE_EXTERNAL_<library name>. See the vtk_module_third_party_external() and
:cmake:command`vtk_module_third_party_internal` functions for the arguments supported by the EXTERNAL
and INTERNAL arguments, respectively.

8.3. CMake 203

VTK

_vtk_module_mark_third_party

Mark a module as being third party. module-impl

Mark a module as being a third party module.

_vtk_module_mark_third_party(<target>)

vtk_module_third_party_external

External third party package. module

A third party dependency may be expressed as a module using this function. Third party packages are found
using CMake’s find_package function. It is highly recommended that imported targets are used to make usage
easier. The module itself will be created as an INTERFACE library which exposes the package.

vtk_module_third_party_external(
PACKAGE <package>
[VERSION <version>]
[COMPONENTS <component>...]
[OPTIONAL_COMPONENTS <component>...]
[TARGETS <target>...]
[INCLUDE_DIRS <path-or-variable>...]
[LIBRARIES <target-or-variable>...]
[DEFINITIONS <variable>...]
[FORWARD_VERSION_REQ <MAJOR|MINOR|PATCH|EXACT>]
[VERSION_VAR <version-spec>]
[USE_VARIABLES <variable>...]
[CONFIG_MODE]
[STANDARD_INCLUDE_DIRS])

Only the PACKAGE argument is required. The arguments are as follows:

• PACKAGE: (Required) The name of the package to find.

• VERSION: If specified, the minimum version of the dependency that must be found.

• COMPONENTS: The list of components to request from the package.

• OPTIONAL_COMPONENTS: The list of optional components to request from the package.

• TARGETS: The list of targets to search for when using this package. Targets which do not exist will be
ignored to support different versions of a package using different target names.

• STANDARD_INCLUDE_DIRS: If present, standard include directories will be added to the module target.
This is usually only required if both internal and external are supported for a given dependency.

• INCLUDE_DIRS: If specified, this is added as a SYSTEM INTERFACE include directory for the target. If a
variable name is given, it will be dereferenced.

• LIBRARIES: The libraries to link from the package. If a variable name is given, it will be dereferenced,
however a warning that imported targets are not being used will be emitted.

• DEFINITIONS: If specified, the given variables will be added to the target compile definitions interface.

• CONFIG_MODE: Force CONFIG mode.

• FORWARD_VERSION_REQ and VERSION_VAR: See documentation for vtk_module_find_package().

• USE_VARIABLES: List of variables from the find_package to make available to the caller.

204 Chapter 8. API

VTK

vtk_module_third_party_internal

Internal third party package. module

Third party modules may also be bundled with the project itself. In this case, it is an internal third party depen-
dency. The dependency is assumed to be in a subdirectory that will be used via add_subdirectory. Unless it
is marked as HEADERS_ONLY, it is assumed that it will create a target with the name of the module.

SPDX generation requires that SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT are specified.

vtk_module_third_party_internal(
[SUBDIRECTORY <path>]
[HEADERS_SUBDIR <subdir>]
[LICENSE_FILES <file>...]
[VERSION <version>]
[HEADER_ONLY]
[INTERFACE]
[STANDARD_INCLUDE_DIRS])

All arguments are optional, however warnings are emitted if LICENSE_FILES, VERSION,
SPDX_LICENSE_IDENTIFIER or SPDX_COPYRIGHT_TEXT are not specified.

They are as follows:

• SUBDIRECTORY: (Defaults to the library name of the module) The subdirectory containing the
CMakeLists.txt for the dependency.

• HEADERS_SUBDIR: If non-empty, the subdirectory to use for installing headers.

• LICENSE_FILES: A list of license files to install for the dependency. If not given, a warning will be emitted.

• SPDX_LICENSE_IDENTIFIER: A license identifier for SPDX file generation

• SPDX_DOWNLOAD_LOCATION: A download location for SPDX file generation

• SPDX_COPYRIGHT_TEXT: A copyright text for SPDX file generation

• SPDX_CUSTOM_LICENSE_FILE: A relative path to a single custom license file to include in generated SPDX
file.

• SPDX_CUSTOM_LICENSE_NAME: The name of the single custom license, without the LicenseRef-

• VERSION: The version of the library that is included.

• HEADER_ONLY: The dependency is header only and will not create a target.

• INTERFACE: The dependency is an INTERFACE library.

• STANDARD_INCLUDE_DIRS: If present, module-standard include directories will be added to the module
target.

_vtk_module_generate_spdx

SPDX file generation at build time. module-internal

Modules can specify a copyright and a license identifier as well as other information to generate a SPDX file
in order to provide a Software Bill Of Materials (SBOM). Inputs files can be parsed for SPDX copyrights and
license identifier to add to the SPDX file as well.

_vtk_module_generate_spd(
[MODULE_NAME <name>]
[TARGET <target>]
[OUTPUT <file>]

(continues on next page)

8.3. CMake 205

VTK

(continued from previous page)

[SKIP_REGEX <regex>]
[INPUT_FILES <file>...]

All arguments are required except for INPUT_FILES.

• MODULE_NAME: The name of the module that will be used as package name in the SPDX file.

• TARGET: A CMake target for the generation of the SPDX file at build time

• OUTPUT: Path to the SPDX file to generate

• SKIP_REGEX: A python regex to exclude certain source files from SPDX parsing

• INPUT_FILES: A list of input files to parse for SPDX copyrights and license identifiers, some files are
automatically excluded from parsing.

8.3.3 vtkModuleTesting

VTK uses the ExternalData CMake module to handle the data management for its test suite. Test data is only down-
loaded when a test which requires it is enabled and it is cached so that every build does not need to redownload the
same data.

To facilitate this workflow, there are a number of CMake functions available in order to indicate that test data is required.

Loading data

vtk_module_test_data

Download test data. module

Data may be downloaded manually using this function:

vtk_module_test_data(<PATHSPEC>...)

This will download data inside of the input data directory for the modules being built at that time (see the
TEST_INPUT_DATA_DIRECTORY argument of vtk_module_build).

For supported PATHSPEC syntax, see the associated documentation in ref:ExternalData. These arguments are
already wrapped in the DATA{} syntax and are assumed to be relative paths from the input data directory.

Creating test executables

vtk_module_test_executable

This function creates an executable from the list of sources passed to it. It is automatically linked to the module
the tests are intended for as well as any declared test dependencies of the module.

vtk_module_test_executable(<NAME> <SOURCE>...)

This function is not usually used directly, but instead through the other convenience functions.

206 Chapter 8. API

https://cmake.org/cmake/help/latest/module/ExternalData.html

VTK

Test name parsing

Test names default to using the basename of the filename which contains the test. Two tests may share the same file by
prefixing with a custom name for the test and a comma.

The two parsed syntaxes are: - CustomTestName,TestFile - TestFile

Note that TestFile should already have had its extension stripped (usually done by _vtk_test_parse_args).

In general, the name of a test will be <EXENAME>-<TESTNAME>, however, by setting vtk_test_prefix, the test name
will instead be <EXENAME>-<PREFIX><TESTNAME>.

Test function arguments

Each test is specified using one of the two following syntaxes

• <NAME>.<SOURCE_EXT>

• <NAME>.<SOURCE_EXT>,<OPTIONS>

Where NAME is a valid test name. If present, the specified OPTIONS are only for the associated test. The expected
extension is specified by the associated test function.

_vtk_test_parse_args

module-internal Given a list of valid “options”, this function will parse out a the following variables:

• args: Unrecognized arguments. These should be interpreted as arguments that should be passed on the
command line to all tests in this parse group.

• options: Options specified globally (for all tests in this group).

• names: A list containing all named tests. These should be parsed by _vtk_test_parse_name.

• _<NAME>_options: Options specific to a certain test.

_vtk_test_parse_args(<OPTIONS> <SOURCE_EXT> <ARG>...)

In order to be recognized as a source file, the SOURCE_EXT must be used. Without it, all non-option arguments
are placed into args. Each test is parsed out matching these:

_vtk_test_set_options

For handling global option settings module-internal, this function sets variables in the calling scoped named
<PREFIX><OPTION> to either 0 or 1 if the option is present in the remaining argument list.

_vtk_test_set_options(<OPTIONS> <PREFIX> <ARG>...)

Additionally, a non-0 default for a given option may be specified by a variable with the same name as the option
and specifying a prefix for the output variables.

8.3. CMake 207

VTK

C++ tests

vtk_add_test_cxx

This function declares C++ tests module. Source files are required to use the cxx extension.

vtk_add_test_cxx(<EXENAME> <VARNAME> <ARG>...)

Each argument should be either an option, a test specification, or it is passed as flags to all tests declared in the
group. The list of tests is set in the <VARNAME> variable in the calling scope.

Options:

• NO_DATA: The test does not need to know the test input data directory. If it does, it is passed on the command
line via the -D flag.

• NO_VALID: The test does not have a valid baseline image. If it does, the baseline is assumed to be in ..
/Data/Baseline/<NAME>.png relative to the current source directory. If alternate baseline images are
required, <NAME>may be suffixed by _1, _2, etc. The valid image is passed via the -V flag. - TIGHT_VALID:
Uses euclidian type metrics to compare baselines. Baseline comparison is sensitive to outliers in this
setting. - LOOSE_VALID: Uses L1 type metrics to compare baselines. Baseline comparison is somewhat
more forgiving. Typical use cases involve rendering that is highly GPU dependent, and baselines with
text. - LEGACY_VALID: Uses legacy image compare. This metric generates a lot of false negatives. It is
recommended not to use it.

• NO_OUTPUT: The test does not need to write out any data to the filesystem. If it does, a directory which may
be written to is passed via the -T flag.

Additional flags may be passed to tests using the ${_vtk_build_test}_ARGS variable or the <NAME>_ARGS
variable.

MPI tests

vtk_add_test_mpi

This function declares C++ tests which should be run under an MPI environment. module Source files are
required to use the cxx extension.

vtk_add_test_mpi(<EXENAME> <VARNAME> <ARG>...)

Each argument should be either an option, a test specification, or it is passed as flags to all tests declared in the
group. The list of tests is set in the <VARNAME> variable in the calling scope.

Options:

• TESTING_DATA

• NO_VALID: The test does not have a valid baseline image. If it does, the baseline is assumed to be in ..
/Data/Baseline/<NAME>.png relative to the current source directory. If alternate baseline images are
required, <NAME> may be suffixed by _1, _2, etc. The valid image is passed via the -V flag.

Each test is run using the number of processors specified by the following variables (using the first one which is
set):

• <NAME>_NUMPROCS

• <EXENAME>_NUMPROCS

• VTK_MPI_NUMPROCS (defaults to 2)

Additional flags may be passed to tests using the ${_vtk_build_test}_ARGS variable or the <NAME>_ARGS
variable.

208 Chapter 8. API

VTK

C++ test executable

vtk_test_cxx_executable

vtk_test_cxx_executable(<EXENAME> <VARNAME> [RENDERING_FACTORY] [<SRC>...])

Creates an executable named EXENAME which contains the tests listed in the variable named in the VARNAME
argument. The EXENAME must match the EXENAME passed to the test declarations when building the list of tests.

If RENDERING_FACTORY is provided, VTK’s rendering factories are initialized during the test.

By default, VTK’s rendering tests enable FP exceptions to find floating point errors in debug builds. If
DISABLE_FLOATING_POINT_EXCEPTIONS is provided, FP exceptions are not enabled for the test. This is useful
when testing against external libraries to ignore exceptions in third-party code.

Any additional arguments are added as additional sources for the executable.

vtk_test_mpi_executable

MPI executables used to have their own test executable function.|module-internal| This is no longer necessary and is
deprecated. Instead, vtk_test_cxx_executable should be used instead.

Python tests

vtk_add_test_python

This function declares Python tests.|module| Test files are required to use the py extension.

vtk_add_test_python(<EXENAME> <VARNAME> <ARG>...)

If the _vtk_testing_python_exe variable is not set, the vtkpython binary is used by default. Additional arguments
may be passed in this variable as well.

If the given Python executable supports VTK’s --enable-bt flag, setting
_vtk_testing_python_exe_supports_bt to 1 is required to enable it.

JavaScript tests

vtk_add_test_module_javascript_node

This function declares JavaScript tests run with NodeJS. Test files are required to use the mjs extension. Addi-
tional arguments to node can be passed via _vtk_node_args variable.

vtk_add_test_module_javascript_node(<VARNAME> <ARG>...)

The _vtk_testing_nodejs_exe variable must point to the path of a node interpreter.

MPI tests

vtk_add_test_python_mpi

A small wrapper around vtk_add_test_python which adds support for running MPI-aware tests written in
Python.

The $<module library name>_NUMPROCS variable may be used to use a non-default number of processors
for a test.

This forces running with the pvtkpython executable.

8.3. CMake 209

VTK

ABI Mangling tests

vtk_add_test_mangling

This function declares a test to verify that all of the exported symbols in the VTK module library contain the correct
ABI mangling prefix. This test requires setting the option VTK_ABI_NAMESPACE_NAME to a value that is not
“<DEFAULT>”.

Current limitations of this test are: - Does not run on non-UNIX platforms - Is not compatible with the option
“VTK_ENABLE_KITS” - May not work outside of VTK itself

vtk_add_test_mangling(module_name [EXEMPTIONS ...])

Options: - EXEMPTIONS: List of symbol patterns to excluded from the ABI mangling test

where it is known that the symbols do not support the ABI mangling but are still exported. This option
should be extremely rare to use, see the documentation on ABI mangling for how the handle C and C++
symbols before adding an EXEMPTION.

8.3.4 vtkModuleWrapPython

APIs for wrapping modules for Python

Limitations

Known limitations include:

• Shared Python modules only really support shared builds of modules. VTK does not provide mangling facilities
for itself, so statically linking VTK into its Python modules precludes using VTK’s C++ interface anywhere else
within the Python environment.

• Only supports CPython. Other implementations are not supported by the VTK::WrapPython executable.

• Links directly to a Python library. See the VTK::Python module for more details.

vtk_module_python_default_destination

Determine Python module destination. module-wrapping-python

Some projects may need to know where Python expects its modules to be placed in the install tree (assuming a
shared prefix). This function computes the default and sets the passed variable to the value in the calling scope.

vtk_module_python_default_destination(<var>
[MAJOR_VERSION <major>])

By default, the destination is ${CMAKE_INSTALL_BINDIR}/Lib/site-packages on Windows and
${CMAKE_INSTALL_LIBDIR}/python<VERSION>/site-packages otherwise.

<MAJOR_VERSION>, if specified, must be 3.

_vtk_module_wrap_python_sources

Generate sources for using a module’s classes from Python. module-impl

This function generates the wrapped sources for a module. It places the list of generated source files and classes
in variables named in the second and third arguments, respectively.

_vtk_module_wrap_python_sources(<module> <sources> <classes>)

210 Chapter 8. API

VTK

_vtk_module_wrap_python_library

Generate a CPython library for a set of modules. module-impl

A Python module library may consist of the Python wrappings of multiple modules. This is useful for kit-based
builds where the modules part of the same kit belong to the same Python module as well.

_vtk_module_wrap_python_library(<name> <module>...)

The first argument is the name of the Python module. The remaining arguments are modules to include in the
Python module.

The remaining information it uses is assumed to be provided by the vtk_module_wrap_python function().

vtk_module_wrap_python

Wrap a set of modules for use in Python.|module-wrapping-python|

vtk_module_wrap_python(
MODULES <module>...
[TARGET <target>]
[WRAPPED_MODULES <varname>]

[BUILD_STATIC <ON|OFF>]
[INSTALL_HEADERS <ON|OFF>]
[BUILD_PYI_FILES <ON|OFF>]

[DEPENDS <target>...]
[UTILITY_TARGET <target>]

[MODULE_DESTINATION <destination>]
[STATIC_MODULE_DESTINATION <destination>]
[CMAKE_DESTINATION <destination>]
[LIBRARY_DESTINATION <destination>]
[HEADERS_DESTINATION <destination>]

[PYTHON_PACKAGE <package>]
[SOABI <soabi>]
[USE_DEBUG_SUFFIX <ON|OFF>]
[REPLACE_DEBUG_SUFFIX <ON|OFF>]

[INTERPRETER <interpreter>]

[INSTALL_EXPORT <export>]
[COMPONENT <component>])
[TARGET_SPECIFIC_COMPONENTS <ON|OFF>]

[WARNINGS <warning>...]
)

• MODULES: (Required) The list of modules to wrap.

• TARGET: (Recommended) The target to create which represents all wrapped Python modules. This is mostly
useful when supporting static Python modules in order to add the generated modules to the built-in table.

• WRAPPED_MODULES: (Recommended) Not all modules are wrappable. This variable will
be set to contain the list of modules which were wrapped. These modules will have a

8.3. CMake 211

VTK

INTERFACE_vtk_module_python_package property set on them which is the name that should
be given to import statements in Python code.

• BUILD_STATIC: Defaults to ${BUILD_SHARED_LIBS}. Note that shared modules with a static build is not
completely supported. For static Python module builds, a header named <TARGET>.h will be available
with a function void <TARGET>_load() which will add all Python modules created by this call to the
imported module table. For shared Python module builds, the same function is provided, but it is a no-op.

• INSTALL_HEADERS (Defaults to ON): If unset, CMake properties will not be installed.

• BUILD_PYI_FILES (Defaults to OFF): If set, .pyi files will be built and installed for the generated modules.

• TARGET_SPECIFIC_COMPONENTS (Defaults to OFF): If set, prepend the output target name to the install
component (<TARGET>-<COMPONENT>).

• DEPENDS: This is list of other Python modules targets i.e. targets generated from previous calls to
vtk_module_wrap_python that this new target depends on. This is used when BUILD_STATIC is true
to ensure that the void <TARGET>_load() is correctly called for each of the dependencies.

• UTILITY_TARGET: If specified, all libraries made by the Python wrapping will link privately to this target.
This may be used to add compile flags to the Python libraries.

• MODULE_DESTINATION: Modules will be placed in this location in the build tree. The
install tree should remove $<CONFIGURATION> bits, but it currently does not. See
vtk_module_python_default_destination for the default value.

• STATIC_MODULE_DESTINATION: Defaults to ${CMAKE_INSTALL_LIBDIR}. This default may change in
the future since the best location for these files is not yet known. Static libraries containing Python code
will be installed to the install tree under this path.

• CMAKE_DESTINATION: (Required if INSTALL_HEADERS is ON) Where to install Python-related module
property CMake files.

• LIBRARY_DESTINATION (Recommended): If provided, dynamic loader information will be added to mod-
ules for loading dependent libraries.

• HEADERS_DESTINATION: Defaults to (${CMAKE_INSTALL_INCLUDEDIR}. Module loader headers will be
installed to this directory.

• PYTHON_PACKAGE: (Recommended) All generated modules will be added to this Python package. The
format is in Python syntax (e.g., package.subpackage).

• SOABI: (Required for wheel support): If given, generate libraries with the SOABI tag in the module file-
name.

• USE_DEBUG_SUFFIX (Defaults to OFF): If ON, Windows modules will have a _d suffix appended to the
module name. This is intended for use with debug Python builds.

• REPLACE_DEBUG_SUFFIX (Defaults to OFF): If ON, any project-wide debug suffix will be replaced with the
local debug suffix (if enabled).

• INTERPRETER (Defaults to VTK::Python or Python3::Interpreter): If provided, this interpreter will
be used to run supplemental processes which involve Python scripts including .pyi file generation. If a
target name is provided, its path will be used, otherwise a string which expands to the path to an interpreter
executable may be provided. If the string DISABLE is given, any support using interpreters will be disabled.

• INSTALL_EXPORT: If provided, static installs will add the installed libraries to the provided export set.

• COMPONENT: Defaults to python. All install rules created by this function will use this installation compo-
nent.

• WARNINGS: Warnings to enable. Supported warnings: empty.

212 Chapter 8. API

VTK

vtk_module_add_python_package

Install Python packages with a module module-wrapping-python.

Some modules may have associated Python code. This function should be used to install them.

vtk_module_add_python_package(<module>
PACKAGE <package>
FILES <files>...
[MODULE_DESTINATION <destination>]
[COMPONENT <component>])

The <module> argument must match the associated VTK module that the package is with. Each package is
independent and should be installed separately. That is, package and package.subpackage should each get
their own call to this function.

• PACKAGE: (Required) The package installed by this call. Currently, subpackages must have their own call
to this function.

• FILES: (Required) File paths should be relative to the source directory of the calling CMakeLists.txt.
Upward paths are not supported (nor are checked for). Absolute paths are assumed to be in the build tree
and their relative path is computed relative to the current binary directory.

• MODULE_DESTINATION: Modules will be placed in this location in the build tree. The
install tree should remove $<CONFIGURATION> bits, but it currently does not. See
vtk_module_python_default_destination for the default value.

• COMPONENT: Defaults to python. All install rules created by this function will use this installation compo-
nent.

A <module>-<package> target is created which ensures that all Python modules have been copied to the correct
location in the build tree.

Todo: Support freezing the Python package. This should create a header and the associated target should provide
an interface for including this header. The target should then be exported and the header installed properly.

vtk_module_add_python_module

Use a Python package as a module. module-wrapping-python

If a module is a Python package, this function should be used instead of vtk_module_add_module().

vtk_module_add_python_module(<name>
PACKAGES <packages>...)

• PACKAGES: (Required) The list of packages installed by this module. These must have been created by the
vtk_module_add_python_package() function.

8.3. CMake 213

VTK

8.3.5 vtkModuleWrapJava

APIs for wrapping modules for Java

_vtk_module_wrap_java_sources

Generate sources for using a module’s classes from Java. module-impl

This function generates the wrapped sources for a module. It places the list of generated source files and Java
source files in variables named in the second and third arguments, respectively.

_vtk_module_wrap_java_sources(<module> <sources> <classes>)

_vtk_module_wrap_java_library

Generate a JNI library for a set of modules. module-impl

A single JNI library may consist of the Java wrappings of multiple modules. This is useful for kit-based builds
where the modules part of the same kit belong to the same JNI library as well.

_vtk_module_wrap_java_library(<name> <module>...)

The first argument is the name of the JNI library. The remaining arguments are modules to include in the JNI
library.

The remaining information it uses is assumed to be provided by the vtk_module_wrap_java() function.

vtk_module_wrap_java

Wrap a set of modules for use in Java. module-wrapping-java

vtk_module_wrap_java(
MODULES <module>...
[WRAPPED_MODULES <varname>]

[UTILITY_TARGET <target>]

[JAVA_OUTPUT <destination>]

[LIBRARY_DESTINATION <destination>]
[JNILIB_DESTINATION <destination>]
[JNILIB_COMPONENT <component>]

[WARNINGS <warning>...])

• MODULES: (Required) The list of modules to wrap.

• WRAPPED_MODULES: (Recommended) Not all modules are wrappable. This variable will be set to contain
the list of modules which were wrapped.

• UTILITY_TARGET: If specified, all libraries made by the Java wrapping will link privately to this target.
This may be used to add compile flags to the Java libraries.

• JAVA_OUTPUT: Defaults to ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/vtkJava. Java source files
are written to this directory. After generation, the files may be compiled as needed.

• LIBRARY_DESTINATION (Recommended): If provided, dynamic loader information will be added to mod-
ules for loading dependent libraries.

• JNILIB_DESTINATION: Where to install JNI libraries.

• JNILIB_COMPONENT: Defaults to jni. The install component to use for JNI libraries.

214 Chapter 8. API

VTK

• WARNINGS: Warnings to enable. Supported warnings: empty.

For each wrapped module, a <module>Java target will be created. These targets will have a
_vtk_module_java_files property which is the list of generated Java source files for that target.

For dependency purposes, the <module>Java-java-sources target may also be used.

8.3.6 vtkModuleJSON

_vtk_json_bool

Output a boolean to JSON. module-impl

Appends a condition as a JSON boolean with the given dictionary key name to the given string variable.

_vtk_json_bool(<output> <name> <cond>)

_vtk_json_string_list

Output a string list to JSON. module-impl

Appends a variable as a JSON list of strings with the given dictionary key name to the given string variable.

_vtk_json_string_list(<output> <name> <cond>)

vtk_module_json

JSON metadata representation of modules. module-support

Information about the modules built and/or available may be dumped to a JSON file.

vtk_module_json(
MODULES <module>...
OUTPUT <path>)

• MODULES: (Required) The modules to output information for.

• OUTPUT: (Required) A JSON file describing the modules built will
be output to this path. Relative paths are rooted to CMAKE_BINARY_DIR.

Example output:

{
"modules": [
{

"name": "...",
"library_name": "...",
"enabled": <bool>,
"implementable": <bool>,
"third_party": <bool>,
"wrap_exclude": <bool>,
"kit": "...",
"depends": [
"..."

],
"optional_depends": [
"..."

(continues on next page)

8.3. CMake 215

VTK

(continued from previous page)

],
"private_depends": [
"..."

],
"implements": [
"..."

],
"headers": [
"..."

]
}

],
"kits": [
{
"name": "...",
"enabled": <bool>,
"modules": [
]

}
]

}

8.3.7 vtkModuleGraphviz

_vtk_module_graphviz_module_node

Output a node in the graph module-impl

Queries the properties for modules and generates the node for it in the graph and its outgoing dependency edges.

vtk_module_graphviz

Generate graphviz output for a module dependency graph. module-support

Information about the modules built and/or available may be dumped to a Graphviz .dot file.

vtk_module_graphviz(
MODULES <module>...
OUTPUT <path>

[PRIVATE_DEPENDENCIES <ON|OFF>]
[KIT_CLUSTERS <ON|OFF>])

• MODULES: (Required) The modules to output information for.

• OUTPUT: (Required) A Graphviz file describing the modules built will be output to this path. Relative paths
are rooted to CMAKE_BINARY_DIR.

• PRIVATE_DEPENDENCIES: (Default ON) Whether to draw private dependency edges or not..

• KIT_CLUSTERS: (Default OFF) Whether to draw modules as part of a kit as a cluster or not.

216 Chapter 8. API

CHAPTER

NINE

ADVANCED TOPICS

9.1 Additional Python Wheels

Python wheels for VTK are available in pypi

pip install vtk

More wheels can be accessed from the GitLab Package Registry.

To install the latest release wheel from the GitLab registry:

pip install --extra-index-url https://wheels.vtk.org vtk

To install the latest wheel from master:

pip install --extra-index-url https://wheels.vtk.org vtk --pre --no-cache

The wheels available at PyPi are built using the default rendering backend which leverages any available hardware
graphics for generating the scene. There is also a OSMesa wheel variant that leverages offscreen rendering with OS-
Mesa. This wheel is being built for both Linux and Windows at this time and bundles all of the necessary libraries into
the wheel. These wheels are intended to be used by downstream projects in headless, CI-like environments or cloud
application deployments, preventing the need to install any addition system packages.

To install the OSMesa variant from the latest release

pip install --extra-index-url https://wheels.vtk.org vtk-osmesa

For more information see here.

Note: conda-forge packages are also available and maintained by the community.

9.2 SPDX & SBOM

9.2.1 Overview

Software Bill of Materials (SBOM) are becoming increasingly important for software development, especially when
it comes to supply chain security. Software Package Data Exchange (SPDX) is an open standard for communicating
SBOM information that supports accurate identification of software components, explicit mapping of relationships
between components, and the association of security and licensing information with each component.

217

https://gitlab.kitware.com/vtk/vtk/-/packages
https://discourse.vtk.org/t/status-update-vtk-python-wheels/11212
https://anaconda.org/conda-forge/vtk
https://spdx.dev/

VTK

To support this, each VTK module may be described by a .spdx file. See examples.

Configuring VTK with the option VTK_GENERATE_SPDX set to ON enables the SPDX files generation for each VTK
module.

Caution: The generation of SPDX files is considered experimental and both the VTK Module system API and the
SPDXID used in the generated files may change.

9.2.2 Frequently Asked Questions

How to update your module to generate a valid SPDX file ?

In the vtk.module file, make sure to specify SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT as follows:

SPDX_LICENSE_IDENTIFIER
BSD-3-Clause

SPDX_COPYRIGHT_TEXT
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen

Then add SPDX tags on top of all source files in the module, as follows:

// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: BSD-3-Clause

Tip: Refer to the limitations section for more information on any potential issues that may arise when updating your
module to generate a valid SPDX file.

How to update a third party to generate a valid SPDX file ?

In the third party CMakeLists.txt, make sure to specify, in the vtk_module_third_party call,
SPDX_LICENSE_IDENTIFIER and SPDX_COPYRIGHT_TEXT as follows:

vtk_module_third_party(
SPDX_LICENSE_IDENTIFIER
"BSD-3-Clause"

SPDX_COPYRIGHT_TEXT
"Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen"

SPDX_DOWNLOAD_LOCATION
"git+https://gitlab.kitware.com/third-party/repo.git@hash_or_tag"

[...]

Tip: Refer to the limitations section for more information on any potential issues that may arise when updating your
module to generate a valid SPDX file.

218 Chapter 9. Advanced Topics

VTK

How to correctly specify custom license for a module ?

In the module, provide a file containing the license. Then in vtk.module file, make sure to specify
SPDX_CUSTOM_LICENSE_FILE with the path of the license file, SPDX_CUSTOM_LICENSE_NAME with the name of the
license and SPDX_LICENSE_IDENTIFIER with a valid SPDX LicenseRef, as follows:

SPDX_LICENSE_IDENTIFIER
LicenseRef-CustomLicense

SPDX_CUSTOM_LICENSE_FILE
LICENSE

SPDX_CUSTOM_LICENSE_NAME
CustomLicense

If needed, you can add SPDX tags on top of all source file specifically concerned by this license

// SPDX-FileCopyrightText: Copyright (c) Awesome contributor
// SPDX-License-Identifier: LicenseRef-CustomLicense

9.2.3 Examples

This section lists examples of generated SPDX files for different type of VTK modules.

VTK Module

Example of generated SPDX files for a module in VTK (once the module have been ported to the system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: IOPLY
DocumentNamespace: https://vtk.org/vtkIOPly
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: IOPLY

PackageName: IOPLY
SPDXID: SPDXRef-Package-IOPLY
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/IO/PLY
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: BSD-3-Clause
PackageCopyrightText: <text>
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-IOPLY

Example of a SPDX file generated without any information for a module that have not been ported to the system:

9.2. SPDX & SBOM 219

VTK

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: vtkFiltersVerdict
DocumentNamespace: https://vtk.org/vtkFiltersVerdict
Creator: Tool: CMake
Created: 2023-05-25T15:16:20Z

Package: vtkFiltersVerdict

PackageName: vtkFiltersVerdict
SPDXID: SPDXRef-Package-vtkFiltersVerdict
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/Filters/Verdict
FilesAnalyzed: false
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageLicenseInfoFromFiles: NOASSERTION
PackageCopyrightText: <text>
NOASSERTION
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-vtkFiltersVerdict

VTK ThirdParty Module

Example of a complete SPDX file for a 3rd party in VTK (once the 3rd party have been ported to the system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: VTK::loguru
DocumentNamespace: https://vtk.org/vtkloguru
Creator: Tool: CMake
Created: 2023-05-22T15:56:52Z

Package: VTK::loguru

PackageName: VTK::loguru
SPDXID: SPDXRef-Package-VTK::loguru
PackageDownloadLocation: https://github.com/Delgan/loguru
FilesAnalyzed: no
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: NOASSERTION
PackageCopyrightText: <text>
LOGURU Team
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-VTK::loguru

220 Chapter 9. Advanced Topics

VTK

VTK Remote Module

Example of a complete SPDX file for a VTK module from outside of VTK (once the module have been ported to the
system):

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: MyModule
DocumentNamespace: https://my-website/MyModule
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: MyModule

PackageName: MyModule
SPDXID: SPDXRef-Package-MyModule
PackageDownloadLocation: https://github/myorg/mymodule
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause AND MIT
PackageLicenseDeclared: BSD-3-Clause
PackageLicenseInfoFromFiles: BSD-3-Clause AND MIT
PackageCopyrightText: <text>
Copyright (c) 2023 Popeye
Copyright (c) 2023 Wayne "The Dock" Sonjhon
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-MyModule

VTK Module with custom license

Example of a complete SPDX file for a VTK module with a custom license:

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
SPDXID: SPDXRef-DOCUMENT
DocumentName: IOPLY
DocumentNamespace: https://vtk.org/vtkCustomModule
Creator: Tool: CMake
Created: 2023-05-16T16:08:29Z

Package: CustomModule

PackageName: CustomModule
SPDXID: SPDXRef-Package-CustomModule
PackageDownloadLocation: https://gitlab.kitware.com/vtk/vtk/-/tree/master/Custom/Module
FilesAnalyzed: true
PackageLicenseConcluded: BSD-3-Clause
PackageLicenseDeclared: BSD-3-Clause AND LicenseRef-CustomLicense
PackageLicenseInfoFromFiles: BSD-3-Clause
PackageCopyrightText: <text>
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen

(continues on next page)

9.2. SPDX & SBOM 221

VTK

(continued from previous page)

</text>

LicenseID: LicenseRef-CustomLicense
ExtractedText: <text>My License

This is a custom license that is not more restrictive
than BSD license.
</text>

Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Package-IOPLY

9.2.4 Resources

• https://spdx.dev/

• https://en.wikipedia.org/wiki/Software_supply_chain

• https://www.linuxfoundation.org/blog/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security

• https://spdx.dev/specifications/

• https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf

• https://github.com/spdx/spdx-examples

• https://spdx.dev/wp-content/uploads/sites/41/2017/12/spdx_onepager.pdf

9.3 Building Python Wheels

Tip: For complete build instructions see here.

VTK also supports creating a Python wheel containing its Python wrappers for Python3. This is supported by setting
the VTK_WHEEL_BUILD flag. This changes the build directory structure around to match that expected by wheels. Once
configured, the build tree may be built as it would be normally and then the generated setup.py file used to create the
wheel. Note that the bdist_wheel command requires that the wheel package is available (pip install wheel).

cmake -GNinja -DVTK_WHEEL_BUILD=ON -DVTK_WRAP_PYTHON=ON path/to/vtk/source
ninja
python3 setup.py bdist_wheel

Any modules may be turned on or off as in a normal VTK build. Certain modules add features to the generated wheel
to indicate their availability. These flags are not meant to be comprehensive, but any reasonable feature flags may be
added to CMake/vtkWheelFinalization.cmake as needed.

Note that the wheel will not include any external third party libraries in its wheel (e.g., X11, OpenGL, etc.) to avoid
conflicts with systems or other wheels doing the same.

222 Chapter 9. Advanced Topics

https://spdx.dev/
https://en.wikipedia.org/wiki/Software_supply_chain
https://www.linuxfoundation.org/blog/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security
https://spdx.dev/specifications/
https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf
https://github.com/spdx/spdx-examples
https://spdx.dev/wp-content/uploads/sites/41/2017/12/spdx_onepager.pdf

VTK

9.3.1 Modifying Version and/or Distribution Name

When generating a wheel, you can modify the distribution name and/or add a suffix to the wheel version string.

By default, the distribution name is vtk though you can add a suffix via the VTK_DIST_NAME_SUFFIX CMake variable
(e.g., set VTK_DIST_NAME_SUFFIX to 'osmesa' to have the distribution name be vtk_osmesa). An underscore (_)
character is automatically placed between vtk and the value of VTK_DIST_NAME_SUFFIX. Please use _ characters for
further delimination in the suffix value. Example setting:

set(VTK_DIST_NAME_SUFFIX "osmesa" CACHE STRING "")

By default (outside of a CI release build), dev0 is appended to the version of the package (e.g., 9.2.2.dev0). This
suffix can be controlled through the VTK_VERSION_SUFFIXCMake variable and is useful if generating multiple wheels
and wanting to differentiate the build variants by the version string of the package.

set(VTK_VERSION_SUFFIX "dev0" CACHE STRING "")

9.4 Building using emscripten for WebAssembly

9.4.1 Introduction

This page describes how to build and install VTK using emscripten on any platform. These steps can be followed
inside a docker container that comes with preinstalled emsdk such as dockcross/web-wasm. In fact, the VTK CI stage
webassembly-build uses that container to configure and build VTK wasm.

Note: Guide created using

• VTK v9.2.6-2535-gc8cebe56fb

• dockcross/web-wasm:20230222-162287d

9.4.2 Prerequisites

For this guide, you will need the following:

1. CMake: CMake version 3.12 or higher and a working compiler. CMake is a tool that makes cross-platform
building simple. On several systems it will probably be already installed. If it is not, please use the following
instructions to install it. There are several precompiled binaries available at the CMake download page. Add
CMake to your PATH environment variable if you downloaded an archive and not an installer.

2. Emscripten SDK: emsdk and any dependencies needed by emsdk. Emscripten is a complete compiler toolchain
to WebAssembly, using LLVM, with a special focus on speed, size, and the Web platform. Please download the
SDK from github.com/emscripten-core/emsdk.git. Then,

• Install latest toolchain with ./emsdk install latest

• Activate the toolchain ./emsdk activate latest

• Run emsdk_env.bat or emsdk_env.ps1 (Windows) or source ./emsdk_env.sh (Linux and OS X) to
set up the environment for the calling terminal.

For more detailed instructions see emsdk/README.md.

9.4. Building using emscripten for WebAssembly 223

https://emscripten.org
https://hub.docker.com/r/dockcross/web-wasm
http://www.cmake.org/
https://cmake.org/download/
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk#readme

VTK

3. VTK source-code: If you have these then you can skip the rest of this section and proceed to Build project.
Download VTK source for the version you want from https://vtk.org/download/ (zip or tar.gz (Do NOT download
the exe - this is not the VTK library.)) You will probably want the latest one (highest version number) unless
you have a specific reason to use an older one.

Alternatively the source-code can be obtained from the repository as well. This is recommended only if you
intent to make changes and contribute to VTK. Please refer to git/develop.md for help with git.

9.4.3 Build project

These instructions use a specific convention for the source, build and install directories that is appropriate when building
VTK for wasm inside a docker container. Please replace these root-directory paths if VTK is being built outside a docker
container.

Install emscripten ports (IMPORTANT!)

Emscripten relies on SDL2 to link user input events from the browser’s event subsystem to native C/C++ code. If this
is your initial download of the EMSDK, you’ll need to build the SDL2 port. The “embuilder” script will be accessible
on the path if you’ve successfully installed and activated the EMSDK, as outlined in the prerequisites.

$ embuilder build sdl2

Build VTK

1. Configure the project with CMake. emcmake tells CMake to use the emscripten toolchain for cross compilation.

cd /work/src/build
$ emcmake cmake \

-S .. \
-B . \
-G "Ninja" \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS:BOOL=OFF \
-DVTK_ENABLE_LOGGING:BOOL=OFF \
-DVTK_ENABLE_WRAPPING:BOOL=OFF \
-DVTK_MODULE_ENABLE_VTK_RenderingLICOpenGL2:STRING=DONT_WANT

2. Compile.

$ cd /work/src/build
$ ninja

3. Install the project.

$ cd /work/src/build
$ ninja install

The binaries are now installed and you may use -DVTK_DIR=/work/install/lib/cmake/vtk-9.2 to configure
VTK wasm applications with CMake.

224 Chapter 9. Advanced Topics

https://vtk.org/download/

VTK

9.4.4 Verify installation

If everything went well then it should now be possible to compile and run the one of the C++ examples. Head over to
Examples/Emscripten/Cxx/Cone/README.md and test the simple Cone example.

9.5 Cross-compiling for Mobile devices

Tip: For complete build instructions see here.

VTK supports mobile devices in its build. These are triggered by a top-level flag which then exposes some settings for
a cross-compiled VTK that is controlled from the top-level build.

iOS builds may be enabled by setting the VTK_IOS_BUILD option. The following settings than affect the iOS build:

• IOS_SIMULATOR_ARCHITECTURES

• IOS_DEVICE_ARCHITECTURES

• IOS_DEPLOYMENT_TARGET

• IOS_EMBED_BITCODE

Android builds may be enabled by setting the VTK_ANDROID_BUILD option. The following settings affect the Android
build:

• ANDROID_NDK

• ANDROID_NATIVE_API_LEVEL

• ANDROID_ARCH_ABI

9.6 Building documentation

This section outlines how to locally build both the user and developer guides and the C++ API documentation for VTK.

9.6.1 User and developer guides

VTK’s user and developer guides are automatically built and deployed to https://docs.vtk.org every time the master
branch is updated by leveraging the integration with the Read the Docs service.

To locally build the documentation:

Without VTK build tree

1. Download the VTK sources.

2. Create and activate a virtual environment.

9.5. Cross-compiling for Mobile devices 225

https://gitlab.kitware.com/vtk/vtk/-/blob/master/Examples/Emscripten/Cxx/Cone/README.md
https://docs.vtk.org

VTK

Linux/macOS

cd Documentation/docs

python3 -m venv .venv
source .venv/bin/activate

Windows

cd Documentation\docs

py -m venv .venv
.\.venv\Scripts\activate

py -m venv executes venv using the latest Python interpreter you have installed. For more details, read the Python
Windows launcher docs.

3. Install dependencies using pip.

Linux/macOS

python3 -m pip install -r requirements.txt

Windows

py -m pip install -r requirements.txt

4. Build the documentation as web pages.

make html

5. Open _build/html/index.html in a web browser.

Linux

xdg-open _build/html/index.html

macOS

open _build/html/index.html

226 Chapter 9. Advanced Topics

https://docs.python.org/3/using/windows.html#launcher
https://docs.python.org/3/using/windows.html#launcher

VTK

Windows

start _build\html\index.html

With VTK build tree

Important: In order to successfully build the VTK documentation using the instructions below, you will need to
install the required Python packages.

To ensure that you have the correct dependencies installed in the Python environment associated with the VTK
build tree, please run pip install -r Documentation\docs\requirements.txt or pip install --user -r
Documentation\docs\requirements.txt.

If updating your system installation of Python is not feasible or you prefer not to do so, we recommend following the
Without VTK build tree approach instead.

1. Download VTK sources.

2. Configure VTK by setting the VTK_BUILD_SPHINX_DOCUMENTATION option to ON.

3. Build the SphinxDoc target.

Hint: Automatic build of preview documentation each time a merge request is submitted is not yet supported due to
limitation of the Read The Docs service that does not yet support self-hosted GitLab deployment.

Solutions to address this are being discussed in https://github.com/readthedocs/readthedocs.org/issues/9464.

9.6.2 C++ API documentation

The C++ API documentation is built and uploaded to https://vtk.org/doc/nightly/html/index.html when the master
branch is updated.

To locally build the documentation:

1. Install Doxygen

2. Download the VTK sources.

3. Configure VTK by setting the VTK_BUILD_DOCUMENTATION option to ON.

4. Build the DoxygenDoc target.

9.6.3 Targets

After configuring the VTK using CMake, the following targets may be used to build documentation for VTK:

• DoxygenDoc - build the doxygen documentation from VTK’s C++ source files (VTK_BUILD_DOCUMENTATION
needs to be ON for the target to exist).

• SphinxDoc - build the sphinx documentation for VTK. (VTK_BUILD_SPHINX_DOCUMENTATION needs to be ON
for the target to exist).

9.6. Building documentation 227

https://docs.readthedocs.io/en/stable/guides/pull-requests.html#limitations
https://github.com/readthedocs/readthedocs.org/issues/9464
https://vtk.org/doc/nightly/html/index.html

VTK

9.7 Marshalling Hints

9.7.1 Classes

VTK auto generates (de)serialization code in C++ for classes annotated by the VTK_MARSHALAUTO wrapping hint.

On the other hand, the VTK_MARSHALMANUAL macro is used to indicate that a class will take part in marshalling, but
it cannot trivially (de)serialize it’s properties. This is because one or more of the class’s properties may not have an
appropriate setter/getter function that is recognized by the VTK property parser.

For such classes, a developer is expected to provide the code to serialize and deserialize the class in
vtkClassNameSerDes.cxx. This file must satisfy three conditions:

1. It must live in the same module as vtkClassName.

2. It must export a function int RegisterHandlers_vtkClassNameSerDesHelper(void*, void*) with C
linkage.

3. It must define and declare these three C++ functions:

1. A serializer function

nlohmann:json Serialize_vtkClassName(vtkObjectBase*, vtkSerializer*)

2. A deserializer function

void Deserialize_vtkClassName(const nlohmann::json&, vtkObjectBase*,␣
→˓vtkDeserializer*)

3. A registrar function

int RegisterHandlers_vtkClassNameSerDesHelper(void* ser, void* deser)

that registers:

• a serializer function with a serializer instance

• a deserializer function with a deserializer instance

• a constructor of the VTK class with a deserializer instance

9.7.2 Properties

Excluding properties

You can exclude certain properties of a class by simply annotating the relevant setter/getter functions with
VTK_MARSHALEXCLUDE(reason), where reason is one of VTK_MARSHAL_EXCLUDE_REASON_IS_INTERNAL or
VTK_MARSHAL_EXCLUDE_REASON_NOT_SUPPORTED. This reason will be printed in the generated C++ source code
explaining why the property was not serialized.

228 Chapter 9. Advanced Topics

VTK

9.7.3 Custom get/set functions

Some properties may not be correctly recognized by the property parser because they have different
names for their get and set functions. You can override this by annotating the get function with the
VTK_MARSHALGETTER(property) macro. Doing so will ensure that the function gets recognized as a getter for
property. VTK_MARSHALSETTER(property) serves a similar purpose.

9.8 Object manager

9.8.1 Serialization

You can register objects with a vtkObjectManager instance and call UpdateStatesFromObjects,
GetState(identifier) to obtain a serialized state of the registered objects and all their dependency objects
that are serializable.

9.8.2 Deserialization

You can register a json state (stringified) with a vtkObjectManager instance and call UpdateObjectsFromStates,
GetObjectAtId(identifier) to deserialize and retrieve the objects.

9.8.3 Blobs

All vtkDataArray are hashed and stored as unique blobs to prevent multiple copies of the same data within the state.
The contents of a data array within a state are represented with a hash string. You can fetch and register blobs using
GetBlob and RegisterBlob.

9.8.4 Dependencies

You can retrieve all dependent object identifiers using vtkObjectManager::GetAllDependencies(identifier)

9.9 Auto serialization

Modules which have INCLUDE_MARSHAL in their vtk.modulewill opt their headers into the automated code generation
of (de)serializers. Only classes which are annotated by the VTK_MARSHALAUTO wrapping hint will have generated
serialization code.

9.9.1 Automated code generation

The vtkWrapSerDes executable makes use of the WrappingTools package to automatically generate

1. A serializer function with signature nlohmann:json Serialize_vtkClassName(vtkObjectBase*,
vtkSerializer*)

2. A deserializer function with signature void(const nlohmann::json&, vtkObjectBase*,
vtkDeserializer*)

3. A registrar function that registers

• the serializer function with a serializer instance

9.8. Object manager 229

VTK

• the deserializer function with a deserializer instance

• the constructor of the VTK class with a deserializer instance

• It’s signature is int RegisterHandlers_vtkClassNameSerDes(void* ser, void* deser)

• It more or less looks like:

int RegisterHandlers_vtkObjectSerDes(void* ser, void* deser)
{
int success = 0;
if (auto* asObjectBase = static_cast<vtkObjectBase*>(ser))
{
if (auto* serializer = vtkSerializer::SafeDownCast(asObjectBase))
{
serializer->RegisterHandler(typeid(vtkObject), Serialize_vtkObject);
success = 1;

}
}
if (auto* asObjectBase = static_cast<vtkObjectBase*>(deser))
{
if (auto* deserializer = vtkDeserializer::SafeDownCast(asObjectBase))
{
deserializer->RegisterHandler(typeid(vtkObject), Deserialize_vtkObject);
deserializer->RegisterConstructor("vtkObject", []() { return␣

→˓vtkObject::New(); });
success = 1;

}
}
return success;

}

9.9.2 Marshal hint macro

1. Classes which are annotated with VTK_MARSHALAUTO are considered by the vtkWrapSerDes executable.

2. Classes annotated with VTK_MARSHALMANUAL are hand coded in the same module. Here are some examples:

• Common/Core/vtkCollectionSerDesHelper.cxx for Common/Core/vtkCollection.h

• Common/DataModel/vtkCellArraySerDesHelper.cxx for Common/DataModel/vtkCellArray.h

9.9.3 Convenient script to annotate headers and module

• The Utilities/Marshalling/marshal_macro_annotate_headers.py script annotates headers for automatic or man-
ual serialization. It is fed and driven by the accompanying Utilities/Marshalling/VTK_MARSHALAUTO.txt,
Utilities/Marshalling/VTK_MARSHALMANUAL.txt and Utilities/Marshalling/ignore.txt.

• When the -u, --update argument is used, headers are in-place edited to use the
VTK_MARSHAL(AUTO|MANUAL) wrapping hint. Files that already have this hint are untouched.

• When the -t, --test argument is used, the source tree is checked for inconsistent use of marshal macros.

230 Chapter 9. Advanced Topics

VTK

9.10 Python Wrappers

9.10.1 Introduction

This document is a reference for using VTK from Python. It is not a tutorial and provides very little information about
VTK itself, but instead describes in detail the features of the Python wrappers and how using VTK from Python differs
from using VTK from C++. It assumes that the reader is already somewhat familiar with both Python and VTK.

9.10.2 Background

The Python wrappers are automatically generated from the VTK source code, and for the most part, there is a one-to-
one mapping between the VTK classes and methods that you can use from Python and the ones that you can use from
C++. More specifically, the wrappers are a package of Python extension modules that interface directly to the VTK
C++ libraries. When you use VTK through the wrappers, you are actually executing compiled C++ code, and there is
very little performance difference between VTK/C++ and VTK/Python.

9.10.3 Installation

VTK for Python can be installed via either conda or pip, where the conda packages is maintained on conda-forge, while
the pip packages are maintained by the VTK developers themselves. If you are first getting started, then pip is probably
the most convenient way to install VTK for Python:

pip install vtk

This will provide a basic installation of VTK that includes all core functionality, but which will not include some of the
specialized VTK modules that rely on external libraries. Binary packages for VTK can also be downloaded directly
from https://www.vtk.org/download/.

Instructions for building VTK from source code are given in the file Documentation/dev/build.md within the source
repository.

9.10.4 Importing

VTK is comprised of over one hundred individual modules. Programs can import just the modules that are needed, in
order to reduce load time.

from vtkmodules.vtkCommonCore import vtkObject
from vtkmodules.vtkFiltersSources import vtkConeSource, vtkSphereSource
from vtkmodules.vtkRenderingCore import (

vtkActor,
vtkDataSetMapper,
vtkRenderer,
vtkRenderWindow

)
import vtkmodules.vtkRenderingOpenGL2

When getting started, however, it is hard to know what modules you will need. So if you are experimenting with VTK
in a Python console, or writing a quick and dirty Python script, it is easiest to simply import everything. There is a
special module called ‘all’ that allows this to be done:

9.10. Python Wrappers 231

https://www.vtk.org/download/
https://gitlab.kitware.com/vtk/vtk/-/blob/release/Documentation/dev/build.md

VTK

from vtkmodules.all import *

After importing the VTK classes, you can check to see which module each of the classes comes from:

for c in vtkObject, vtkConeSource, vtkRenderWindow:
print(f"from {c.__module__} import {c.__name__}")

The output is as follows:

from vtkmodules.vtkCommonCore import vtkObject
from vtkmodules.vtkFiltersSources import vtkConeSource
from vtkmodules.vtkRenderingCore import vtkRenderWindow

Factories and Implementation Modules

In the first ‘import’ example above, you might be wondering about this line:

import vtkmodules.vtkRenderingOpenGL2

This import is needed because vtkRenderingOpenGL2 provides the OpenGL implementations of the classes in
vtkRenderingCore. To see this in action, open a new Python console and do the following:

>>> from vtkmodules.vtkRenderingCore import vtkRenderWindow
>>> renwin = vtkRenderWindow()
>>> type(renwin)
<class 'vtkmodules.vtkRenderingCore.vtkRenderWindow'>
>>>
>>> import vtkmodules.vtkRenderingOpenGL2
>>> renwin2 = vtkRenderWindow()
>>> type(renwin2)
<class 'vtkmodules.vtkRenderingOpenGL2.vtkXOpenGLRenderWindow'>

After vtkRenderingOpenGL2 has been imported, the vtkRenderWindow() constructor magically starts returning a
different type of object. This occurs because vtkRenderWindow is a factory class, which means that the kind of object
it produces can be overridden by an implementation class. In order for the implementation class to do the override, all
that is necessary is that its module is imported. To make things even more confusing, vtkRenderingOpenGL2 is not
the only module that contains implementations for the factory classes in vtkRenderingCore. The following modules
are often needed, as well:

import vtkmodules.vtkInteractionStyle
import vtkmodules.vtkRenderingFreeType

Although you only need implementations for the factory classes that you use, it can be hard to know which classes are
factory classes, or what modules contain implementations for them. Also, it can be difficult to even know what classes
you are using, since many VTK classes make use of other VTK classes. An example of this is vtkDataSetMapper,
which internally uses vtkPolyDataMapper to do the rendering. So even though vtkDataSetMapper is not a factory
class, it needs an OpenGL implementation for vtkPolyDataMapper.

The simplest approach is to import all the important implementation modules into your program, even if you are not
certain that you need them.

• For vtkRenderingCore, import vtkRenderingOpenGL2, vtkRenderingFreeType,
vtkInteractionStyle

• For vtkRenderingVolume, import vtkRenderingVolumeOpenGL2

232 Chapter 9. Advanced Topics

VTK

• For vtkCharts, import vtkContextOpenGL2

Classic VTK Import

There are many VTK programs that still import the ‘vtk’ module, which has been available since VTK 4.0, rather than
using the ‘vtkmodules’ package that was introduced in VTK 8.2:

import vtk

The advantage (and disadvantage) of this is that it imports everything. It requires just one import statement for all of
VTK, but it can be slow because VTK has grown to be very large over the years.

Also note that, between VTK 8.2 and VTK 9.2.5, the use of the vtkmodule would confuse the auto-completion features
of IDEs such as PyCharm. This was fixed in VTK 9.2.6. For 9.2.5 and earlier, the following can be used:

import vtkmodules.all as vtk

From the programmer’s perspective, this is equivalent to ‘import vtk’.

9.10.5 VTK Classes and Objects

Classes Derived from vtkObjectBase

In C++, classes derived from vtkObjectBase are instantiated by calling New(). In Python, these classes are instanti-
ated by simply calling the constructor:

o = vtkObject()

For factory classes, the returned object’s type might be a subtype of the class. This occurs because the Python wrappers
are actually calling New() for you, which allows the VTK factory overrides to occur:

>>> a = vtkActor()
>>> type(a)
<class 'vtkmodules.vtkRenderingOpenGL2.vtkOpenGLActor'>

When you create a VTK object in Python, you are in fact creating two objects: a C++ object, and a Python object
that holds a pointer to the C++ object. The repr() of the object shows the memory address of the C++ object (in
parentheses) and of the Python object (after the ‘at’):

>>> a = vtkFloatArray()
>>> a
<vtkmodules.vtkCommonCore.vtkFloatArray(0x5653a6a6f700) at 0x7f0e7aecf5e0>

If you call str() or print() on these objects, the wrappers will call the C++ PrintSelf() method. The printed
information can be useful for debugging:

>>> o = vtkObject()
>>> print(o)
vtkObject (0x55858308a210)
Debug: Off
Modified Time: 85
Reference Count: 1
Registered Events: (none)

9.10. Python Wrappers 233

VTK

Other Classes (Special Types)

VTK also uses several classes that aren’t derived from vtkObjectBase. The most important of these is vtkVariant,
which can hold any type of object:

>>> v1 = vtkVariant('hello')
>>> v1
vtkmodules.vtkCommonCore.vtkVariant('hello')
>>> v2 = vtkVariant(3.14)
>>> v2
vtkmodules.vtkCommonCore.vtkVariant(3.14)

The wrapping of these classes is fully automatic, but is done in a slightly different manner than vtkObjectBase-
derived classes. First, these classes have no New() method, and instead the public C++ constructors are wrapped to
create an equivalent Python constructor. Second, the Python object contains its own copy of the C++ object, rather than
containing just a pointer to the C++ object. The vast majority of these classes are lightweight containers and numerical
types. For example, vtkQuaterniond, vtkRectf, vtkColor4ub, etc. Many of them are actually class templates,
which are discussed below.

When you apply print() or str() to these objects, the operator<< of the underlying C++ object is used to print
them. For repr(), the name of the type name is printed, followed by the str() output in prentheses. The result looks
similar to a constructor, though it might look strange depending on what operator<< produces.

>> v = vtkVariant()
>> print(repr(v))
vtkmodules.vtkCommonCore.vtkVariant((invalid))

Class Templates

There are several C++ templates in VTK, which can be tricky to use from the wrappers since the Python language has
no real concept of templates. The wrappers wrap templates as dictionary-like objects that map the template parameters
to template instantiations:

>>> vtkSOADataArrayTemplate
<template vtkCommonCorePython.vtkSOADataArrayTemplate>
>>> vtkSOADataArrayTemplate.keys()
['char', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int',
'uint', 'int64', 'uint64', 'float32', 'float64']
>>> c = vtkSOADataArrayTemplate['float64']
>>> c
<class 'vtkmodules.vtkCommonCore.vtkSOADataArrayTemplate_IdE'>

The wrappers instantiate the C++ template for a few useful types, as indicated by the keys() of the template. The
Python type name also has a suffix (the ‘IdE’) that indicates the template parameters in a compressed form according
to IA64 C++ ABI name mangling rules, even when VTK is built with a compiler that does not use the IA64 ABI
natively.

Objects are created by first instantiating the template, and then instantiating the class:

>>> a = vtkSOADataArrayTemplate['float32']()
>>> a.SetNumberOfComponents(3)

In the case of multiple template parameters, the syntax can look rather complicated, but really it isn’t all that bad. For
example, constructing a vtkTuple<double,4> in Python looks like this, with the template args in square brackets and
the constructor args in parentheses:

234 Chapter 9. Advanced Topics

VTK

>>> vtkTuple['float64',4]([1.0, 2.0, 3.0, 4.0])
vtkmodules.vtkCommonMath.vtkTuple_IdLi4EE([1.0, 2.0, 3.0, 4.0])

The type names are the same as numpy’s dtypes: bool, int8, uint8, int16, uint16, int32, uint32, int64, uint64,
float32, and float64. Since int64 is ‘long long’, int is used for long. Also see Template Keys in Advanced
Topics.

9.10.6 Method Calls

When VTK methods are called from Python, conversion of all parameters from Python to C++ occurs automatically.
That is, if the C++ method signature expects an integral type, you can pass a Python int, and if C++ expects a floating-
point type, you can pass a Python float (or any type that allows implicit conversion to float).

For C++ ‘char’ parameters, which are rarely used in VTK, you must pass a string with a length of 1 or 0 bytes. For
unicode, the code must fit into eight bits (either ASCII, or within the Latin-1 Supplement block). An empty string
signifies a null byte, and ‘\0’ can also be used.

A Python tuple, list, or any other Python sequence can be passed to a VTK method that requires an array or
std::vector in C++:

>>> a = vtkActor()
>>> p = (100.0, 200.0, 100.0)
>>> a.SetPosition(p)

If the method is going to modify the array that you pass as a parameter, then you must pass a Python list that has the
correct number of slots to accept the returned values. If you try this with a tuple, you will get a TypeError because
tuple is immutable.

>>> z = [0.0, 0.0, 0.0]
>>> vtkMath.Cross((1,0,0),(0,1,0),z)
>>> print(z)
[0.0, 0.0, 1.0]

For multi-dimensional array parameters, you can either use a nested list, or you can use numpy array with the correct
shape.

If the C++ method returns a pointer to an array, then in Python the method will return a tuple if the wrappers know the
size of the array. In most cases, the size is hinted in the header file.

>>> a = vtkActor()
>>> print(a.GetPosition())
(0.0, 0.0, 0.0)

Finally, Python None is treated the same as C++ nullptr, which allows you to pass null objects and null strings:

>>> a = vtkActor()
>>> a.SetMapper(None)
>>> print(a.GetMapper())
None

9.10. Python Wrappers 235

VTK

Wrappable and Unwrappable Methods

A method cannot be used from Python if its C++ parameters or return type cannot be converted to or from Python by
the wrappers, or if the method is templated. Common non-convertible types include std::ostream, std::istream,
and all STL container types except for std::vector (see below), and any non-trivial pointer type or any pointer to an
object whose class is not derived from vtkObjectBase.

The wrappable parameter types are:

• char, wrapped as a single ASCII character in a Python str

• signed char and unsigned char, wrapped as Python int

• short, int, long and long long, wrapped as Python int

• unsigned short to unsigned long long, wrapped as Python int

• float and double, wrapped as Python float

• size_t and ssize_t, wrapped as Python int

• std::string, wrapped as Python str via utf-8 encoding/decoding

• typedefs of all the above, for any typedef defined in a VTK header file

• std::vector<T> where T is one of the above, as Python tuple or list

• const T& where T is any of the above, wrapped as described above

• T[N] where T is a fundamental type, as Python tuple or list

• T[N][M] where T is a fundamental type, as nested tuple or list

• T* where T is a fundamental type, as tuple or list

• vtkObjectBase* and derived types, as their respective Python type

• vtkSmartPointer<T> as the Python vtkObjectBase-derived type T

• std::vector<vtkSmartPointer<T>> as a sequence of objects of type T

• const std::vector<vtkSmartPointer<T>> as a sequence of objects of type T

• other wrapped classes (like vtkVariant), but not pointers to these types

• char*, as Python str via utf-8 encoding/decoding

• void*, as Python buffer (e.g. bytes or bytearray)

• the parameter list (void (*f)(void*), void*) as a Python callable type

References like int& and std::string& are wrapped via a reference proxy type as described in the Pass by Reference
section below. Non-const references to std::vector<T> and other mutable types do not use a proxy, but instead
require that a mutable Python object is passed, for example a list rather than a tuple.

A void* parameter can accept a pointer in two different ways: either from any Python object that supports the Python
buffer protocol (this includes all numpy arrays along with the Python bytes and bytearray types), or from a string
that contains a mangled pointer of the form ‘_hhhhhhhhhhhh_p_void’ where ‘hhhhhhhhhhhh’ is the hexadecimal
address. Return-value void* will always be a string containing the mangled pointer.

Also, a T* parameter for fundamental type T can accept a buffer object, if and only if it is annotated with the
VTK_ZEROCOPY hint in the header file. With this hint, a numpy array of T can be passed to a T* parameter and the VTK
method will directly access the memory buffer of the array. Hence the name ‘zerocopy’, which indicates no copying is
done, and that direct memory access is used.

The vtkObject::AddObserver() method has a special wrapping, as discussed in the Observer Callbacks section
below.

236 Chapter 9. Advanced Topics

VTK

Conversion Constructors

If a wrapped type has constructor that takes one parameter, and if that constructor is not declared ‘explicit’, then the
wrappers will automatically use that constructor for type conversion to the parameter type. The wrappers ensure that
this conversion occurs in Python in the same manner that it is expected to occur in C++.

For example, vtkVariantArray has a method InsertNextItem(v:vtkVariant), and vtkVariant has a construc-
tor vtkVariant(x:int). So, you can do this:

>>> variantArray.InsertNextItem(1)

The wrappers will automatically construct a vtkVariant from ‘1’, and will then pass it as a parameter to
InsertNextItem(). This is a feature that most C++ programmers will take for granted, but Python users might
find it surprising.

Overloaded Methods

If you call a VTK method that is overloaded, the Python wrappers will choose the overload that best matches the supplied
arguments. This matching takes into account all allowed implicit conversions, such as int to float or any conversion
constructors that are defined for wrapped objects.

Some overloads will be unavailable (not wrapped) either because they are unwrappable as per the criteria described
above, or because they are shadowed by another overload that is always preferable. A simple example of this is any
methods that is overloaded on C++ float and double. The Python float type is a perfect match C++ double,
therefore the float overload is not wrapped.

Static Methods

A static method can be called without an instance. For example,

vtkObject.SetGlobalWarningDisplay(1)

Some VTK classes, like vtkMath, consist solely of static methods. For others, like vtkMatrix4x4, most of the non-
static methods have static overloads. Within Python, the only way to tell if a VTK method is static (other than trying
it) is to look at its docstring.

Unbound Methods

When a non-static method is called on the class, rather than on an instance, it is called an unbound method call. An
unbound method call must provide ‘self’ as the first argument, where ‘self’ is an instance of either the class or a subclass.

w = vtkRenderWindow()
vtkWindow.Render(w)

In other words, the wrappers translate Python unbound method calls into C++ unbound method calls. These are useful
when deriving a Python class from a wrapped VTK class, since they allow you to call any base class methods that have
been overridden in the subclass.

9.10. Python Wrappers 237

VTK

Operator Methods

For special classes (the ones not derived from vtkObjectBase), some useful C++ operators are wrapped in python.
The ‘[]’ operator is wrapped for indexing and item assignment, but because it relies on hints to guess which indices
are out-of-bounds, it is only wrapped for vtkVector and related classes.

The comparison operators ‘<’ ‘<=’ ‘==’ ‘>=’ ‘>’ are wrapped for all classes that have these operators in C++. These
operators allow sorting of vtkVariant objects with Python.

The ‘<<’ operator for printing is wrapped and is used by the python print() and str() commands.

Strings and Bytes

VTK uses both char* and std::string for strings. As far as the wrappers are concerned, these are equivalent except
that the former can be nullptr (None in Python). For both, the expected encoding is ASCII or utf-8.

In Python, either str or bytes can be used to store strings, and both of these can be passed to VTK methods that
require char* or std::string (or the legacy vtkStdString). A str object is passed to VTK as utf-8, while a
bytes object is passed as-is.

When a VTK method returns a string, it is received in Python as a str object if it is valid utf-8, or as a bytes object
if not. The caller should check the type of the returned object (str, bytes, or perhaps None) if there is any reason to
suspect that non-utf-8 text might be present.

STL Containers

VTK provides conversion between std::vector and Python sequences such as tuple and list. If the C++ method
returns a vector, the Python method will return a tuple:

C++: const std::vector<std::string>& GetPaths()
C++: std::vector<std::string> GetPaths()
Python: GetPaths() -> Tuple[str]

If the C++ method accepts a vector, then the Python method can be passed any sequence with compatible values:

C++: void SetPaths(const std::vector<std::string>& paths)
C++: void SetPaths(std::vector<std::string> paths)
Python: SetPaths(paths: Sequence[str]) -> None

Furthermore, if the C++ method accepts a non-const vector reference, then the Python method can be passed a mutable
sequence (e.g. list):

C++: void GetPaths(std::vector<std::string>& paths)
Python: GetPaths(paths: MutableSequence[str]) -> None

The value type of the std::vector<T> must be std::string or a fundamental numeric type such as double or int
(including signed char and unsigned char but excluding char).

238 Chapter 9. Advanced Topics

VTK

Smart pointers

The wrappers will automatically convert between C++ vtkSmartPointer<T> and objects of type T (or None, if the
smart pointer is empty):

C++: vtkSmartPointer<vtkObject> TakeObject()
Python: TakeObject() -> vtkObject

In other words, in Python the smart pointer doesn’t look any different from the object it points to. Under the hood,
however, the wrappers understand that the smart pointer carries a reference to the object and will take responsibility
for deleting that reference.

A C++ method can return a vector of smart pointers, which will be seen in Python as a tuple of objects:

C++: std::vector<vtkSmartPointer<vtkObject>> GetObjects()
Python: GetObject() -> Tuple[vtkObject]

If a C++ method expects std::vector<vtkSmartPointer<T>> as a parameter, the wrappers will automatically
construct the vector from any sequence that is passed from Python. The objects in the sequence must be of type T (or
a subclass of T, or None). If not, a TypeError will be raised.

Pass by Reference

Many VTK methods use pass-by-reference to return values back to the caller. Calling these methods from Python
requires special consideration, since Python’s str, tuple, int, and float types are immutable. The wrappers provide
a ‘reference’ type, which is a simple container that allows pass-by-reference.

For example, consider the following C++ method that uses pass-by-reference:

void GetCellAtId(vtkIdType cellId, vtkIdType& cellSize, vtkIdType const*& cellPoints)

It requires a reference to vtkIdType (a Python int), and to vtkIdType const* (a tuple of ints). So we can call
this method as follows:

>>> from vtkmodules.vtkCommonCore import reference
>>> from vtkmodules.vtkCommonDataModel import vtkCellArray
>>>
>>> # Build a cell array
>>> a = vtkCellArray()
>>> a.InsertNextCell(3, (1, 3, 0))
>>>
>>> # Create the reference objects
>>> n = reference(0)
>>> t = reference((0,))
>>>
>>> # Call the pass-by-reference method
>>> a.GetCellAtId(0, n, t)
>>>
>>> n.get()
3
>>> t.get()
(1, 3, 0)

Some important notes when using pass-by-reference:

9.10. Python Wrappers 239

VTK

1. The reference constructor must be given a value of the desired type. The method might use this value or might
ignore it.

2. Calling the get() method of the reference is usually unnecessary, because the reference already supports the
interface protocols of the object that it contains.

Preconditions

One very real concern when using VTK from Python is that the parameters that you pass to a method might cause the
program to crash. In particular, it is very easy to pass an index that causes an out-of-bounds memory access, since the
C++ methods don’t do bounds checking. As a safety precaution, the wrappers perform the bounds check before the
C++ method is called:

>>> a = vtkFloatArray()
>>> a.GetValue(10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: expects 0 <= id && id < GetNumberOfValues()

All precondition checks raise a ValueError if they fail, since they are checks on the values of the parameters. The
wrappers don’t know if C++ is using the parameter as an index, so IndexError is not used.

Currently the only way to find out if a method has preconditions is to look at the declaration of the method in the C++
header file to see if it has a VTK_EXPECTS hint.

9.10.7 Observer Callbacks

Similar to what can be done in C++, a Python function can be called each time a VTK event is invoked on a given object.
In general, the callback function should have the signature func(obj:vtkObject, event:str), or func(self,
obj:vtkObject, event:str) if it is a method of a class.

>>> def onObjectModified(object, event):
>>> print('object: %s - event: %s' % (object.GetClassName(), event))
>>>
>>> o = vtkObject()
>>> o.AddObserver(vtkCommand.ModifiedEvent, onObjectModified)
1
>>> o.Modified()
object: vtkObject - event: ModifiedEvent

Call Data

In case there is a ‘CallData’ value associated with an event, in C++, you have to cast it from void* to the expected
type using reinterpret_cast. The equivalent in python is to add a CallDataType attribute to the associated
python callback method. The supported CallDataType values are VTK_STRING, VTK_OBJECT, VTK_INT, VTK_LONG,
VTK_DOUBLE, and VTK_FLOAT.

The following example uses a function as a callback, but a method or any callable object can be used:

>>> from vtkmodules.vtkCommonCore import vtkCommand, VTK_INT
>>>
>>> def onError(object, event, calldata):

(continues on next page)

240 Chapter 9. Advanced Topics

VTK

(continued from previous page)

>>> print('object: %s - event: %s - msg: %s' % (object.GetClassName(), event,␣
→˓calldata))
>>>
>>> onError.CallDataType = VTK_INT
>>>
>>> lt = vtkLookupTable()
>>> lt.AddObserver(vtkCommand.ErrorEvent, onError)
1
>>> lt.SetTableRange(2,1)
object: vtkLookupTable - event: ErrorEvent - msg: ERROR:
In /home/user/VTK/Common/Core/vtkLookupTable.cxx, line 122
vtkLookupTable (0x6b40b30): Bad table range: [2, 1]

For convenience, the CallDataType can also be specified where the function is first declared with the help of the
@calldata_type decorator:

>>> from vtkmodules.util.misc import calldata_type
>>>
>>> @calldata_type(VTK_INT)
>>> def onError(object, event, calldata):
>>> print('object: %s - event: %s - msg: %s' % (object.GetClassName(),

event, calldata))

9.10.8 Other Wrapped Entities

Constants

Most of the constants defined in the VTK header files are available in Python, and they can be accessed from the
module in which they are defined. Many of these are found in the vtkCommonCore module, where they were defined
as preprocessor macros.

>>> from vtkmodules.vtkCommonCore import VTK_DOUBLE_MAX
>>> VTK_DOUBLE_MAX
1.0000000000000001e+299

Others are defined as enums, often within a class namespace. If the enum is anonymous, then its values are int.

>>> vtkCommand.ErrorEvent
39

Constants in the header files are wrapped if they are enums, or if they are const variables of a wrappable scalar type,
or if they are preprocessor symbols that evaluate to integer, floating-point, or string literal types.

9.10. Python Wrappers 241

VTK

Enum Types

Each named enum type is wrapped as a new Python type, and members of the enum are instances of that type. This
allows type checking for enum types:

>>> from vtkmodules.vtkCommonColor import vtkColorSeries
>>> vtkColorSeries.COOL
2
>>> isinstance(vtkColorSeries.ColorSchemes, vtkColorSeries.COOL)
>>> cs = vtkColorSeries()
>>> cs.SetColorScheme(vtkColorSeries.COOL)

Enum classes are wrapped in a manner similar to named enums, except that the enum values are placed within the enum
class namespace. For example, vtkEventDataAction is an enum class, with ‘Press’ as a member:

>>> from vtkmodules.vtkCommonCore import vtkEventDataAction
>>> vtkEventDataAction.Press
1
>>> isinstance(vtkEventDataAction.Press, vtkEventDataAction)
True

In the first example, the ColorSchemes enum type and the COOL enum value were both defined in the vtkColorSeries
namespace. In the second example, the vtkEventDataAction enum class was defined in the module namespace, and
the Press value was defined in the enum class namespace.

Note that the VTK enum types behave like C++ enums, and not like the Python enums types provided by the Python
‘enum’ module. In particular, all VTK enum values can be used anywhere that an int can be used.

Namespaces

Namespaces are currently wrapped in a very limited manner. The only namespace members that are wrapped are
enum constants and enum types. There is no wrapping of namespaced classes or functions, or of nested namespaces.
Currently, the wrappers implement namespaces as Python module objects.

9.10.9 Docstrings

The wrappers automatically generate docstrings from the doxygen comments in the header files. The Python help()
command can be used to print the documentation to the screen, or the __doc__ attributes of the classes and methods
can be accessed directly.

Method Docstrings

The method docstrings are formatted with the method signatures first, followed by doxygen comments. The Python
method signatures have type annotations, and are followed by the C++ method signatures for completeness.

InvokeEvent(self, event:int, callData:Any) -> int
C++: int InvokeEvent(unsigned long event, void* callData)
InvokeEvent(self, event:str, callData:Any) -> int
C++: int InvokeEvent(const char* event, void* callData)
InvokeEvent(self, event:int) -> int
C++: int InvokeEvent(unsigned long event)
InvokeEvent(self, event:str) -> int

(continues on next page)

242 Chapter 9. Advanced Topics

VTK

(continued from previous page)

C++: int InvokeEvent(const char* event)

This method invokes an event and returns whether the event was
aborted or not. If the event was aborted, the return value is 1,
otherwise it is 0.

Some Python IDEs will automatically show the docstring as soon as you type the name of the method.

Class Docstrings

The class docstrings include a brief description of the class, followed by the name of the superclass, and then the full
doxygen documentation, including doxygen markup:

vtkMatrix4x4 - represent and manipulate 4x4 transformation matrices

Superclass: vtkObject

vtkMatrix4x4 is a class to represent and manipulate 4x4 matrices.
Specifically, it is designed to work on 4x4 transformation matrices
found in 3D rendering using homogeneous coordinates [x y z w]. Many
of the methods take an array of 16 doubles in row-major format. Note
that OpenGL stores matrices in column-major format, so the matrix
contents must be transposed when they are moved between OpenGL and
VTK.
@sa
vtkTransform

If the class is not derived from vtkObjectBase, then it will have one or more public constructors, and these will be
included before the comments:

vtkSimpleCriticalSection() -> vtkSimpleCriticalSection
C++: vtkSimpleCriticalSection()
vtkSimpleCriticalSection(isLocked:int) -> vtkSimpleCriticalSection
C++: vtkSimpleCriticalSection(int isLocked)

vtkSimpleCriticalSection - Critical section locking class

vtkCriticalSection allows the locking of variables which are accessed
through different threads.

Template Docstrings

Class templates are documented similar to classes, except that they include a ‘Provided Types’ section that lists the
available template instantiations and the C++ template arguments that they correspond to.

vtkSOADataArrayTemplate - Struct-Of-Arrays implementation of
vtkGenericDataArray.

Superclass: vtkGenericDataArray[vtkSOADataArrayTemplate[ValueTypeT],ValueTypeT]

vtkSOADataArrayTemplate is the counterpart of vtkAOSDataArrayTemplate.
(continues on next page)

9.10. Python Wrappers 243

VTK

(continued from previous page)

Each component is stored in a separate array.

@sa
vtkGenericDataArray vtkAOSDataArrayTemplate

Provided Types:

vtkSOADataArrayTemplate[char] => vtkSOADataArrayTemplate<char>
vtkSOADataArrayTemplate[int8] => vtkSOADataArrayTemplate<signed char>
vtkSOADataArrayTemplate[uint8] => vtkSOADataArrayTemplate<unsigned char>
vtkSOADataArrayTemplate[int16] => vtkSOADataArrayTemplate<short>
vtkSOADataArrayTemplate[uint16] => vtkSOADataArrayTemplate<unsigned short>
vtkSOADataArrayTemplate[int32] => vtkSOADataArrayTemplate<int>
vtkSOADataArrayTemplate[uint32] => vtkSOADataArrayTemplate<unsigned int>
vtkSOADataArrayTemplate[int] => vtkSOADataArrayTemplate<long>
vtkSOADataArrayTemplate[uint] => vtkSOADataArrayTemplate<unsigned long>
vtkSOADataArrayTemplate[int64] => vtkSOADataArrayTemplate<long long>
vtkSOADataArrayTemplate[uint64] => vtkSOADataArrayTemplate<unsigned long long>
vtkSOADataArrayTemplate[float32] => vtkSOADataArrayTemplate<float>
vtkSOADataArrayTemplate[float64] => vtkSOADataArrayTemplate<double>

Unlike classes, the template documentation is formatted similarly regardless of whether the the class template derives
from vtkObjectBase or not:

vtkVector - templated base type for storage of vectors.

Superclass: vtkTuple[T,Size]

This class is a templated data type for storing and manipulating fixed
size vectors, which can be used to represent two and three dimensional
points. The memory layout is a contiguous array of the specified type,
such that a float[2] can be cast to a vtkVector2f and manipulated. Also
a float[6] could be cast and used as a vtkVector2f[3].

Provided Types:

vtkVector[float64,4] => vtkVector<double, 4>
vtkVector[float32,4] => vtkVector<float, 4>
vtkVector[int32,4] => vtkVector<int, 4>
vtkVector[float64,2] => vtkVector<double, 2>
vtkVector[float32,2] => vtkVector<float, 2>
vtkVector[int32,2] => vtkVector<int, 2>
vtkVector[float64,3] => vtkVector<double, 3>
vtkVector[float32,3] => vtkVector<float, 3>
vtkVector[int32,3] => vtkVector<int, 3>

244 Chapter 9. Advanced Topics

VTK

9.10.10 Internals and Advanced Topics

Special Attributes

Classes and objects derived from vtkObjectBase have special attributes, which are only used in very special circum-
stances.

The __vtkname__ attribute of the class provides the same string that the GetClassName() method returns. With the
exception of classes that are template instantiations, it is identical to the __name__ attribute. For template instantiations,
however, GetClassName() and __vtkname__ return the result of calling typeid(cls).name() from C++, which
provides a platform specific result:

>>> vtkSOADataArrayTemplate['float32'].__vtkname__
'23vtkSOADataArrayTemplateIfE'

This can be used to get the VTK ClassName when you don’t have an instantiation to call GetClassName() on. It is
useful for checking the type of a C++ VTK object against a Python VTK class.

The __this__ attribute of the objects is a bit less esoteric, it provides a pointer to the C++ object as a mangled string:

>>> a = vtkFloatArray()
>>> a.__this__
'_00005653a6a6f700_p_vtkFloatArray'

The string provides the hexadecimal address of ‘this’, followed by ‘p’ (shorthand for pointer), and the type of the
pointer. You can also construct a Python object directly from the C++ address, if the address is formatted as described
above:

>>> a = vtkFloatArray('_00005653a6a6f700_p_vtkFloatArray')
>>> a
<vtkmodules.vtkCommonCore.vtkFloatArray(0x5653a6a6f700) at 0x7f0e7aecf5e0>

If you call the constructor on the string provided by __this__, you will get exactly the same Python object back again,
rather than a new object. But this constructor can be useful if you have some VTK code that has been wrapped with a
different wrapper tool, for example with SWIG. If you can get the VTK pointer from SWIG, you can use it to construct
Python object that can be used with the native VTK wrappers.

Wrapper Hints

A wrapper hint is an attribute that can be added to a class, method, or parameter declaration in a C++ header file to
give extra information to the wrappers. These hints are defined in the vtkWrappingHints.h header file.

The following hints can appear before a method declaration:

• VTK_WRAPEXCLUDE excludes a method from the wrappers

• VTK_NEWINSTANCE passes ownership of a method’s return value to the caller

For convenience, VTK_WRAPEXCLUDE can also be used to exclude a whole class. The VTK_NEWINSTANCE hint is used
when the return value is a vtkObjectBase* and the caller must not increment the reference count upon acceptance of
the object (but must still decrement the reference count when finished with the object).

The following hints can appear after a method declaration:

• VTK_EXPECTS(cond) provides preconditions for the method call

• VTK_SIZEHINT(expr) marks the array size of a return value

• VTK_SIZEHINT(name, expr) marks the array size of a parameter

9.10. Python Wrappers 245

VTK

For VTK_EXPECTS(cond), the precondition must be valid C++ code, and can use any of the parameter names or this.
Even without this, any public names in the class namespace (including method names) will be resolved. See the
Preconditions section for additional information.

VTK_SIZEHINT(expr) is used for methods that return an array as type T*, where T is a numeric data type. The
hint allows the wrappers to convert the array to a tuple of the correct size. Without the size hint, the wrappers will
return the pointer as a string that provides a mangled memory address of the form ‘_hhhhhhhhhhhh_p_void’ where
‘hhhhhhhhhhhh’ is address expressed in hexadecimal.

VTK_SIZEHINT(parameter_name, expr) is used to hint parameters of type T* or T&* (with T as a numeric data
type) so that the wrappers know the size of the array that the pointer is pointing to. The expr can be any expression
that evaluates to an integer, and it can include parameter names, public class members and method calls, or the special
name _ (underscore) which indicates the method’s return value. In the absence of a size hint, the wrappers cannot
check that the length of the sequence passed from Python matches the size of the array required by the method. If the
method requires a larger array than it receives, a buffer overrun will occur.

The following hints can appear before a parameter declaration:

• VTK_FILEPATH marks a parameter that accepts a pathlib.Path object

• VTK_ZEROCOPY marks a parameter that accepts a buffer object

More specifically, VTK_FILEPATH is used with char* and std::string parameters to indicate that the method also
accepts any object with a __fspath__() method that returns a path string. And VTK_ZEROCOPY is used with T*
parameters, for basic integer or float type T, to indicate that the Python buffer protocol will be used to access the values,
rather than the Python sequence protocol that is used by default.

Deprecation Warnings

In addition to the wrapping hints, the Python wrappers are also aware of the deprecation attributes that have been applied
to classes and methods. When a deprecated method is called, a DeprecationWarning is generated and information
about the deprecation is printed, including the VTK version for the deprecation.

To ignore these warnings, use the following code:

import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)

To see each deprecation warning just once per session,

warnings.filterwarnings('once', category=DeprecationWarning)

Template Keys

The following is a table of common template key names, which are the same as the numpy dtype names. Note that
you can actually use numpy dtypes as keys, as well as the native Python types bool, int, and float. There is some
danger in using int, however, because it maps to C++ long which has a platform-dependent size (either 32 bits or 64
bits). Finally, the char codes from the Python array module can be used as keys, but they should be avoided since
more programmers are familiar with numpy than with the much older array module.

246 Chapter 9. Advanced Topics

VTK

C++ Type Template Key Type Key Char Key IA64 ABI Code
bool ‘bool’ bool ‘?’ IbE
char ‘char’ ‘c’ IcE

signed char ‘int8’ ‘b’ IaE

unsigned char ‘uint8’ ‘B’ IhE

short ‘int16’ ‘h’ IsE

unsigned short ‘uint16’ ‘H’ ItE

int ‘int32’ ‘i’ IiE

unsigned int ‘uint32’ ‘I’ IjE

long ‘int’ int ‘l’ IlE
unsigned long ‘uint’ ‘L’ ImE

long long ‘int64’ ‘q’ IxE

unsigned long long ‘uint64’ ‘Q’ IyE

float ‘float32’ ‘f’ IfE

double ‘float64’ float ‘d’ IdE

Since the size of ‘long’ and ‘unsigned long’ is platform-dependent, these types should generally be avoided.

Exception Handling

There are times when an observer might generate a Python exception. Since the observers are called from C++, there
is no good way to catch these exceptions from within Python. So, instead, the wrappers simply print a traceback
to stderr and then clear the error indicator. The Python program will continue running unless the exception was a
KeyboardInterrupt (Ctrl-C), in which case the program will exit with an error code of 1.

Deleting a vtkObject

There is no direct equivalent of VTK’s Delete() method, since Python does garbage collection automatically. The
Python object will be deleted when there are no references to it within Python, and the C++ object will be deleted when
there are no references to it from within either Python or C++. Note that references can hide in unexpected places, for
example if a method of an object is used as an observer callback, the object will not be deleted until the observer is
disconnected.

The DeleteEvent can be used to detect object deletion, but note that the observer will receive a None for the object,
since the observer is called after (not before) the deletion occurs:

>>> o = vtkObject()
>>> o.AddObserver('DeleteEvent', lambda o,e: print(e, o))
1

(continues on next page)

9.10. Python Wrappers 247

VTK

(continued from previous page)

>>> del o
DeleteEvent None

If you need to know what object is deleted, the identifying information must be extracted before the deletion occurs:

>>> o = vtkObject()
>>> o.AddObserver('DeleteEvent',lambda x,e,r=repr(o): print(e, r))
1
>>> del o
DeleteEvent <vtkmodules.vtkCommonCore.vtkObject(0x55783870f970) at 0x7f1e61678be0>

In cases where you need to track down tricky memory issues, you might find it useful to call the GetReferenceCount()
method of the object directly.

Ghosts

A wrapped VTK object (derived from vtkObjectBase) is a Python object that holds a pointer to a C++ object (specif-
ically, a vtkObjectBase*). The Python object can have attributes that the C++ object knows nothing about. So, what
happens to these attributes if the Python object is deleted, but the C++ object lives on? Consider this simple example
of storing the C++ object in an array and then deleting the Python object:

obj = vtkObject()
obj.tag = 'FirstObject'
va = vtkVariantArray()
va.InsertNextValue(obj)
del obj

When we retrieve the object from the array, we want it to have the ‘tag’ attributes that it had we stored it. But you
might wonder, aren’t all Python-specific attributes deleted along with the Python object? The answer is, no they aren’t,
they’re saved until until the C++ object itself is deleted.

The wrappers have a special place, which we will call the graveyard, where ‘ghosts’ of objects are stored when the
objects are deleted. The ghost is not an object, but rather a container for the Python attributes of a deceased object. If
the object ever reappears within Python, usually as a return value from a C++ method call, then the ghost is resurrected
as a new Python object that has all the attributes of the original Python object.

The graveyard is only used for objects that have unfinished business. If a Python object has an empty dict and no other
special attributes, then it will not go to the graveyard. Also, if the C++ object is deleted at the same time as the Python
object, then the graveyard will not be used. Each ghost in the graveyard holds a weak pointer to its C++ object and will
vanish when the C++ object is deleted (not immediately, but the next time the graveyard garbage collector runs).

Subclassing a VTK Class

It is possible to subclass a VTK class from within Python, but this is of limited use because the C++ virtual methods are
not hooked to the Python methods. In other words, if you make a subclass of vtkPolyDataAlgorithm and override
override the Execute() method, it will not be automatically called by the VTK pipeline. Your Execute() method
will only be called if the call is made from Python.

The addition of virtual method hooks to the wrappers has been proposed, but currently the only way for Python methods
to be called from C++ code is via callbacks. The vtkProgrammableSource and vtkProgrammableFilter are
examples of VTK algorithm classes that use callbacks for execution, while vtkInteractionStyleUser can use
observer callbacks for event handling.

248 Chapter 9. Advanced Topics

VTK

Wrapping External VTK Modules

If you have your own C++ classes that are based on VTK, and if they are placed with a VTK module with a vtk.module
file, then they can be wrapped as shown in the Module Wrapping Example. You will also find the cmake documentation
on VTK modules to be useful.

9.10.11 Experimental Features

Python Class Overrides

VTK now supports overriding wrapped classes with Python subclasses. This enables developers to provide more Python
friendly interfaces for certain classes. Here is a trivial example of an override:

from vtkmodules.vtkCommonCore import vtkPoints
@vtkPoints.override
class CustomPoints(vtkPoints):

pass

Once the override is in place, any future vtkPoints Python object instances will be instances of the override class.
This behavior is global.

points = vtk.vtkPoints() # returns an instance of CustomPoints

The override can be reversed by setting an override of None, but this will not impact instantiations that have already
occurred.

vtkPoints.override(None)

If the class has already been overridden in C++ via VTK’s object factory mechanism, then directly applying a Python
override to that class will not work. Instead, the Python override must be applied to the C++ factory override. For
example, on Windows,

@vtkWin32OpenGLRenderWindow.override
class CustomRenderWindow(vtkWin32OpenGLRenderWindow):

...
window = vtkRenderWindow() # creates a CustomRenderWindow

Please see Subclassing a VTK Class for restrictions on subclassing VTK classes through Python.

Stub Files for Type Hinting

VTK includes a script called generate_pyi.py that will generate pyi stub files for each wrapped VTK module. The
purpose of these files, as explained in PEP 484, is to provide type information for all constants, classes, and methods
in the modules. Each of these files contain blocks like this:

VTK_DOUBLE:int
VTK_DOUBLE_MAX:float
VTK_DOUBLE_MIN:float
...

class vtkObject(vtkObjectBase):
def AddObserver(self, event:int, command:Callback, priority:float=0.0) -> int: ...

(continues on next page)

9.10. Python Wrappers 249

https://gitlab.kitware.com/vtk/vtk/-/blob/release/Examples/Modules/Wrapping
https://gitlab.kitware.com/vtk/vtk/-/blob/release/Wrapping/Python/vtkmodules/generate_pyi.py
https://www.python.org/dev/peps/pep-0484/#stub-files

VTK

(continued from previous page)

def GetMTime(self) -> int: ...
@staticmethod
def GetNumberOfGenerationsFromBaseType(type:str) -> int: ...
@overload
def HasObserver(self, event:int, __b:'vtkCommand') -> int: ...
@overload
def HasObserver(self, event:str, __b:'vtkCommand') -> int: ...

class vtkAbstractArray(vtkObject):
class DeleteMethod(int): ...
VTK_DATA_ARRAY_ALIGNED_FREE:'DeleteMethod'
VTK_DATA_ARRAY_DELETE:'DeleteMethod'
VTK_DATA_ARRAY_FREE:'DeleteMethod'
VTK_DATA_ARRAY_USER_DEFINED:'DeleteMethod'
def Allocate(self, numValues:int, ext:int=1000) -> int: ...

Python consoles like ipython and IDEs like PyCharm can use the information in these files to provide hints while you
edit the code. These files are included in the Python packages for VTK, but they can also be built by executing the
generate_pyi.py script. To do so, execute the script with the vtkpython executable (or with the regular python
executable, if its paths are set for VTK):

vtkpython -m vtkmodules.generate_pyi

This will place build the pyi files and place them inside the vtkmodules package, where ipython and PyCharm should
automatically find them. The help for this script is as follows:

usage: python generate_pyi.py [-p package] [-o output_dir] [module ...]
options:
-p NAME Package name [vtkmodules by default].
-o OUTPUT Output directory [package directory by default].
-e EXT Output file suffix [.pyi by default].
module Module or modules to process [all by default].

The pyi files are syntactically correct python files, so it is possible to load them as such in order to test them and inspect
them.

9.11 Wrapping Tools

The wrapping tools consist of executables that pull information from C++ header files, and produce wrapper code that
allows the C++ interfaces to be used from other programming languages (Python and Java). One can think of the
wrappers as having a front-end that parses C++ header files, and a back-end that produces language-specific glue code.

All of the code in this directory is C, rather than C++. One might think this is silly, since the front-end parses C++ .h
files and the back-end generates .cxx files. The original reason for this is that the parser uses lex and yacc, which are
written in C and previously could not easily be linked into C++ programs.

250 Chapter 9. Advanced Topics

VTK

9.11.1 The C++ Parser

vtkParse

The header vtkParse.h provides a C API for the C++ parser that wrappers use to read the VTK header files. The
parser consists of three critical pieces: a preprocessor (see below), a lex-based lexical analyzer (lex.yy.c, generated
from vtkParse.l) and a bison-based glr parser (vtkParse.tab.c, generated from vtkParse.y). Instructions on rebuilding
the parser are provided at the end of this document.

vtkParsePreprocess

This is a preprocessor that can run independently of the parser. In general, the parser does not recursively parse
#include files, but it does recursively preprocess them in order to gather all of the macro definitions within them.

vtkParseString

This provides low-level string handling routines that are used by the parser and the preprocessor. Most importantly, it
contains a C++ tokenizer. It also contains a cache for storing strings (type names, etc.) that are encountered during the
parse.

vtkParseSystem

This contains utilities for file system access. One of its functionalities is to manage a cache of where header files are
located on the file system, so that header file lookups can be done inexpensively even on slow file systems.

vtkParseType

This is a header file that defines numerical constants that we use to identify C++ types, type qualifiers, and specifiers.
These constants are used in the vtkParseData data structures described below.

vtkParseAttributes

This is a header file that defines numerical constants for wrapper-specific attributes that can be added to declarations in
the VTK header files. For example, [[vtk::wrapexclude]] and [[vtk::deprecated]]. These attribute constants
are stored in the vtkParseData data structures.

vtkParseData

The data structures defined in vtkParseData.h are used for the output of the parser. This header provides data structures
for namespaces, classes, methods, typedefs, and for other entities that can be declared in a C++ file. The wrappers
convert this data into wrapper code.

9.11. Wrapping Tools 251

VTK

9.11.2 Parser Utilities

vtkParseExtras

This file provides routines for managing certain abstractions of the data that is produced by the parser. Most specifically,
it provides facilities for expanding typedefs and for instantiating templates. Its code is not pretty.

vtkParseMerge

This provides methods for dealing with method resolution order. It defines a data structure for managing a class along
with all the classes it derives from. It is needed for managing tricky details relating to inheritance, such as “using”
declarations, overrides, virtual methods, etc.

vtkParseMangle

The Python wrappers rely on name-mangling routines to convert C++ names into names that can be used in Python.
The mangling is done according to the rules of the IA64 ABI (this same mangling is used to convert C++ APIs into C
APIs)

vtkParseHierarchy

A hierarchy file is a text file that lists information about all the types defined in a VTK module. The wrappers use these
files to look up types from names. Through the use of vtkParseHierarchy, the wrappers can get detailed information
about a type even if the header file only contains a forward reference, as long as the type is defined somewhere in
another header.

vtkParseMain

A common main() function for use by wrapper tool executables. It provides a standard set of command-line options as
well as response-file handling. It also invokes the parser.

9.11.3 Wrapper Utilities

vtkWrap

This has functions that are common to the wrapper tools for all the wrapper languages. Unlikely vtkParse, it deals with
the generation of code, rather than the parsing of code.

vtkWrapText

This has functions for automatically generating documentation from the header files that are parsed. It produces the
Python docstrings.

252 Chapter 9. Advanced Topics

VTK

9.11.4 Python-Specific Utilities

These are named according to the pieces of wrapper code they produce.

• vtkWrapPythonClass creates type objects for vtkObjectBase classes

• vtkWrapPythonType creates type objects for other wrapped classes

• vtkWrapPythonMethod for calling C++ methods from Python

• vtkWrapPythonOverload maps a Python method to multiple C++ overloads

• vtkWrapPythonMethodDef generates the method tables for wrapped classes

• vtkWrapPythonTemplate for wrapping of C++ class templates

• vtkWrapPythonNamespace for wrapping namespaces

• vtkWrapPythonEnum creates type objects for enum types

• vtkWrapPythonConstant adds C++ constants to Python classes, namespaces

9.11.5 Python Wrapper Executables

vtkWrapPython

This executable will parse the C++ declarations from a header file and produce wrapper code that can be linked into a
Python extension module.

vtkWrapPythonInit

This will produce the PyInit entry point for a Python extension module, as well as code for loading all the depen-
dent modules. The .cxx file produced by vtkWrapPythonInit is linked together to the .cxx files that are produced by
vtkWrapPython to create the module.

9.11.6 Java Wrapper Executables

• vtkWrapJava produces C++ wrapper code that uses the JNI

• vtkParseJava produces Java code that sits on top of the C++ code

9.11.7 Other Executables

vtkWrapHierarchy

This will slurp up all the header files in a VTK module and produce a “hierarchy.txt” file that provides information
about all of the types that are defined in that module. In other words, it provides a summary of the module’s contents.
The Python and Java wrapper executables rely on these “hierarchy.txt” files in order to look up types by name.

9.11. Wrapping Tools 253

VTK

vtkWrapSerDes

This generates C++ code to serialize a VTK object into json and deserialize the object back from json. This relies upon
the property parser from vtkParseProperties

9.11.8 Rebuilding the Parser

The code for the C++ parser is generated from the files vtkParse.l and vtkParse.y with the classic compiler-generator
tools lex and yacc (or, more specifically, with their modern incarnations flex and bison). These tools are readily available
on macOS and Linux systems, and they can be installed (with some difficulty) on Windows systems.

The C code that flex and bison generate is not styled according to VTK standards, and must be cleaned up in order to
compile without warnings and in order to satisfy VTK’s git hooks and style checks.

vtkParse.l

The file vtkParse.l contains regular expressions for tokenizing a C++ header file. It is used to generate the file lex.yy.c,
which is directly included (i.e. as a C file) by the main parser file, vtkParse.tab.c.

To generate lex.yy.c from vtkParse.l, use the following steps.

1. Get a copy of flex, version 2.6.4 or later

2. Run flex --nodefault --noline -olex.yy.c vtkParse.l

3. In an editor, remove blank lines from the top and bottom of lex.yy.c

4. Replace all tabs with two spaces (e.g. :%s/\t/ /g in vi)

5. Remove spaces from the ends of lines (e.g. :%s/ *$// in vi)

6. Remove struct yy_trans_info, which is used nowhere in the code

7. Add the following code at line 23 (after “end standard C headers”)

#ifndef __cplusplus extern int isatty(int); #endif /* __cplusplus */

Finally, if you have clang-format installed, you can use it to re-style the code.

vtkParse.y

The file vtkParse.y contains the rules for parsing a C++ header file. Many of the rules in this file have the same
names as in the description of the grammar in the official ISO standard. The file vtkParse.y is used to generate the file
vtkParse.tab.c, which contains the parser.

1. Get a copy of bison 3.2.3 or later, it has a yacc-compatible front end.

2. Run bison --no-lines -b vtkParse vtkParse.y, to generate vtkParse.tab.c

3. In an editor, replace every static inline in vtkParse.tab.c with static

4. Replace #if ! defined lint || defined __GNUC__ with #if 1

5. remove YY_ATTRIBUTE_UNUSED from yyfillin, yyfill, and yynormal

6. comment out the break; after return yyreportAmbiguity

7. replace (1-yyrhslen) with (1-(int)yyrhslen)

8. replace sizeof yynewStates[0] and sizeof yyset->yystates[0] with sizeof (yyGLRState*)

254 Chapter 9. Advanced Topics

VTK

9. replace sizeof yynewLookaheadNeeds[0] and sizeof yyset->yylookaheadNeeds[0] with sizeof
(yybool)

10. replace sizeof yynewItems[0] and sizeof yystackp->yynextFree[0] with sizeof
(yyGLRStackItem)

If you are familiar with “diff” and “patch” and if you have clang-format, you can automate these code changes as
follows. For this, you must use exactly version 3.2.3 of bison to ensure that the code that is produced is as similar as
possible to what is currently in the VTK repository.

1. Run bison (as above) on the vtkParse.y from the master branch

2. Use clang-format-8 to re-style vtkParse.tab.c to match VTK code style

3. Use “git diff -R vtkParse.tab.c” to produce a patch file

If done correctly, this will produce a patch file that contains all the changes above (steps 3 through 9 in the original
list). Load the patch file into a text editor to verify that this is so, and remove any superfluous changes from the patch
file.

Then, switch to your new vtkParse.y (the one you have modified). Repeat steps 1 and 2 (generate vtkParse.tab.c and
reformat it with clang-format). Now you can apply the patch file to automate the original steps 3 through 9. Note that as
you continue to edit vtkParse.y and regenerate vtkParse.tab.c, you can continue to use the same patch. Just remember
to run clang-format every time that you run bison.

Debugging the Parser

When bison is run, it should not report any shift/reduce or reduce/reduce warnings. If modifications to the rules cause
these warnings to occur, you can run bison with the --debug and --verbose options:

bison --debug --verbose -b vtkParse vtkParse.y

This will cause bison to produce a file called “vtkParse.output” that will show which rules conflict with other rules.

9.12 Migration Guides

9.12.1 Module Migration from VTK 8.2 to 9+

VTK 8.2 and older contained a module system which was based on variables and informed CMake’s migration to
target-based properties and interactions. This was incompatible with the way VTK ended up doing it. With VTK 9, its
module system has been reworked to use CMake’s targets.

This document may be used as a guide to updating code using old VTK modules into code using new VTK modules.

Using modules

If your project is just using VTK’s modules and not declaring any of your own modules, porting involves a few changes
to the way VTK is found and used.

The old module system made variables available for using VTK.

find_package(VTK
REQUIRED
COMPONENTS
vtkCommonCore

(continues on next page)

9.12. Migration Guides 255

VTK

(continued from previous page)

vtkRenderingOpenGL2)
include(${VTK_USE_FILE})

add_library(usesvtk ...)
target_link_libraries(usesvtk ${visibility} ${VTK_LIBRARIES})
target_include_directories(usesvtk ${visibility} ${VTK_INCLUDE_DIRS})

Pass any VTK autoinit defines to the target.
target_compile_definitions(usesvtk PRIVATE ${VTK_DEFINITIONS})

This causes problems if VTK is found multiple times within a source tree with different components. The new pattern
is:

find_package(VTK
#9.0 # Compatibility support is not provided if 9.0 is requested.
REQUIRED
COMPONENTS
Old component names are OK, but deprecated.
#vtkCommonCore
#vtkRenderingOpenGL2
New names reflect the target names in use.
CommonCore
RenderingOpenGL2)

No longer needed; warns or errors depending on the version requested when
finding VTK.
#include(${VTK_USE_FILE})

add_library(usesvtk ...)
VTK_LIBRARIES is provided for compatibility, but not recommended.
#target_link_libraries(usesvtk ${visibility} ${VTK_LIBRARIES})
target_link_libraries(usesvtk ${visibility} VTK::CommonCore VTK::RenderingOpenGL2)

Rather than defining a single `VTK_DEFINITIONS` for use by all relevant
targets, the definitions are made as needed with the exact set needed for the
listed modules.
vtk_module_autoinit(
TARGETS usesvtk
#MODULES ${VTK_LIBRARIES} # Again, works, but is not recommended.
MODULES VTK::CommonCore VTK::RenderingOpenGL2)

Module declaration

The old module system had CMake code declare modules in module.cmake files. This allowed logic and other things
to happen within them which could cause module dependencies to be hard to follow. The new module system now
provides facilities for disabling modules in certain configurations (using CONDITION) and for optionally depending on
modules (using OPTIONAL_DEPENDS).

if (NOT SOME_OPTION)
set(depends)
if (SOME_OTHER_OPTION)
list(APPEND depends vtkSomeDep)

(continues on next page)

256 Chapter 9. Advanced Topics

VTK

(continued from previous page)

endif ()
vtk_module(vtkModuleName
GROUPS
groups the module belongs to

KIT
the kit the module belongs to

IMPLEMENTS
modules containing vtkObjectFactory instances that are implemented here

DEPENDS
public dependencies
#${depends} # no analogy in the new system

PRIVATE_DEPENDS
private dependencies
${depends}

COMPILE_DEPENDS
modules which must be built before this one but which are not actually
linked.

TEST_DEPENDS
test dependencies

TEST_OPTIONAL_DEPENDS
optional test dependencies
${depends}

#EXCLUDE_FROM_WRAPPING
present for modules which cannot be wrapped

)
endif ()

This is now replaced with a declarative file named vtk.module. This file is not CMake code and is instead parsed as
an argument list in CMake (variable expansions are also not allowed). The above example would translate into:

MODULE
vtkModuleName

CONDITION
SOME_OPTION

GROUPS
groups the module belongs to

KIT
the kit the module belongs to

#IMPLEMENTABLE # Implicit in the old build system. Now explicit.
IMPLEMENTS
modules containing vtkObjectFactory instances that are implemented here

DEPENDS
public dependencies

PRIVATE_DEPENDS
private dependencies

OPTIONAL_DEPENDS
vtkSomeDep

ORDER_DEPENDS
modules which must be built before this one but which are not actually
linked.

TEST_DEPENDS
test dependencies

(continues on next page)

9.12. Migration Guides 257

VTK

(continued from previous page)

TEST_OPTIONAL_DEPENDS
optional test dependencies
vtkSomeDep

#EXCLUDE_WRAP
present for modules which cannot be wrapped

Modules may also now be provided by the current project or by an external project found by find_package as well.

Declaring sources

Sources used to be listed just as .cxx files. The module system would then search for a corresponding .h file, then add
it to the list. Some source file properties could be used to control header-only or private headers.

In this example, we have a module with the following sources:

• vtkPublicClass.cxx and vtkPublicClass.h: Public VTK class meant to be wrapped and its header in-
stalled.

• vtkPrivateClass.cxx and vtkPrivateClass.h: Private VTK class not meant for use outside of the module.

• helper.cpp and helper.h: Private API, but not following VTK’s naming conventions.

• public_helper.cpp and public_helper.h: Public API, but not following VTK’s naming conventions.

• vtkImplSource.cxx: A source file without a header.

• public_header.h: A public header without a source file.

• template.tcc and template.h: Public API, but not following VTK’s naming conventions.

• private_template.tcc and private_template.h: Private API, but not following VTK’s naming conven-
tions.

• vtkPublicTemplate.txx and vtkPublicTemplate.h: Public template sources. Wrapped and installed.

• vtkPrivateTemplate.txx and vtkPrivateTemplate.h: Private template sources.

• vtkOptional.cxx and vtkOptional.h: Private API which requires an optional dependency.

The old module’s way of building these sources is:

set(Module_SRCS
vtkPublicClass.cxx
vtkPrivateClass.cxx
helper.cpp
helper.h
public_helper.cpp
public_helper.h
public_header.h
vtkImplSource.cxx
vtkPublicTemplate.txx
vtkPrivateTemplate.txx
template.tcc # Not detected as a template, so not installed.
template.h
private_template.tcc
private_template.h

)

(continues on next page)

258 Chapter 9. Advanced Topics

VTK

(continued from previous page)

Mark some files as only being header files.
set_source_files_properties(
public_header.h
HEADER_FILE_ONLY

)

Mark some headers as being private.
set_source_files_properties(
helper.h
private_template.h
public_header.h
template.h
vtkImplSource.cxx # no header
vtkPrivateTemplate.h
PROPERTIES SKIP_HEADER_INSTALL 1

)

set(${vtk-module}_HDRS # Magic variable
public_helper.h
template.h
#helper.h # private headers just go ignored.

)

Optional dependencies are detected through variables.
if (Module_vtkSomeDep)
list(APPEND Module_SRCS
Some optional file.
vtkOptional.cxx)

endif ()

vtk_module_library(vtkModuleName ${Module_SRCS})

While with the new system, source files are explicitly declared using argument parsing.

set(classes
vtkPublicClass)

set(private_classes
vtkPrivateClass)

set(sources
helper.cpp
public_helper.cpp
vtkImplSource.cxx)

set(headers
public_header.h
public_helper.h
template.h)

set(private_headers
helper.h
private_template.h)

set(template_classes
vtkPublicTemplate)

(continues on next page)

9.12. Migration Guides 259

VTK

(continued from previous page)

set(private_template_classes
vtkPrivateTemplate)

set(templates
template.tcc)

set(private_templates
private_template.tcc)

Optional dependencies are detected as targets.
if (TARGET vtkSomeDep)
Optional classes may not be public (though there's no way to actually
enforce it, optional dependencies are always treated as private.
list(APPEND private_classes
vtkOptional)

endif ()

vtk_module_add_module(vtkModuleName
File pairs which follow VTK's conventions. The headers will be wrapped and
installed.
CLASSES ${classes}
File pairs which follow VTK's conventions, but are not for use outside the
module.
PRIVATE_CLASSES ${private_classes}
Standalone sources (those without headers or which do not follow VTK's
conventions).
SOURCES ${sources}
Standalone headers (those without sources or which do not follow VTK's
conventions). These will be installed.
HEADERS ${public_headers}
Standalone headers (those without sources or which do not follow VTK's
conventions), but are not for use outside the module.
PRIVATE_HEADERS ${private_headers}

Templates are also supported.

Template file pairs which follow VTK's conventions. Both files will be
installed (only the headers will be wrapped).
TEMPLATE_CLASSES ${template_classes}
Template file pairs which follow VTK's conventions, but are not for use
outside the module.
PRIVATE_TEMPLATE_CLASSES ${private_template_classes}
Standalone template files (those without headers or which do not follow
VTK's conventions). These will be installed.
TEMPLATES ${templates}
Standalone template files (those without headers or which do not follow
VTK's conventions), but are not for use outside the module.
PRIVATE_TEMPLATES ${private_templates}

)

Note that the arguments with CLASSES in their name expand to pairs of files with the .h and either .cxx or .txx
extension based on whether it is a template or not. Projects not using this convention may use the HEADERS, SOURCES,
and TEMPLATES arguments instead.

260 Chapter 9. Advanced Topics

VTK

Object Factories

Previously, object factories were made using implicit variable declaration magic behind the scenes. This is no longer
the case and proper CMake APIs for them are available.

set(sources
vtkObjectFactoryImpl.cxx
This path is made by `vtk_object_factory_configure` later.
"${CMAKE_CURRENT_BINARY_DIR}/${vtk-module}ObjectFactory.cxx")

Make a list of base classes we will be overriding.
set(overrides vtkObjectFactoryBase)
Make a variable declaring what the override for the class is.
set(vtk_module_vtkObjectFactoryBase_override "vtkObjectFactoryImpl")
Generate a source using the list of base classes overridden.
vtk_object_factory_configure("${overrides}")

vtk_module_library("${vtk-module}" "${sources}")

This is now handled using proper APIs instead of variable lookups.

set(classes
vtkObjectFactoryImpl)

Explicitly declare the override relationship.
vtk_object_factory_declare(
BASE vtkObjectFactoryBase
OVERRIDE vtkObjectFactoryImpl)

Collects the set of declared overrides and writes out a source file.
vtk_object_factory_declare(
The path to the source is returned as a variable.
SOURCE_FILE factory_source
As is its header file.
HEADER_FILE factory_header
The export macro is now explicitly passed (instead of assumed based on the
current module context).
EXPORT_MACRO MODULE_EXPORT)

vtk_module_add_module(vtkModuleName
CLASSES ${classes}
SOURCES "${factory_source}"
PRIVATE_HEADERS "${factory_header}")

Building a group of modules

This was not well supported in the old module system. Basically, it involved setting up the source tree like VTK expects
and then including the vtkModuleTop file. This is best just rewritten using the following CMake APIs:

• vtk_module_find_modules()

• vtk_module_find_kits()

• vtk_module_scan()

• vtk_module_build()

9.12. Migration Guides 261

VTK

262 Chapter 9. Advanced Topics

CHAPTER

TEN

DESIGN DOCUMENTS

10.1 VTK File Formats

A lot of this material is taken from The VTK User’s Guide.

The Visualization Toolkit provides a number of source and writer objects to read and write popular data file formats.
The Visualization Toolkit also provides some of its own file formats. The main reason for creating yet another data file
format is to offer a consistent data representation scheme for a variety of dataset types, and to provide a simple method
to communicate data between software. Whenever possible, we recommend that you use formats that are more widely
used. But if this is not possible, the Visualization Toolkit formats described here can be used instead. Note that these
formats may not be supported by many other tools.

There are three different styles of file formats available in VTK:

1. Legacy

It’s a serial formats that are easy to read and write either by hand or programmatically.

1. XML

More flexible but more complex than the legacy file format, it supports random access, parallel I/O, and portable data
compression and are preferred to the serial VTK file formats whenever possible.

2. VTKHDF

This is a file format using the same concepts as the XML formats described above but relying on HDF5 for actual
storage. It is simpler than the XML. It provides good I/O performance as well as robust and flexible parallel I/O
capabilities and may to replace others file formats once it will be complete. It can be read/written using either hdf5
directly or the vtkhdf implementation in VTK.

10.1.1 Simple Legacy Formats

The legacy VTK file formats consist of five basic parts.

1. The first part is the file version and identifier. This part contains the single line: vtk DataFile Version x.x.
This line must be exactly as shown with the exception of the version number x.x, which will vary with different
releases of VTK. (Note: the current version number is 3.0. Version 1.0 and 2.0 files are compatible with version
3.0 files.)

2. The second part is the header. The header consists of a character string terminated by end-of-line character \n.
The header is 256 characters maximum. The header can be used to describe the data and include any other
pertinent information.

3. The next part is the file format. The file format describes the type of file, either ASCII or binary. On this line the
single word ASCII or BINARY must appear.

263

https://www.kitware.com/products/books/VTKUsersGuide.pdf

VTK

4. The fourth part is the dataset structure. The geometry part describes the geometry and topology of the dataset.
This part begins with a line containing the keyword DATASET followed by a keyword describing the type of
dataset.Then, depending upon the type of dataset, other keyword/data combinations define the actual data.

5. The final part describes the dataset attributes. This part begins with the keywords POINT_DATA or CELL_DATA,
followed by an integer number specifying the number of points or cells, respectively. (It doesn’t matter whether
POINT_DATA or CELL_DATA comes first.) Other keyword/data combinations then define the actual dataset
attribute values (i.e., scalars, vectors, tensors, normals, texture coordinates, or field data).

An overview of the file format is shown in Figure 1:

Figure 1: Overview of five parts of VTK data file format.

The first three parts are mandatory, but the other two are optional. Thus you have the flexibility of mixing and match-
ing dataset attributes and geometry, either by operating system file manipulation or using VTK filters to merge data.
Keywords are case insensitive, and may be separated by whitespace. Before describing the data file formats please note
the following.

• dataType is one of the types bit, unsigned_char, char, unsigned_short, short, unsigned_int, int, unsigned_long,
long, float, or double. These keywords are used to describe the form of the data, both for reading from file, as
well as constructing the appropriate internal objects. Not all data types are supported for all classes.

• All keyword phrases are written in ASCII form whether the file is binary or ASCII. The binary section of the file
(if in binary form) is the data proper; i.e., the numbers that define points coordinates, scalars, cell indices, and
so forth.

• Indices are 0-offset. Thus the first point is point id 0.

• If both the data attribute and geometry/topology part are present in the file, then the number of data values defined
in the data attribute part must exactly match the number of points or cells defined in the geometry/topology part.

• Cell types and indices are of type int.

• Binary data must be placed into the file immediately after the “newline” (\n) character from the previous ASCII
keyword and parameter sequence.

• The geometry/topology description must occur prior to the data attribute description.

Binary Files

Binary files in VTK are portable across different computer systems as long as you observe two conditions. First, make
sure that the byte ordering of the data is correct, and second, make sure that the length of each data type is consistent.

Most of the time VTK manages the byte ordering of binary files for you. When you write a binary file on one computer
and read it in from another computer, the bytes representing the data will be automatically swapped as necessary. For
example, binary files written on a Sun are stored in big endian order, while those on a PC are stored in little endian order.
As a result, files written on a Sun workstation require byte swapping when read on a PC. (See the class vtkByteSwap
for implementation details.) The VTK data files described here are written in big endian form.

Some file formats, however, do not explicitly define a byte ordering form. You will find that data read or written by
external programs, or the classes vtkVolume16Reader, vtkMCubesReader, and vtkMCubesWriter may have a different
byte order depending on the system of origin. In such cases, VTK allows you to specify the byte order by using the
methods

SetDataByteOrderToBigEndian()
SetDataByteOrderToLittleEndian()

Another problem with binary files is that systems may use a different number of bytes to represent an integer or other
native type. For example, some 64-bit systems will represent an integer with 8-bytes, while others represent an in-

264 Chapter 10. Design Documents

VTK

teger with 4-bytes. Currently, the Visualization Toolkit cannot handle transporting binary files across systems with
incompatible data length. In this case, use ASCII file formats instead.

Dataset Format

The Visualization Toolkit supports five different dataset formats: structured points, structured grid, rectilinear grid,
unstructured grid, and polygonal data. Data with implicit topology (structured data such as vtkImageData and vtk-
StructuredGrid) are ordered with x increasing fastest, then y, then z. These formats are as follows.

• Structured Points. The file format supports 1D, 2D, and 3D structured point datasets. The dimensions nx, ny,
nz must be greater than or equal to 1. The data spacing sx, sy, sz must be greater than 0. (Note: in the version 1.0
data file, spacing was referred to as “aspect ratio”. ASPECT_RATIO can still be used in version 2.0 data files,
but is discouraged.) DATASET STRUCTURED_POINTS DIMENSIONS nx ny nz ORIGIN x y z SPACING sx
sy yz

• Structured Grid. The file format supports 1D, 2D, and 3D structured grid datasets. The dimensions nx, ny,
nz must be greater than or equal to 1. The point coordinates are defined by the data in the POINTS section.
This consists of x-y-z data values for each point. DATASET STRUCTURED_GRID DIMENSIONS nx ny nz
POINTS n dataType p0x p0y p0z p1x p1y p1z . . . p(n-1)x p(n-1)y p(n-1)z

• Rectilinear Grid. A rectilinear grid defines a dataset with regular topology, and semi-regular geometry aligned
along the x-y-z coordinate axes. The geometry is defined by three lists of monotonically increasing coordi-
nate values, one list for each of the x-y-z coordinate axes. The topology is defined by specifying the grid
dimensions, which must be greater than or equal to 1. DATASET RECTILINEAR_GRID DIMENSIONS nx
ny nz X_COORDINATES nx dataType x0 x1 . . . x(nx-1) Y_COORDINATES ny dataType y0 y1 . . . y(ny-1)
Z_COORDINATES nz dataType z0 z1 . . . z(nz-1)

• Polygonal Data. The polygonal dataset consists of arbitrary combinations of surface graphics primitives vertices
(and polyvertices), lines (and polylines), polygons (of various types), and triangle strips. Polygonal data is defined
by the POINTS, VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS sections. The POINTS definition is
the same as we saw for structured grid datasets. The VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS
keywords define the polygonal dataset topology. Each of these keywords requires two parameters: the number of
cells n and the size of the cell list size. The cell list size is the total number of integer values required to represent
the list (i.e., sum of numPoints and connectivity indices over each cell). None of the keywords VERTICES,
LINES, POLYGONS, or TRIANGLE_STRIPS is required. DATASET POLYDATA POINTS n dataType p0x p0y
p0z p1x p1y p1z . . . p(n-1)x p(n-1)y p(n-1)z VERTICES n size numPoints0, i0, j0, k0, . . . numPoints1, i1, j1,
k1, numPointsn-1, in-1, jn-1, kn-1, . . . LINES n size numPoints0, i0, j0, k0, . . . numPoints1, i1, j1, k1,
. numPointsn-1, in-1, jn-1, kn-1, . . . POLYGONS n size numPoints0, i0, j0, k0, . . . numPoints1, i1, j1, k1,
. numPointsn-1, in-1, jn-1, kn-1, . . . TRIANGLE_STRIPS n size numPoints0, i0, j0, k0, . . . numPoints1,
i1, j1, k1, numPointsn-1, in-1, jn-1, kn-1, . . .

• Unstructured Grid. The unstructured grid dataset consists of arbitrary combinations of any possible cell type.
Unstructured grids are defined by points, cells, and cell types. The CELLS keyword requires two parameters: the
number of cells n and the size of the cell list size. The cell list size is the total number of integer values required to
represent the list (i.e., sum of numPoints and connectivity indices over each cell). The CELL_TYPES keyword
requires a single parameter: the number of cells n. This value should match the value specified by the CELLS
keyword. The cell types data is a single integer value per cell that specified cell type (see vtkCell.h or Figure
2). DATASET UNSTRUCTURED_GRID POINTS n dataType p0x p0y p0z p1x p1y p1z . . . p(n-1)x p(n-1)y
p(n-1)z CELLS n size numPoints0, i0, j0, k0, . . . numPoints1, i1, j1, k1, . . . numPoints2, i2, j2, k2,
numPointsn-1, in-1, jn-1, kn-1, . . . CELL_TYPES n type0 type1 type2 . . . typen-1

• Field. Field data is a general format without topological and geometric structure, and without a particular di-
mensionality. Typically field data is associated with the points or cells of a dataset. However, if the FIELD type
is specified as the dataset type (see Figure1), then a general VTK data object is defined. Use the format described
in the next section to define a field. Also see “Working With Field Data” on page 249 and the fourth example in
this chapter Legacy File Examples.

10.1. VTK File Formats 265

https://www.kitware.com/products/books/VTKUsersGuide.pdf#page=263

VTK

Dataset Attribute Format

The Visualization Toolkit supports the following dataset attributes: scalars (one to four components), vectors, normals,
texture coordinates (1D, 2D, and 3D), tensors, and field data. In addition, a lookup table using the RGBA color spec-
ification, associated with the scalar data, can be defined as well. Dataset attributes are supported for both points and
cells.

Each type of attribute data has a dataName associated with it. This is a character string (without embedded whitespace)
used to identify a particular data. The dataName is used by the VTK readers to extract data. As a result, more than one
attribute data of the same type can be included in a file. For example, two different scalar fields defined on the dataset
points, pressure and temperature, can be contained in the same file. (If the appropriate dataName is not specified in the
VTK reader, then the first data of that type is extracted from the file.)

• Scalars. Scalar definition includes specification of a lookup table. The definition of a lookup table is optional.
If not specified, the default VTK table will be used (and tableName should be “default”). Also note that the
numComp variable is optional—by default the number of components is equal to one. (The parameter num-
Comp must range between 1 and 4 inclusive; in versions of VTK prior to 2.3 this parameter was not supported.)
SCALARS dataName dataType numComp LOOKUP_TABLE tableName s0 s1 . . . sn-1 The definition of color
scalars (i.e., unsigned char values directly mapped to color) varies depending upon the number of values (nVal-
ues) per scalar. If the file format is ASCII, the color scalars are defined using nValues float values between
(0,1). If the file format is BINARY, the stream of data consists of nValues unsigned char values per scalar value.
COLOR_SCALARS dataName nValues c00 c01 . . . c0(nValues-1) c10 c11 . . . c1(nValues-1) . . . c(n-1)0 c(n-
1)1 . . . c(n-1)(nValues-1)

• Lookup Table. The tableName field is a character string (without embedded white space) used to identify the
lookup table. This label is used by the VTK reader to extract a specific table. Each entry in the lookup table is a
rgba[4] (red-green-blue-alpha) array (alpha is opacity where alpha=0 is transparent). If the file format is ASCII,
the lookup table values must be float values between (0,1). If the file format is BINARY, the stream of data must
be four unsigned char values per table entry. LOOKUP_TABLE tableName size r0 g0 b0 a0 r1 g1 b1 a1 . . .
rsize-1 gsize-1 bsize-1 asize-1

• Vectors. VECTORS dataName dataType v0x v0y v0z v1x v1y v1z . . . v(n-1)x v(n-1)y v(n-1)z

• Normals. Normals are assumed normalized |n| = 1. NORMALS dataName dataType n0x n0y n0z n1x n1y n1z
. . . n(n-1)x n(n-1)y n(n-1)z

• Texture Coordinates. Texture coordinates of 1, 2, and 3 dimensions are supported. TEX-
TURE_COORDINATES dataName dim dataType t00 t01 . . . t0(dim-1) t10 t11 . . . t1(dim-1) . . . t(n-1)0 t(n-1)1
. . . t(n-1)(dim-1)

• Tensors. Currently only real-valued, symmetric tensors are supported. TENSORS dataName dataType t000
t001 t002 t010 t011 t012 t020 t021 t022

t100 t101 t102 t110 t111 t112 t120 t121 t122 . . .

tn - 100 tn - 101 tn - 102 tn - 110 tn - 111 tn - 112 tn - 120 tn - 121 tn - 122

• Field Data. Field data is essentially an array of data arrays. Defining field data means giving a name to
the field and specifying the number of arrays it contains. Then, for each array, the name of the array array-
Name(i), the number of components of the array, numComponents, the number of tuples in the array, num-
Tuples, and the data type, dataType, are defined. FIELD dataName numArrays arrayName0 numComponents
numTuples dataType f00 f01 . . . f0(numComponents-1) f10 f11 . . . f1(numComponents-1) . . . f(numTuples-1)0
f(numTuples-1)1 . . . f(numTuples-1)(numComponents-1) arrayName1 numComponents numTuples dataType
f00 f01 . . . f0(numComponents-1) f10 f11 . . . f1(numComponents-1) . . . f(numTuples-1)0 f(numTuples-1)1
. . . f(numTuples-1)(numComponents-1) . . . arrayName(numArrays-1) numComponents numTuples dataType
f00 f01 . . . f0(numComponents-1) f10 f11 . . . f1(numComponents-1) . . . f(numTuples-1)0 f(numTuples-1)1 . . .
f(numTuples-1)(numComponents-1)

266 Chapter 10. Design Documents

VTK

Legacy File Examples

The first example is a cube represented by six polygonal faces. We define a single-component scalar, normals, and field
data on the six faces. There are scalar data associated with the eight vertices. A lookup table of eight colors, associated
with the point scalars, is also defined.

vtk DataFile Version 2.0
Cube example
ASCII
DATASET POLYDATA
POINTS 8 float
0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
0.0 1.0 1.0
POLYGONS 6 30
4 0 1 2 3
4 4 5 6 7
4 0 1 5 4
4 2 3 7 6
4 0 4 7 3
4 1 2 6 5
CELL_DATA 6
SCALARS cell_scalars int 1
LOOKUP_TABLE default
0
1
2
3
4
5
NORMALS cell_normals float
0 0 -1
0 0 1
0 -1 0
0 1 0
-1 0 0
1 0 0
FIELD FieldData 2
cellIds 1 6 int
0 1 2 3 4 5
faceAttributes 2 6 float
0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0
POINT_DATA 8
SCALARS sample_scalars float 1
LOOKUP_TABLE my_table
0.0
1.0
2.0

(continues on next page)

10.1. VTK File Formats 267

VTK

(continued from previous page)

3.0
4.0
5.0
6.0
7.0
LOOKUP_TABLE my_table 8
0.0 0.0 0.0 1.0
1.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0
1.0 1.0 0.0 1.0
0.0 0.0 1.0 1.0
1.0 0.0 1.0 1.0
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

The next example is a volume of dimension 3 by 4 by 6. Since no lookup table is defined, either the user must create
one in VTK, or the default lookup table will be used.

vtk DataFile Version 2.0
Volume example
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 3 4 6
ASPECT_RATIO 1 1 1
ORIGIN 0 0 0
POINT_DATA 72
SCALARS volume_scalars char 1
LOOKUP_TABLE default
0 0 0 0 0 0 0 0 0 0 0 0
0 5 10 15 20 25 25 20 15 10 5 0
0 10 20 30 40 50 50 40 30 20 10 0
0 10 20 30 40 50 50 40 30 20 10 0
0 5 10 15 20 25 25 20 15 10 5 0
0 0 0 0 0 0 0 0 0 0 0 0

The third example is an unstructured grid containing twelve of the nineteen VTK cell types (see Figure 2 and Figure
3). Figure 2 shows all 16 of the linear cell types and was generated with the LinearCellDemo.

Figure 3 shows 16 of the non-linear cells and was generated with the IsoparametricCellsDemo.

The file contains scalar and vector data. Figure 4 shows a presentation of this file generated by ReadLegacyUnstruc-
turedGrid.

vtk DataFile Version 2.0
Unstructured Grid Example
ASCII
DATASET UNSTRUCTURED_GRID

POINTS 27 float
0 0 0 1 0 0 2 0 0 0 1 0 1 1 0 2 1 0
0 0 1 1 0 1 2 0 1 0 1 1 1 1 1 2 1 1
0 1 2 1 1 2 2 1 2 0 1 3 1 1 3 2 1 3
0 1 4 1 1 4 2 1 4 0 1 5 1 1 5 2 1 5

(continues on next page)

268 Chapter 10. Design Documents

https://kitware.github.io/vtk-examples/site/Cxx/GeometricObjects/LinearCellDemo
https://kitware.github.io/vtk-examples/site/Cxx/GeometricObjects/IsoparametricCellsDemo
https://kitware.github.io/vtk-examples/site/Cxx/IO/ReadLegacyUnstructuredGrid/
https://kitware.github.io/vtk-examples/site/Cxx/IO/ReadLegacyUnstructuredGrid/

VTK

(continued from previous page)

0 1 6 1 1 6 2 1 6

CELLS 11 60
8 0 1 4 3 6 7 10 9
8 1 2 4 5 7 8 10 11
4 6 10 9 12
4 11 14 10 13
6 15 16 17 14 13 12
6 18 15 19 16 20 17
4 22 23 20 19
3 21 22 18
3 22 19 18
2 26 25
1 24

CELL_TYPES 11
12
11
10
8
7
6
9
5
4
3
1

POINT_DATA 27
SCALARS scalars float 1
LOOKUP_TABLE default
0.0 1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0 11.0
12.0 13.0 14.0 15.0 16.0 17.0
18.0 19.0 20.0 21.0 22.0 23.0
24.0 25.0 26.0

VECTORS vectors float
1 0 0 1 1 0 0 2 0 1 0 0 1 1 0 0 2 0
1 0 0 1 1 0 0 2 0 1 0 0 1 1 0 0 2 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1

CELL_DATA 11
SCALARS scalars float 1
LOOKUP_TABLE CellColors
0.0 1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0

LOOKUP_TABLE CellColors 11
.4 .4 1 1

(continues on next page)

10.1. VTK File Formats 269

VTK

(continued from previous page)

.4 1 .4 1

.4 1 1 1
1 .4 .4 1
1 .4 1 1
1 1 .4 1
1 1 1 1
1 .5 .5 1
.5 1 .5 1
.5 .5 .5 1
1 .5 .4 1

The fourth and final example is data represented as a field. You may also wish to see “Working With Field Data” on
page 249 to see how to manipulate this data. The data file shown below can be found in its entirety here. The example
FinanceFieldData generated Figure 5.

vtk DataFile Version 2.0
Financial data in vtk field format
ASCII
FIELD financialData 6
TIME_LATE 1 3188 float
29.14 0.00 0.00 11.71 0.00 0.00 0.00 0.00
...(more stuff — 3188 total values)...
MONTHLY_PAYMENT 1 3188 float
7.26 5.27 8.01 16.84 8.21 15.75 10.62 15.47
...(more stuff)...
UNPAID_PRINCIPLE 1 3188 float
430.70 380.88 516.22 1351.23 629.66 1181.97 888.91 1437.83
...(more stuff)...
LOAN_AMOUNT 1 3188 float
441.50 391.00 530.00 1400.00 650.00 1224.00 920.00 1496.00
...(more stuff)...
INTEREST_RATE 1 3188 float
13.875 13.875 13.750 11.250 11.875 12.875 10.625 10.500
...(more stuff)...
MONTHLY_INCOME 1 3188 unsigned_short
39 51 51 38 35 49 45 56
...(more stuff)...

In this example, a field is represented using six arrays. Each array has a single component and 3,188 tuples. Five of
the six arrays are of type float, while the last array is of type unsigned_short. Additional examples are available in the
data directory.

270 Chapter 10. Design Documents

https://www.kitware.com/products/books/VTKUsersGuide.pdf#page=263
https://raw.githubusercontent.com/Kitware/vtk-examples/gh-pages/src/Testing/Data/financial.vtk
https://kitware.github.io/vtk-examples/site/Cxx/Modelling/FinanceFieldData

VTK

10.1.2 XML File Formats

VTK provides another set of data formats using XML syntax. While these formats are much more complicated than the
original VTK format described previously (see Simple Legacy Formats), they support many more features. The major
motivation for their development was to facilitate data streaming and parallel I/O. Some features of the format include
support for compression, portable binary encoding, random access, big endian and little endian byte order, multiple
file representation of piece data, and new file extensions for different VTK dataset types. XML provides many features
as well, especially the ability to extend a file format with application specific tags.

There are two types of VTK XML data files: parallel and serial as described in the following.

• Serial. File types designed for reading and writing by applications of only a single process. All of the data are
contained within a single file.

• Parallel. File types designed for reading and writing by applications with multiple processes executing in par-
allel. The dataset is broken into pieces. Each process is assigned a piece or set of pieces to read or write. An
individual piece is stored in a corresponding serial file type. The parallel file type does not actually contain any
data, but instead describes structural information and then references other serial files containing the data for
each piece.

In the XML format, VTK datasets are classified into one of two categories.

• Structured. The dataset is a topologically regular array of cells such as pixels and voxels (e.g., image data)
or quadrilaterals and hexahedra (e.g., structured grid). Rectangular subsets of the data are described through
extents. The structured dataset types are vtkImageData, vtkRectilinearGrid, and vtkStructuredGrid.

• Unstructured. The dataset forms a topologically irregular set of points and cells. Subsets of the data are de-
scribedusing pieces. The unstructured dataset types are vtkPolyData and vtkUnstructuredGrid.

By convention, each data type and file type is paired with a particular file extension. The types and corresponding
extensions are

• ImageData (.vti) — Serial vtkImageData (structured).

• PolyData (.vtp) — Serial vtkPolyData (unstructured).

• RectilinearGrid (.vtr) — Serial vtkRectilinearGrid (structured).

• StructuredGrid (.vts) — Serial vtkStructuredGrid (structured).

• UnstructuredGrid (.vtu) — Serial vtkUnstructuredGrid (unstructured).

• PImageData (.pvti) — Parallel vtkImageData (structured).

• PPolyData (.pvtp) — Parallel vtkPolyData (unstructured).

• PRectilinearGrid (.pvtr) — Parallel vtkRectilinearGrid (structured).

• PStructuredGrid (.pvts) — Parallel vtkStructuredGrid (structured).

• PUnstructuredGrid (.pvtu) — Parallel vtkUnstructuredGrid (unstructured).

All of the VTK XML file types are valid XML documents.

Note:

There is one case in which the file is not a valid XML document. When the AppendedData section is not encoded as
base64, raw binary data is present that may violate the XML specification. This is not default behavior, and must be
explicitly enabled by the user.

The document-level element is VTKFile:

10.1. VTK File Formats 271

VTK

<VTKFile type="ImageData" version="0.1" byte_order="LittleEndian">
...
</VTKFile>

The attributes of the element are:

type — The type of the file (the bulleted items in the previous list)..

version — File version number in “major.minor” format.

byte_order — Machine byte order in which data are stored. This is either “BigEndian” or “LittleEndian”.

compressor — Some data in the file may be compressed. This specifies the subclass of vtkDataCompressor that
was used to compress the data.

Nested inside the VTKFile element is an element whose name corresponds to the type of the data format (i.e., the type
attribute). This element describes the topology the dataset, and is different for the serial and parallel formats, which
are described as follows.

Serial XML File Formats

The VTKFile element contains one element whose name corresponds to the type of dataset the file describes. We refer
to this as the dataset element, which is one of ImageData, RectilinearGrid, StructuredGrid, PolyData, or Unstructured-
Grid. The dataset element contains one or more Piece elements, each describing a portion of the dataset. Together, the
dataset element and Piece elements specify the entire dataset.

Each piece of a dataset must specify the geometry (points and cells) of that piece along with the data associated with
each point or cell. Geometry is specified differently for each dataset type, but every piece of every dataset contains
PointData and CellData elements specifying the data for each point and cell in the piece.

The general structure for each serial dataset format is as follows:

ImageData

Each ImageData piece specifies its extent within the dataset’s whole extent. The points and cells are described implicitly
by the extent, origin, and spacing. Note that the origin and spacing are constant across all pieces, so they are specified
as attributes of the ImageData XML element as follows.

<VTKFile type="ImageData" ...>
<ImageData WholeExtent="x1 x2 y1 y2 z1 z2"
Origin="x0 y0 z0" Spacing="dx dy dz">
<Piece Extent="x1 x2 y1 y2 z1 z2">
<PointData>...</PointData>
<CellData>...</CellData>

</Piece>
</ImageData>

</VTKFile>

272 Chapter 10. Design Documents

VTK

RectilinearGrid

Each RectilinearGrid piece specifies its extent within the dataset’s whole extent. The points are described by the
Coordinates element. The cells are described implicitly by the extent.

<VTKFile type="RectilinearGrid" ...>
<RectilinearGrid WholeExtent="x1 x2 y1 y2 z1 z2">
<Piece Extent="x1 x2 y1 y2 z1 z2">
<PointData>...</PointData>
<CellData>...</CellData>
<Coordinates>...</Coordinates>
</Piece>

</RectilinearGrid>
</VTKFile>

StructuredGrid

Each StructuredGrid piece specifies its extent within the dataset’s whole extent. The points are described explicitly by
the Points element. The cells are described implicitly by the extent.

<VTKFile type="StructuredGrid" ...>
<StructuredGrid WholeExtent="x1 x2 y1 y2 z1 z2">
<Piece Extent="x1 x2 y1 y2 z1 z2">
<PointData>...</PointData>
<CellData>...</CellData>
<Points>...</Points>
</Piece>

</StructuredGrid>
</VTKFile>

PolyData

Each PolyData piece specifies a set of points and cells independently from the other pieces. The points are described
explicitly by the Points element. The cells are described explicitly by the Verts, Lines, Strips, and Polys elements.

<VTKFile type="PolyData" ...>
<PolyData>
<Piece NumberOfPoints="#" NumberOfVerts="#" NumberOfLines="#"
NumberOfStrips="#" NumberOfPolys="#">

<PointData>...</PointData>
<CellData>...</CellData>
<Points>...</Points>
<Verts>...</Verts>
<Lines>...</Lines>
<Strips>...</Strips>
<Polys>...</Polys>
</Piece>
</PolyData>

</VTKFile>

10.1. VTK File Formats 273

VTK

UnstructuredGrid

Each UnstructuredGrid piece specifies a set of points and cells independently from the other pieces. The points are
described explicitly by the Points element. The cells are described explicitly by the Cells element.

<VTKFile type="UnstructuredGrid" ...>
<UnstructuredGrid>
<Piece NumberOfPoints="#" NumberOfCells="#">
<PointData>...</PointData>
<CellData>...</CellData>
<Points>...</Points>
<Cells>...</Cells>
</Piece>

</UnstructuredGrid>
</VTKFile>

Every dataset describes the data associated with its points and cells with PointData and CellData XML elements as
follows:

<PointData Scalars="Temperature" Vectors="Velocity">
<DataArray Name="Velocity" .../>
<DataArray Name="Temperature" .../>
<DataArray Name="Pressure" .../>

</PointData>

VTK allows an arbitrary number of data arrays to be associated with the points and cells of a dataset. Each data array
is described by a DataArray element which, among other things, gives each array a name. The following attributes of
PointData and CellData are used to specify the active arrays by name:

Scalars — The name of the active scalars array, if any.

Vectors — The name of the active vectors array, if any.

Normals — The name of the active normals array, if any.

Tensors — The name of the active tensors array, if any.

TCoords — The name of the active texture coordinates array, if any.

Some datasets describe their points and cells using different combinations of the following common elements:

• Points — The Points element explicitly defines coordinates for each point individually. It contains one DataArray
element describing an array with three components per value, each specifying the coordinates of one point.

<Points>
<DataArray NumberOfComponents="3" .../>

</Points>

• Coordinates — The Coordinates element defines point coordinates for an extent by specifying the ordinate
along each axis for each integer value in the extent’s range. It contains three DataArray elements describing the
ordinates along the x-y-z axes, respectively.

<Coordinates>
<DataArray .../>
<DataArray .../>
<DataArray .../>

</Coordinates>

274 Chapter 10. Design Documents

VTK

• Verts, Lines, Strips, and Polys — The Verts, Lines, Strips, and Polys elements define cells explicitly by specify-
ing point connectivity. Cell types are implicitly known by the type of element in which they are specified. Each
element contains two DataArray elements. The first array specifies the point connectivity. All the cells’ point
lists are concatenated together. The second array specifies the offset into the connectivity array for the end of
each cell.

<Verts>
<DataArray type="Int32" Name="connectivity" .../>
<DataArray type="Int32" Name="offsets" .../>

</Verts>

• Cells — The Cells element defines cells explicitly by specifying point connectivity and cell types. It contains
three DataArray elements. The first array specifies the point connectivity. All the cells’ point lists are concate-
nated together. The second array specifies the offset into the connectivity array for the end of each cell. The third
array specifies the type of each cell. (Note: the cell types are defined in Figure 2 and Figure 3.)

<Cells>
<DataArray type="Int32" Name="connectivity" .../>
<DataArray type="Int32" Name="offsets" .../>
<DataArray type="UInt8" Name="types" .../>

</Cells>

All of the data and geometry specifications use DataArray elements to describe their actual content as follows:

• DataArray — The DataArray element stores a sequence of values of one type. There may be one or more
components per value.

<DataArray type="Float32" Name="vectors" NumberOfComponents="3"
format="appended" offset="0"/>

<DataArray type="Float32" Name="scalars" format="binary">
bAAAAAAAAAAAAIA/AAAAQAAAQEAAAIBA... </DataArray>

<DataArray type="Int32" Name="offsets" format="ascii">
10 20 30 ... </DataArray>

The attributes of the DataArray elements are described as follows: type — The data type of a single component
of the array. This is one of Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Float32, Float64. Note: the 64-bit
integer types are only supported if VTK_USE_64BIT_IDS is on (a CMake variable—see “CMake” on page 10) or the
platform is 64-bit.

Name — The name of the array. This is usually a brief description of the data stored in the array.

NumberOfComponents — The number of components per value in the array.

format — The means by which the data values themselves are stored in the file. This is “ascii”, “binary”, or
“appended”.

offset — If the format attribute is “appended”, this specifies the offset from the beginning of the appended data
section to the beginning of this array’s data.

The format attribute chooses among the three ways in which data values can be stored:

format=”ascii” — The data are listed in ASCII directly inside the DataArray element. Whitespace is used for
separation.

format=”binary” — The data are encoded in base64 and listed contiguously inside the DataArray element. Data
may also be compressed before encoding in base64. The byte-order of the data matches that specified by the byte_order
attribute of the VTKFile element.

10.1. VTK File Formats 275

https://www.kitware.com/products/books/VTKUsersGuide.pdf#page=24

VTK

format=”appended” — The data are stored in the appended data section. Since many DataArray elements may
store their data in this section, the offset attribute is used to specify where each DataArray’s data begins. This format
is the default used by VTK’s writers.

The appended data section is stored in an AppendedData element that is nested inside VTKFile after the dataset element:

<VTKFile ...>
...
<AppendedData encoding="base64">

_QMwEAAAAAAAAA...
</AppendedData>

</VTKFile>

The appended data section begins with the first character after the underscore inside the AppendedData element. The
underscore is not part of the data, but is always present. Data in this section is always in binary form, but can be
compressed and/or base64 encoded. The byte-order of the data matches that specified by the byte_order attribute of
the VTKFile element. Each DataArray’s data are stored contiguously and appended immediately after the previous
DataArray’s data without a separator. The DataArray’s offset attribute indicates the file position offset from the first
character after the underscore to the beginning its data.

Parallel File Formats

The parallel file formats do not actually store any data in the file. Instead, the data are broken into pieces, each of which
is stored in a serial file of the same dataset type.

The VTKFile element contains one element whose name corresponds to the type of dataset the file describes, but
with a “P” prefix. We refer to this as the parallel dataset element, which is one of PImageData, PRectilinearGrid,
PStructuredGrid, PPolyData, or PUnstructuredGrid.

The parallel dataset element and those nested inside specify the types of the data arrays used to store points, pointn data,
and cell data (the type of arrays used to store cells is fixed by VTK). The element does not actually contain any data,
but instead includes a list of Piece elements that specify the source from which to read each piece. Individual pieces
are stored in the corresponding serial file format. The parallel file needs to specify the type and structural information
so that readers can update pipeline information without actually reading the pieces’ files.

The general structure for each parallel dataset format is as follows:

PImageData

The PImageData element specifies the whole extent of the dataset and the number of ghost-levels by which the extents
in the individual pieces overlap. The Origin and Spacing attributes implicitly specify the point locations. Each Piece
element describes the extent of one piece and the file in which it is stored.

<VTKFile type="PImageData" ...>
<PImageData WholeExtent="x1 x2 y1 y2 z1 z2"

GhostLevel="#" Origin="x0 y0 z0" Spacing="dx dy dz">
<PPointData>...</PPointData>
<PCellData>...</PCellData>
<Piece Extent="x1 x2 y1 y2 z1 z2" Source="imageData0.vti"/>
...

</PImageData>
</VTKFile>

276 Chapter 10. Design Documents

VTK

PRectilinearGrid

The PRectilinearGrid element specifies the whole extent of the dataset and the number of ghost-levels by which the
extents in the individual pieces overlap. The PCoordinates element describes the type of arrays used to specify the
point ordinates along each axis, but does not actually contain the data. Each Piece element describes the extent of one
piece and the file in which it is stored.

<VTKFile type="PRectilinearGrid" ...>
<PRectilinearGrid WholeExtent="x1 x2 y1 y2 z1 z2"

GhostLevel="#">
<PPointData>...</PPointData>
<PCellData>...</PCellData>
<PCoordinates>...</PCoordinates>
<Piece Extent="x1 x2 y1 y2 z1 z2"

Source="rectilinearGrid0.vtr"/>
...

</PRectilinearGrid>
</VTKFile>

PStructuredGrid

The PStructuredGrid element specifies the whole extent of the dataset and the number of ghost-levels by which the
extents in the individual pieces overlap. The PPoints element describes the type of array used to specify the point
locations, but does not actually contain the data. Each Piece element describes the extent of one piece and the file in
which it is stored.

<VTKFile type="PStructuredGrid" ...>
<PStructuredGrid WholeExtent="x1 x2 y1 y2 z1 z2"

GhostLevel="#">
<PPointData>...</PPointData>
<PCellData>...</PCellData>
<PPoints>...</PPoints>
<Piece Extent="x1 x2 y1 y2 z1 z2"

Source="structuredGrid0.vts"/>
...

</PStructuredGrid>
</VTKFile>

PPolyData

The PPolyData element specifies the number of ghost-levels by which the individual pieces overlap. The PPoints
element describes the type of array used to specify the point locations, but does not actually contain the data. Each
Piece element specifies the file in which the piece is stored.

<VTKFile type="PPolyData" ...>
<PPolyData GhostLevel="#">
<PPointData>...</PPointData>
<PCellData>...</PCellData>
<PPoints>...</PPoints>
<Piece Source="polyData0.vtp"/>

(continues on next page)

10.1. VTK File Formats 277

VTK

(continued from previous page)

...
</PPolyData>

</VTKFile>

PUnstructuredGrid

The PUnstructuredGrid element specifies the number of ghost-levels by which the individual pieces overlap. The
PPoints element describes the type of array used to specify the point locations, but does not actually contain the data.
Each Piece element specifies the file in which the piece is stored.

<VTKFile type="PUnstructuredGrid" ...>
<PUnstructuredGrid GhostLevel="0">
<PPointData>...</PPointData>
<PCellData>...</PCellData>
<PPoints>...</PPoints>
<Piece Source="unstructuredGrid0.vtu"/>
...

</PUnstructuredGrid>
</VTKFile>

Every dataset uses PPointData and PCellData elements to describe the types of data arrays associated with its points
and cells.

• PPointData and PCellData — These elements simply mirror the PointData and CellData elements from the
serial file formats. They contain PDataArray elements describing the data arrays, but without any actual data.

<PPointData Scalars="Temperature" Vectors="Velocity">
<PDataArray Name="Velocity" .../>
<PDataArray Name="Temperature" .../>
<PDataArray Name="Pressure" .../>

</PPointData>

For datasets that need specification of points, the following elements mirror their counterparts from the serial file
format:

• PPoints — The PPoints element contains one PDataArray element describing an array with three components.
The data array does not actually contain any data.

<PPoints>
<PDataArray NumberOfComponents="3" .../>

</PPoints>

• PCoordinates — The PCoordinates element contains three PDataArray elements describing the arrays used to
specify ordinates along each axis. The data arrays do not actually contain any data.

<PCoordinates>
<PDataArray .../>
<PDataArray .../>
<PDataArray .../>

</PCoordinates>

All of the data and geometry specifications use PDataArray elements to describe the data array types:

278 Chapter 10. Design Documents

VTK

• PDataArray — The PDataArray element specifies the type, Name, and optionally the NumberOfComponents
attributes from the DataArray element. It does not contain the actual data. This can be used by readers to create
the data array in their output without needing to read any real data, which is necessary for efficient pipeline
updates in some cases.

<PDataArray type="Float32" Name="vectors" NumberOfComponents="3"/>

XML File Example

The following is a complete example specifying a vtkPolyData representing a cube with some scalar data on its points
and faces. 1

<?xml version="1.0"?>
<VTKFile type="PPolyData" version="0.1" byte_order="LittleEndian">
<PPolyData GhostLevel="0">
<PPointData Scalars="my_scalars">
<PDataArray type="Float32" Name="my_scalars"/>

</PPointData>
<PCellData Scalars="cell_scalars" Normals="cell_normals">
<PDataArray type="Int32" Name="cell_scalars"/>
<PDataArray type="Float32" Name="cell_normals" NumberOfComponents="3"/>

</PCellData>
<PPoints>
<PDataArray type="Float32" NumberOfComponents="3"/>

</PPoints>
<Piece Source="polyEx0.vtp"/>

</PPolyData>
</VTKFile>

<?xml version="1.0"?>
<VTKFile type="PolyData" version="0.1" byte_order="LittleEndian">
<PolyData>
<Piece NumberOfPoints="8" NumberOfVerts="0" NumberOfLines="0"

NumberOfStrips="0" NumberOfPolys="6">
<Points>
<DataArray type="Float32" NumberOfComponents="3" format="ascii">
0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1

</DataArray>
</Points>
<PointData Scalars="my_scalars">
<DataArray type="Float32" Name="my_scalars" format="ascii">
0 1 2 3 4 5 6 7

</DataArray>
</PointData>
<CellData Scalars="cell_scalars" Normals="cell_normals">
<DataArray type="Int32" Name="cell_scalars" format="ascii">
0 1 2 3 4 5
</DataArray>
<DataArray type="Float32" Name="cell_normals"

NumberOfComponents="3" format="ascii">
0 0 -1 0 0 1 0 -1 0 0 1 0 -1 0 0 1 0 0

(continues on next page)

10.1. VTK File Formats 279

https://kitware.com/products/books/VTKUsersGuide.pdf

VTK

(continued from previous page)

</DataArray>
</CellData>
<Polys>
<DataArray type="Int32" Name="connectivity" format="ascii">

0 1 2 3 4 5 6 7 0 1 5 4 2 3 7 6 0 4 7 3 1 2 6 5
</DataArray>
<DataArray type="Int32" Name="offsets" format="ascii">

4 8 12 16 20 24
</DataArray>

</Polys>
</Piece>

</PolyData>
</VTKFile>

10.1.3 VTKHDF File Format

The VTKHDF file format is a file format relying on HDF5. It is meant to provide good I/O performance as well as robust
and flexible parallel I/O capabilities.

It currently supports: PolyData, UnstructuredGrid, ImageData, OverlappingAMR, MultiBlockDataSet and the Parti-
tionedDataSetCollection.

The current file format version is the 2.2.

Note: This development is iterative and the format is expected to grow in its support for more and more use cases.

Changelog

VTKHDF - 2.2

• add support for temporal OverlappingAMR

• add official support for ignored data outside of VTKHDF

VTKHDF - 2.1

• add specification in the format for PartitionedDataSetCollection and MultiBlockDataSet

VTKHDF - 2.0

• extends the specification for PolyData.

• add support for Temporal dataset for PolyData, ImageData and UnstructuredGrid.

280 Chapter 10. Design Documents

https://www.hdfgroup.org/solutions/hdf5/

VTK

VTKHDF - 1.0

• add specification for these vtk data types:

– UnstructuredGrid

– ImageData

– Overlapping AMR

Extension

The VTKHDF format generally uses the .vtkhdf extension. The .hdf extension is also supported but is not preferred.
There are no specific extensions to differentiate between different types of dataset, serial vs. distributed data or static
vs. temporal data.

General Specification

VTK HDF files start with a group called VTKHDF with two attributes: Version, an array of two integers and
Type, a string showing the VTK dataset type stored in the file. Additional attributes can follow depending on the
dataset type. Currently, Version is the array [2, 2] and Type can be ImageData, PolyData, UnstructuredGrid,
OverlappingAMR, PartitionedDataSetCollection or MultiBlockDataSet.

Top-level groups outside of /VTKHDF do not contain any information related to VTK data model and are outside of
the scope of this specification. They can be useful to store meta-information that could be read and written by custom
VTKHDF implementations.

The data type for each HDF dataset is part of the dataset and it is determined at write time. The reader matches the
type of the dataset with a H5T_NATIVE_ type and creates the VTK array of that type. Consequently, the type at writing
might be different than the type at reading even on the same machine because for instance long can be the same type
as long long or int can be the same as long on certain platforms. Also, vtkIdType is read as the C++ type it
represents (long or long long). Endianness conversions are done automatically.

In the diagrams that follow, showing the HDF file structure for VTK datasets, the rounded blue rectangles are HDF
groups and the gray rectangles are HDF datasets. Each rectangle shows the name of the group or dataset in bold font
and the attributes underneath with regular font.

Image data

The format for image data is detailed in the Figure 6 where the Type attribute of the VTKHDF group is ImageData. An
ImageData (regular grid) is not split into partitions for parallel processing. We rely on the writer to chunk the data to
optimize reading for a certain number of MPI ranks. Attribute data is stored in a PointData or CellData array using
hyper slabs. WholeExtent, Origin, Spacing and Direction attributes have the same meaning as the corresponding
attributes for the vtkImageData dataset. Scalars, Vectors, . . . string attributes for the PointData and CellData
groups specify the active attributes in the dataset.

10.1. VTK File Formats 281

VTK

Unstructured grid

The format for unstructured grid is shown in Figure 7. In this case the Type attribute of the VTKHDF group is
UnstructuredGrid. The unstructured grid is split into partitions, with a partition for each MPI rank. This is re-
flected in the HDF5 file structure. Each HDF dataset is obtained by concatenating the data for each partition. The
offset O(i) where we store the data for partition i is computed using:

O(i) = S(0) + . . . + S(i-1), i > 1 with O(0) = 0.

where S(i) is the size of partition i.

We describe the split into partitions using HDF5 datasets NumberOfConnectivityIds, NumberOfPoints and
NumberOfCells. Let n be the number of partitions which usually correspond to the number of the MPI ranks.
NumberOfConnectivityIds has size n where NumberOfConnectivityIds[i] represents the size of the Connectivity
array for partition i. NumberOfPoints and NumberOfCells are arrays of size n, where NumberOfPoints[i] and Num-
berOfCells[i] are the number of points and number of cells for partition i. The Points array contains the points of
the VTK dataset. Offsets is an array of size (S(i) + 1), where S(i) is the number of cells in partition i, indicating
the index in the Connectivity array where each cell’s points start. Connectivity stores the lists of point ids for
each cell, and Types contain the cell information stored as described in vtkCellArray documentation. Data for each
partition is appended in a HDF dataset for Points, Connectivity, Offsets, Types, PointData and CellData.
We can compute the size of partition i using the following formulas:

Size of partition i

Points NumberOfPoints[i] * 3 * sizeof(Points[0][0])
Connectivity NumberOfConnectivityIds[i] * sizeof(Connectivity[0])
Offsets (NumberOfCells[i] + 1) * sizeof(Offsets[0])
Types NumberOfCells[i] * sizeof(Types[i])
PointData NumberOfPoints[i] * sizeof(point_array_k[0])
CellData NumberOfCells[i] * sizeof(cell_array_k[0])

To read the data for its rank a node reads the information about all partitions, compute the correct offset and then read
data from that offset.

Poly data

The format for unstructured grid is shown in Figure 8. In this case the Type attribute of the VTKHDF group is PolyData.
The poly data is split into partitions, with a partition for each MPI rank. This is reflected in the HDF5 file structure.
Each HDF dataset is obtained by concatenating the data for each partition. The offset O(i) where we store the data for
partition i is computed using:

O(i) = S(0) + . . . + S(i-1), i > 1 with O(0) = 0.

where S(i) is the size of partition i. This is very similar to and completely inspired by the UnstructuredGrid format.

The split into partitions of the point coordinates is exactly the same as in the UnstructuredGrid format above.
However, the split into partitions of each of the category of cells (Vertices, Lines, Polygons and Strips) us-
ing HDF5 datasets NumberOfConnectivityIds and NumberOfCells. Let n be the number of partitions which
usually correspond to the number of the MPI ranks. {CellCategory}/NumberOfConnectivityIds has size n
where NumberOfConnectivityIds[i] represents the size of the {CellCategory}/Connectivity array for partition i.
NumberOfPoints and {CellCategory}/NumberOfCells are arrays of size n, where NumberOfPoints[i] and {Cell-
Category}/NumberOfCells[i] are the number of points and number of cells for partition i. The Points array contains
the points of the VTK dataset. {CellCategory}/Offsets is an array of size (S(i) + 1), where S(i) is the number of
cells in partition i, indicating the index in the {CellCategory}/Connectivity array where each cell’s points start.
{CellCategory}/Connectivity stores the lists of point ids for each cell. Data for each partition is appended in a

282 Chapter 10. Design Documents

VTK

HDF dataset for Points, Connectivity, Offsets, PointData and CellData. We can compute the size of partition
i using the following formulas:

Size of partition i

Points NumberOfPoints[i] * 3 * sizeof(Points[0][0])
{CellCate-
gory}/Connectivity

{CellCategory}/NumberOfConnectivityIds[i] * sizeof({CellCategory}/Connectivity[0])

{CellCategory}/Offsets ({CellCategory}/NumberOfCells[i] + 1) * sizeof({CellCategory}/Offsets[0])
PointData NumberOfPoints[i] * sizeof(point_array_k[0])
CellData (j {CellCategory_j}/NumberOfCells[i]) * sizeof(cell_array_k[0])

Fig. 1: Figure 8. - Poly Data VTKHDF File Format

To read the data for its rank a node reads the information about all partitions, compute the correct offset and then read
data from that offset.

Overlapping AMR

The format for Overlapping AMR is shown in Figure 9. In this case the Type attribute of the VTKHDF group is
OverlappingAMR. The mandatory Origin parameter is a double triplet that defines the global origin of the AMR
data set. Each level in an overlapping AMR file format (and data structure) consists of a list of uniform grids with the
same spacing from the Spacing attribute. The Spacing attribute is a list a three doubles describing the spacing in each
x/y/z direction. The AMRBox dataset contains the bounding box for each of these grids. Each line in this dataset is
expected to contain 6 integers describing the the indexed bounds in i, j, k space (imin/imax/jmin/jmax/kmin/kmax).
The points and cell arrays for these grids are stored serialized in one dimension and stored in a dataset in the PointData
or CellData group.

10.1. VTK File Formats 283

VTK

PartitionedDataSetCollection and MultiBlockDataSet

The general VTKHDF format for vtkPartitionedDataSetCollection (PDC) and vtkMultiBlockDataSet (MB) is shown
in Figure 10.

Both VTK data types share a common structure, with a few notable differences. The Type attribute of the VTKHDF
group for them should be PartitionedDataSetCollection or MultiBlockDataSet. The most important element
in this design is the Assembly group, direct child of the VTKHDF group. This group describes the composite data
hierarchy. The elements of the Assembly group do not contain the data directly. Instead, the data blocks are stored
as direct children of the VTKHDF group, without any hierarchy, and any node in the Assembly group can use an HDF5
symbolic link to the top-level datasets.

Here lies the main distinction between the PDC and MB formats. For PDC, a group in the assembly that is not a
softlink represents a node in the vtkAssembly associated to it, and a softlink represents a dataset index associated
to its parent node (similar to what the function AddDataSetIndex does in vtkDataAssembly). This way, a single
dataset can be used multiple times in the assembly without any additional storage cost. Top-level datasets need to set
an Index attribute to specify their index in the PDC flat structure. On the other hand, MB structures work a little
differently. First, they don’t need no index for their datasets, and secondly, an assembly node that is not a softlink
represents a nested vtkMultiBlockDataSet. A softlink in the assembly represents a dataset nested in its parent
vtkMultiBlockDataSet. Again, this MB format can save space when a block is referenced multiple times.

Some additional detail about the format:

• The data blocks should not be composite themselves : they can only be simple or partitioned types, but not using
an assembly.

• The Assembly group and its children need to track creation order to be able to keep subtrees ordered. For this,
you need to set H5G properties H5P_CRT_ORDER_TRACKED and H5P_CRT_ORDER_INDEXED on each group when
writing the Assembly.

• For PDC, the assembly structure only needs to be traversed once at the beginning of the reading procedure (and
can potentially be read and broadcasted only by the main process in a distributed context) to optimize file meta-
data reading.

• The block wise reading implementation and composite level implementation can be managed independently from
each other.

• It would be doable for each block to have its own time range and time steps in a temporal context with the full
composite data set able to collect and expose a combined range and set of time values, but for now we only allow
reading datasets that have all the same number of timesteps.

• Reading performance can scale linearly with the number of blocks even in a distributed context.

Temporal Data

The generic format for all VTKHDF temporal data is shown in Figure 11. The general idea is to take the static formats
described above and use them as a base to append all the time dependent data. As such, a file holding static data has
a very similar structure to a file holding dynamic data. An additional Steps subgroup is added to the VTKHDF main
group holding offset information for each of the time steps as well as the time values. The choice to include offset
information as HDF5 datasets was made to reduce the quantity of meta-data in the file to improve performance. This
Steps group has one integer like attribute NSteps indicating the number of steps in the temporal dataset.

The Steps group is structured as follows:

• Values [dim = (NSteps)]: each entry indicates the time value for the associated time step.

• PartOffsets [dims = (NSteps)]: each entry indicates at which part offset to start reading the associated time
step (relevant for Unstructured Grids and Poly Data).

284 Chapter 10. Design Documents

https://davis.lbl.gov/Manuals/HDF5-1.8.7/UG/09_Groups.html#HardAndSymbolicLinks
https://davis.lbl.gov/Manuals/HDF5-1.8.7/UG/09_Groups.html#HardAndSymbolicLinks

VTK

Fig. 2: Figure 10. - PartitionedDataSetCollection/MultiBlockDataset VTKHDF File Format

• NumberOfParts [dims = (NSteps)]: each entry indicates how many parts the associated time step has (rele-
vant for Unstructured Grids and Poly Data). This information is optional if there is a constant number of
parts per time steps and the length of VTKHDF/NumberOfPoints is equal to NumberOfPartsPerTimeStep x
NSteps.

• PointOffsets [dims = (NSteps)]: each entry indicates where in the VTKHDF/Points data set to start reading
point coordinates for the associated time step (relevant for Unstructured Grid and Poly Data).

• CellOffsets [dims = (NSteps, NTopologies)]: each entry indicates by how many cells to offset reading into the
connectivity offset structures for the associated time step (relevant for Unstructured Grid and Poly Data).

– Unstructured Grids only have one set of connectivity data and NTopologies = 1.

– Poly Data, however, have Vertices,Lines, Polygons and Strips in that order and therefore NTopolo-
gies = 4.

• ConnectivityIdOffsets [dims = (NSteps, NTopologies)]: each entry indicates by how many values to offset
reading into the connectivity indexing structures for the associated time step (relevant for Unstructured Grid
and Poly Data).

– Unstructured Grids only have one set of connectivity data and NTopologies = 1.

– Poly Data, however, have Vertices,Lines, Polygons and Strips in that order and therefore NTopolo-
gies = 4.

• {Point,Cell,Field}DataOffsets/{ArrayName} [dims = (NSteps)]: each entry indicates by how many val-
ues to offset reading into the given array for the associated time step. In the absence of a data set, the appropriate
geometry offsetting for the time step is used in its place.

• FieldDataSizes/{ArrayName} [dims = (NSteps, 2)]: each entry indicates the field data component and tuple
size. In the absence of a data set, the maximum number of components and one tuple per step are considered.

Writing incrementally to VTKHDF temporal datasets is relatively straightforward using the appending functionality of
HDF5 chunked data sets (Chunking in HDF5).

10.1. VTK File Formats 285

https://davis.lbl.gov/Manuals/HDF5-1.8.7/Advanced/Chunking/index.html

VTK

Fig. 3: Figure 11. - Temporal Data VTKHDF File Format

Particularity regarding ImageData

A particularity of temporal Image Data in the format is that the reader expects an additional prepended dimension
considering the time to be the first dimension in the multidimensional arrays. As such, arrays described in temporal
Image Data should have dimensions ordered as (time, z, y, x).

Particularity regarding OverlappingAMR

Currently only AMRBox and Point/Cell/Field data can be temporal, not the Spacing. Due to the structure of the
OverlappingAMR format, the format specify an intermediary group between the Steps group and the Point/Cell/
FieldDataOffset group named LevelX for each level where X is the number of level. These Level groups will also
contain 2 other datasets to retrieve the AMRBox:

• AMRBoxOffsets : each entry indicates by how many AMR box to offset reading into the AMRBox.

• NumberOfAMRBox : the number of boxes contained in the AMRBox for each timestep.

286 Chapter 10. Design Documents

VTK

Fig. 4: Figure 12. - Temporal OverlappingAMR VTKHDF File Format

Limitations

This specification and the reader available in VTK currently only supports ImageData, UnstructuredGrid, PolyData,
Overlapping AMR, MultiBlockDataSet and Partitioned DataSet Collection. Other dataset types may be added later
depending on interest and funding.

Examples

We present three examples of VTK HDF files, shown using h5dump -A one image file, one unstructured grid and
one overlapping AMR. These files can be examined in the VTK source code, by building VTK and enabling testing
(VTK_BUILD_TESTING). The two files are in the build directory ExternalData at Testing/Data/mandelbrot-vti.
hdf for the ImageData and at Testing/Data/can-pvtu.hdf for the partitioned UnstructuredGrid and Testing/
Data/amr_gaussian_pulse.hdf for the overlapping AMR.

ImageData

The image data file is a wavelet source produced in ParaView. Note that we don’t partition image data, so the same
format is used for serial and parallel processing.

HDF5 "ExternalData/Testing/Data/mandelbrot-vti.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Direction" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (9) / (9) }
DATA {
(0): 1, 0, 0, 0, 1, 0, 0, 0, 1
}

}
ATTRIBUTE "Origin" {

(continues on next page)

10.1. VTK File Formats 287

VTK

(continued from previous page)

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (3) / (3) }
DATA {
(0): -1.75, -1.25, 0
}

}
ATTRIBUTE "Spacing" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (3) / (3) }
DATA {
(0): 0.131579, 0.125, 0.0952381
}

}
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 9;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR
DATA {
(0): "ImageData"
}

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }
DATA {
(0): 1, 0
}

}
ATTRIBUTE "WholeExtent" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (6) / (6) }
DATA {
(0): 0, 19, 0, 20, 0, 21
}

}
GROUP "PointData" {

ATTRIBUTE "Scalars" {
DATATYPE H5T_STRING {

STRSIZE 18;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR
DATA {
(0): "IterationsGradient"
}

}

(continues on next page)

288 Chapter 10. Design Documents

VTK

(continued from previous page)

DATASET "Iterations" {
DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "IterationsGradient" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (22, 21, 20, 3) / (22, 21, 20, 3) }

}
DATASET "Iterations_double" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "point_index_llong" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "xextent_int" {

DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "xextent_long" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "xextent_uint" {

DATATYPE H5T_STD_U32LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
DATASET "xextent_ulong" {

DATATYPE H5T_STD_U64LE
DATASPACE SIMPLE { (22, 21, 20) / (22, 21, 20) }

}
}

}
}
}

UnstructuredGrid

The unstructured grid is the can example (only the can, not the brick) from ParaView, partitioned in three:

HDF5 "ExternalData/Testing/Data/can-pvtu.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 16;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
(continues on next page)

10.1. VTK File Formats 289

VTK

(continued from previous page)

DATASPACE SCALAR
DATA {
(0): "UnstructuredGrid"
}

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }
DATA {
(0): 1, 0
}

}
GROUP "CellData" {

DATASET "EQPS" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (5480) / (H5S_UNLIMITED) }

}
DATASET "vtkGhostType" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (5480) / (H5S_UNLIMITED) }

}
DATASET "vtkOriginalCellIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (5480) / (H5S_UNLIMITED) }

}
}
DATASET "Connectivity" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (43840) / (H5S_UNLIMITED) }

}
GROUP "FieldData" {

DATASET "ElementBlockIds" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Info_Records" {

DATATYPE H5T_STD_I8LE
DATASPACE SIMPLE { (4, 81) / (4, 81) }

}
DATASET "KE" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
DATASET "NSTEPS" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
DATASET "QA_Records" {

DATATYPE H5T_STD_I8LE
DATASPACE SIMPLE { (24, 33) / (24, 33) }

}
DATASET "TMSTEP" {

(continues on next page)

290 Chapter 10. Design Documents

VTK

(continued from previous page)

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
DATASET "TimeValue" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Title" {

DATATYPE H5T_STRING {
STRSIZE H5T_VARIABLE;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "XMOM" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
DATASET "YMOM" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
DATASET "ZMOM" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (3) / (3) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (3) / (3) }

}
DATASET "NumberOfPoints" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (3) / (3) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (5483) / (H5S_UNLIMITED) }

}
GROUP "PointData" {

DATASET "ACCL" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (8076, 3) / (H5S_UNLIMITED, 3) }

}
DATASET "DISPL" {

DATATYPE H5T_IEEE_F64LE

(continues on next page)

10.1. VTK File Formats 291

VTK

(continued from previous page)

DATASPACE SIMPLE { (8076, 3) / (H5S_UNLIMITED, 3) }
}
DATASET "GlobalNodeId" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (8076) / (H5S_UNLIMITED) }

}
DATASET "PedigreeNodeId" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (8076) / (H5S_UNLIMITED) }

}
DATASET "VEL" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (8076, 3) / (H5S_UNLIMITED, 3) }

}
DATASET "vtkGhostType" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (8076) / (H5S_UNLIMITED) }

}
}
DATASET "Points" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (8076, 3) / (H5S_UNLIMITED, 3) }

}
DATASET "Types" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (5480) / (H5S_UNLIMITED) }

}
}

}
}

PolyData

The poly data is the test_poly_data.hdf from the VTK testing data:

HDF5 "ExternalData/Testing/Data/test_poly_data.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 8;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
(continues on next page)

292 Chapter 10. Design Documents

VTK

(continued from previous page)

GROUP "CellData" {
DATASET "Materials" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (816) / (H5S_UNLIMITED) }

}
}
GROUP "Lines" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
}
DATASET "NumberOfPoints" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
GROUP "PointData" {

DATASET "Normals" {
DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (412, 3) / (H5S_UNLIMITED, 3) }

}
DATASET "Warping" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (412, 3) / (H5S_UNLIMITED, 3) }

}
}
DATASET "Points" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (412, 3) / (H5S_UNLIMITED, 3) }

}
GROUP "Polygons" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2448) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

(continues on next page)

10.1. VTK File Formats 293

VTK

(continued from previous page)

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (818) / (H5S_UNLIMITED) }

}
}
GROUP "Strips" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
}
GROUP "Vertices" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (H5S_UNLIMITED) }

}
}

}
}
}

294 Chapter 10. Design Documents

VTK

Overlapping AMR

The Overlapping AMR data file is an AMR Guaussian Pulse source with two levels (0 and 1), describing one Point
Data, several Cell Data and a Field Data. Actual Data are not displayed for readability.

HDF5 "ExternalData/Testing/Data/amr_gaussian_pulse.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Origin" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (3) / (3) }
DATA {
(0): -2, -2, 0
}

}
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 14;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR
DATA {
(0): "OverlappingAMR"
}

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }
DATA {
(0): 1, 0
}

}
GROUP "Level0" {

ATTRIBUTE "Spacing" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (3) / (3) }
DATA {
(0): 0.5, 0.5, 0.5
}

}
DATASET "AMRBox" {

DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (1, 6) / (1, 6) }
DATA {
(0,0): 0, 4, 0, 4, 0, 4
}

}
GROUP "CellData" {

DATASET "Centroid" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (125, 3) / (125, 3) }

(continues on next page)

10.1. VTK File Formats 295

VTK

(continued from previous page)

}
DATASET "Gaussian-Pulse" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (125) / (125) }

}
DATASET "vtkGhostType" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (125) / (125) }

}
}
GROUP "FieldData" {

DATASET "KE" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (44) / (44) }

}
}
GROUP "PointData" {

DATASET "Coord Result" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (216) / (216) }

}
}

}
GROUP "Level1" {

ATTRIBUTE "Spacing" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (3) / (3) }
DATA {
(0): 0.25, 0.25, 0.25
}

}
DATASET "AMRBox" {

DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (2, 6) / (2, 6) }
DATA {
(0,0): 0, 3, 0, 5, 0, 9,
(1,0): 6, 9, 4, 9, 0, 9
}

}
GROUP "CellData" {

DATASET "Centroid" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (480, 3) / (480, 3) }

}
DATASET "Gaussian-Pulse" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (480) / (480) }

}
DATASET "vtkGhostType" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (480) / (480) }

}

(continues on next page)

296 Chapter 10. Design Documents

VTK

(continued from previous page)

}
GROUP "FieldData" {

DATASET "KE" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (88) / (88) }

}
}
GROUP "PointData" {

DATASET "Coord Result" {
DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (770) / (770) }

}
}

}
}

}
}

PartitionedDataSetCollection

This partitioned dataset collection has 2 blocks, one unstructured grid (Block1) and one polydata (Block0). Its assembly
has 3 elements and no nesting, referencing one of the 2 blocks using symbolic links

HDF5 "composite.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 28;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
GROUP "Assembly" {

GROUP "blockName0" {
SOFTLINK "Block0" {

LINKTARGET "/VTKHDF/Block0"
}

}
GROUP "blockName2" {

SOFTLINK "Block1" {
LINKTARGET "/VTKHDF/Block1"

}
}
GROUP "groupName0" {

(continues on next page)

10.1. VTK File Formats 297

VTK

(continued from previous page)

GROUP "blockName1" {
SOFTLINK "Block1" {

LINKTARGET "/VTKHDF/Block1"
}

}
}

}
GROUP "Block0" {

ATTRIBUTE "Index" {
DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 8;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
GROUP "CellData" {

DATASET "Materials" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (96) / (96) }

}
}
GROUP "Lines" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (0) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
}
DATASET "NumberOfPoints" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

(continues on next page)

298 Chapter 10. Design Documents

VTK

(continued from previous page)

}
GROUP "PointData" {

DATASET "Normals" {
DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (50, 3) / (50, 3) }

}
DATASET "Warping" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (50, 3) / (50, 3) }

}
}
DATASET "Points" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (50, 3) / (50, 3) }

}
GROUP "Polygons" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (288) / (288) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (97) / (97) }

}
}
GROUP "Strips" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (0) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
}
GROUP "Vertices" {

(continues on next page)

10.1. VTK File Formats 299

VTK

(continued from previous page)

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (0) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
}

}
GROUP "Block1" {

ATTRIBUTE "Index" {
DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 16;
STRPAD H5T_STR_NULLTERM;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
DATASET "Connectivity" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (8) / (8) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}
DATASET "NumberOfPoints" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (1) / (1) }

}

(continues on next page)

300 Chapter 10. Design Documents

VTK

(continued from previous page)

DATASET "Offsets" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
DATASET "Points" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (8, 3) / (8, 3) }

}
DATASET "Types" {

DATATYPE H5T_STD_U8LE
DATASPACE SIMPLE { (1) / (1) }

}
}

}
}
}

Temporal Poly Data

The poly data is the test_transient_poly_data.hdf from the VTK testing data:

HDF5 "ExternalData/Testing/Data/test_transient_poly_data.hdf" {
GROUP "/" {

GROUP "VTKHDF" {
ATTRIBUTE "Type" {

DATATYPE H5T_STRING {
STRSIZE 8;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;

}
DATASPACE SCALAR

}
ATTRIBUTE "Version" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (2) / (2) }

}
GROUP "CellData" {

DATASET "Materials" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (8160) / (H5S_UNLIMITED) }

}
}
GROUP "Lines" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

(continues on next page)

10.1. VTK File Formats 301

VTK

(continued from previous page)

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}
DATASET "NumberOfPoints" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
GROUP "PointData" {

DATASET "Normals" {
DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (4120, 3) / (H5S_UNLIMITED, 3) }

}
DATASET "Warping" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (4120, 3) / (H5S_UNLIMITED, 3) }

}
}
DATASET "Points" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (2060, 3) / (H5S_UNLIMITED, 3) }

}
GROUP "Polygons" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (12240) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (4090) / (H5S_UNLIMITED) }

}
}
GROUP "Steps" {

ATTRIBUTE "NSteps" {
DATATYPE H5T_STD_I64LE
DATASPACE SCALAR

}
GROUP "CellDataOffsets" {

(continues on next page)

302 Chapter 10. Design Documents

VTK

(continued from previous page)

DATASET "Materials" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}
DATASET "CellOffsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10, 4) / (H5S_UNLIMITED, 4) }

}
DATASET "ConnectivityIdOffsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10, 4) / (H5S_UNLIMITED, 4) }

}
DATASET "NumberOfParts" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "PartOffsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
GROUP "PointDataOffsets" {

DATASET "Normals" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "Warping" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}
DATASET "PointOffsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "Values" {

DATATYPE H5T_IEEE_F32LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}
GROUP "Strips" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

(continues on next page)

10.1. VTK File Formats 303

VTK

(continued from previous page)

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}
GROUP "Vertices" {

DATASET "Connectivity" {
DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (0) / (H5S_UNLIMITED) }

}
DATASET "NumberOfCells" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "NumberOfConnectivityIds" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
DATASET "Offsets" {

DATATYPE H5T_STD_I64LE
DATASPACE SIMPLE { (10) / (H5S_UNLIMITED) }

}
}

}
}
}

10.2 Parallel Processing with VTK’s SMP Framework

August 2022

10.2.1 Contributors

Berk Geveci wrote the initial version of this document in 2013. The design and implementation of vtkSMPTools was
strongly influenced by the KAAPI thread scheduling system and an associated Inria research report: VtkSMP: Task-
based Parallel Operators for Accelerating VTK Filters. Later contributors to this document include:

• Timothee Couble

• Charles Gueunet

• Will Schroeder

• Spiros Tsalikis

Also note that several blog posts have been written about vtkSMPTools:

• Simple, Parallel Computing with vtkSMPTools

• VTK Shared Memory Parallelism Tools, 2021 updates

• Ongoing VTK / ParaView Performance Improvements

304 Chapter 10. Design Documents

https://www.researchgate.net/publication/221564735_KAAPI_A_thread_scheduling_runtime_system_for_data_flow_computations_on_cluster_of_multi-processors
https://hal.inria.fr/hal-00789814
https://hal.inria.fr/hal-00789814
https://www.kitware.com/simple-parallel-computing-with-vtksmptools/
https://www.kitware.com/vtk-shared-memory-parallelism-tools-2021-updates/
https://www.kitware.com/ongoing-vtk-paraview-performance-improvements/

VTK

• VTK/ParaView Filters: Performance Improvements

10.2.2 Introduction

The overarching objective of vtkSMPTools, the SMP (symmetric multiprocessing) framework, is to provide an infras-
tructure to simplify the development of shared memory parallel algorithms in VTK. In addition, vtkSMPTools defines
a simple, abstract API that drives several threading backends such as std::thread, TBB (i.e., Intel’s Threading Build-
ing Blocks template library); and OpenMP; as well as supporting a sequential backend for testing and debugging. To
achieve these objectives, we have developed three simple constructs to support basic SMP functionality:

• Parallel building blocks / functions

• Thread local storage

• Atomic integers and associated operations. (Note, since C++11 this has been superseded by std::atomic<>.
Also, std::mutex and vtkAtomicMutex are options.)

vtkSMPTools is extremely easy to use, ensuring that the major challenge of creating parallel algorithms is not one of
implementation, but rather the design of good, threaded algorithms. In the next sections we describe the basic concepts
used in vtkSMPTools, and then demonstrate these concepts through example code. Of course, there are hundreds of
vtkSMPTools implementations found in VTK which provide an excellent source of more complex examples. In the
final section of this document we provide tips on how to design and implement vtkSMPTools-based algorithms.

10.2.3 Concepts

The following are several high-level concepts that will help you understand and use vtkSMPTools.

The Age of Abundant Computing Cores

Many early computational algorithms were designed and implemented in an era of limited computing resources: typi-
cally a single CPU was available with rudimentary memory models. Such limitations typically led to a frugal approach
to writing algorithms, in particular approaches that minimized CPU utilization. However modern computing archi-
tectures commonly have many cores with multiple execution threads per core, and memory models have expanded to
include a hierarchy of data caches to retrieve frequently used data more quickly. Also, many developers are inclined to
think in terms of sequential algorithmic operations, partly due to the way in which we were trained but also because
managing multiple simultaneous processes can take a lot of work and programmers are often pressed for time. But with
growing data sizes, increasing computational demands, and the abundance of computing threads; it’s clear that paral-
lel approaches are essential to creating responsive and impactful software tools. It’s important that VTK developers
conceive and implement performant parallel algorithms to ensure that the system remain vital into the future.

There are a variety of approaches to parallel computing, but two approaches - distributed computing and shared memory
computing - are particularly relevant to VTK. In distributed computing, computational tasks are carried out in separate
memory space and exchange information through message passing communication. In shared memory computing,
information is exchanged through variables in shared memory space. Typically a flavor of MPI is used by VTK for
distributed computing, plus VTK provides a variety of software constructs to support distributed computing. vtkSMP-
Tools is used to implement shared memory computing with symmetric multiprocessing (SMP) approaches; i.e., where
multiple processors are connected to a single, shared memory space. Distributed computing is more complex and
scales best for extremely large data, while shared memory computing is simpler and works cell on single computers
(desktop, laptop, mobile). Note that it is possible to combine distributed and shared computing in a VTK application.

Besides MPI (for distributed computing) and vtkSMPTools (shared memory parallelism, typically on CPUs), be aware
that VTK leverages another parallel processing toolkit for computing accelerators (e.g., GPUs). vtk-m is a toolkit of
scientific visualization algorithms for emerging processor architectures, supporting fine-grained concurrency for data
analysis and visualization algorithms. Depending on the application, vtk-m may be a preferred solution for extreme
scale computing. It is possible to mix all three forms of parallel computing frameworks into a single VTK application.

10.2. Parallel Processing with VTK’s SMP Framework 305

https://www.kitware.com/vtk-paraview-filters-performance-improvements/
https://m.vtk.org/

VTK

Fine- and Coarse-Grained Parallelism

When parallelizing an algorithm, it is important to first consider the “dimension” (i.e., the way in which data is accessed
via threads) over which to parallelize it. For example, VTK’s Imaging modules parallelize many algorithms by assigning
subsets of the input image (VOIs) to a thread safe function which processes them in parallel. Another example is
parallelizing over blocks of a composite dataset (such as an AMR dataset). We refer to these examples as coarse-
grained parallelism. On the other hand, we can choose points or cells as a dimension over which to parallelize access to
a VTK dataset. Many algorithms simply loop over cells or points and are relatively trivial to parallelize this way. Here
we refer to this approach as fine-grained parallelism. Note that some algorithms fall into a gray area. For example, if
we parallelize streamline generation over seeds, is it fine- or coarse-grained parallelism?

Backends

The SMP framework provides a thin abstraction over a number of threading backends. Currently, we support four
backends: Sequential (serial execution); C++ std::thread referred to as STDThread; TBB (based on Intel’s TBB); and
OpenMP. Note that the Sequential backend is useful for debugging but is typically not used unless no other backend
can be made to work on the target platform. As discussed in the following, it’s possible to build VTK with multiple
backends, and switch between them at run-time.

Backends are configured via CMake during the build process. Setting the CMake variables VTK_SMP_ENABLE_OPENMP,
VTK_SMP_ENABLE_SEQUENTIAL, VTK_SMP_ENABLE_STDTHREAD, and VTK_SMP_ENABLE_TBB enables the inclusion
of the appropriate SMP backend(s), and VTK_SMP_IMPLEMENTATION_TYPE can be used to select one of Sequen-
tial, OpenMP, TBB, and STDThread (this selects the default backend when VTK runs). Once VTK is built, set-
ting the environment variable VTK_SMP_BACKEND_IN_USE can be used to select from multiple backends. (Note:
vtkSMPTools::SetBackend() can be used from within a C++ application to select the backend as well – for ex-
ample vtkSMPTools::SetBackend("TBB") will select TBB.)

Thread Safety in VTK

Probably the most important thing in parallelizing shared-memory algorithms is to make sure that all operations that
occur in a parallel region are performed in a thread-safe way (i.e., avoid race conditions). Note that there is much in
the VTK core functionality that is not thread-safe. The VTK community has an ongoing effort of cleaning this up and
marking APIs that are thread-safe to use. At this point, probably the best approach is to double check by looking at
the implementation. Also, we highly recommend using analysis tools such as ThreadSanitizer or Valgrind (with the
Helgrind tool) to look for race conditions in problematic code.

When coding parallel algorithms, be especially wary of insidious execution side effects. Such side effects typi-
cally result in simultaneous execution of code. For example, invoking Update() on a filter shared by multiple
threads is a bad idea since simultaneous updates to that filter is likely doomed to fail. Also, some methods like
vtkPolyData::GetCellNeighbors() internally invoke the one-time operation BuildLinks() in order to gener-
ate topological information. Similarly, the BuildLocator() method found in point and cell locators may be called
as a side effect of a geoemtric query such as vtkDataSet::FindCell(). In such cases, prior to threaded execution,
affected classes should be “primed” by explicitly invoking methods that produce side effects (e.g., call BuildLinks()
directly on the vtkPolyData; or manually call BuildLocator() prior to using methods that require a locator).

306 Chapter 10. Design Documents

VTK

Results Invariance

A significant challenge to writing good threaded algorithms is to insure that they produce the same output each time they
execute. For example, a threaded sort operation may order identical set elements differently each time the sort is run
depending on the order in which data is processed by different computing threads. (This is related to the C++ standard
providing the std::stable_sort algorithm.) Even simple threaded operation such as summing a list of numbers can
produce different results, since the order and partitioning of data during threading may result in round off effects. Since
sequential algorithms implicitly order their operations, and threading typically does not do so (unless extensive use of
locks, barriers, etc. are used), a sequential algorithm may produce different results than a threaded algorithm, and even
across multiple runs threaded algorithms may produce results that vary across each run. Such behaviors are disturbing
to users, and make testing difficult. In VTK, we aim to write algorithms that are results invariant.

Show Me the Code

The vtkSMPTools class defined in VTK\Common\Core\vtkSMPTools.h provides detailed documentation and further
implementation details. To find examples of vtkSMPTools in use, simply search for VTK C++ classes that include this
header file.

10.2.4 Implementation Overview

As mentioned previously, vtkSMPTools provides a few, simple programmatic building blocks; support for thread-local
storage; and support for atomics. In this section we provide high-level descriptions of these building blocks. Then in
the following section we provide implementation details.

Functional Building Blocks

The core, functional building blocks of vtkSMPTools are as follows. See vtkSMPTools.h for details.

• For(begin, end, functor) - a for loop over the range [begin,end) executing the functor each time.

• Fill(begin, end, value) - assign the given value to the elements in range [begin,end) (a drop in replacement
for std::fill()).

• Sort(begin,end) and Sort(begin,end,compare) - sort the elements in range [begin,end) using the optional
comparison function (a drop in replacement for std::sort()).

• Transform() - a drop in replacement for std::transform().

Note that the ranges [begin,end) may be expressed via integral (vtkIdType) types for example point or cell ids, or C++
iterators.

Of special interest is the functor invoked in the For() loop. The functor is a class/struct which requires defining the
void operator()(begin,end) method. Given a range defined by [begin, end) and the functor, For() will call
the functor’s operator(), usually in parallel, over a number of subranges of [begin, end). The functor may also
implement methods to initialize data associated with each thread (void Initialize()), and to composite the results
of executing the For() loop into a final result (i.e., void Reduce()).

With these few building blocks, powerful threaded algorithms can easily be written. In many cases, the For() loop is
all that is needed.

10.2. Parallel Processing with VTK’s SMP Framework 307

VTK

Thread Local Storage

Often times parallel algorithms produce intermediate results that are combined to produce a final result. For example,
to sum a long list of numbers, each thread may sum just a subset of the numbers, and when completed the intermediate
sums from each thread can be combined to produce a final summation. So the ability to maintain intermediate data
associated with each thread is valuable. This is the purpose of thread local storage.

Thread local storage is generally referred to memory that is accessed by one thread only. In the SMP framework,
vtkSMPThreadLocal and vtkSMPThreadLocalObject enable the creation of objects local to executing threads. The
main difference between the two is that vtkSMPThreadLocalObject makes it easy to manage vtkObject and sub-
classes by allocating and deleting them appropriately. Thread local storage almost always requires definition of the
Initialize() and Reduce() methods to initialize local storage, and then combine it once the For() loop completes.

One important performance trick with thread local storage, is that temporary variables may be defined and then used
in the execution of operator(). For example, instantiating temporary objects such as vtkGenericCell, vtkIdList, and
other C++ containers or classes can be relatively slow. Sometimes it’s much faster to create and initialize them once
(when the thread is created), and then “reset” them in each invocation of operator().

Atomics

Another very useful tool when developing shared memory parallel algorithms is atomic integers. Atomic integers
provide the ability to manipulate integer values in a way that can’t be interrupted by other threads. A very common
use case for atomic integers is implementing global counters. For example, in VTK, the modified time (MTime) global
counter and vtkObject’s reference count are implemented as atomic integers.

Prior to C++11, vtkSMPTools had an internal implementation for atomic integers. However, this implementation is
now obsolete in favor of std::atomic<>. C++ also provides std::mutex' and 'std::lock_guard<>; and VTK
provides a lightweight spinlock vtkAtomicMutex which may be faster than using mutexes.

10.2.5 Implementation Examples

In the subsections below, we describe the SMP framework in more detail and provide examples of how it can be used.

Functors and Parallel For

The vtkSMPTools::For() parallel for is the core computational construct of vtkSMPTools. It’s use is as shown in
the following example which evaluates points against a set of planes, and adjusts the planes to “bound” the points (see
vtkHull.cxx and VTK/Common/DataModel/Testing/Cxx/TestSMPFeatures.cxx).

vtkNew<vtkPoints> pts;
pts->SetDataTypeToFloat();
pts->SetNumberOfPoints(numPts);
for (auto i=0; i < numPts; ++i)
{
pts->SetPoint(i, vtkMath::Random(-1,1), vtkMath::Random(-1,1), vtkMath::Random(-1,

→˓1));
}

Now define the functor:

struct HullFunctor
{
vtkPoints *InPts;

(continues on next page)

308 Chapter 10. Design Documents

VTK

(continued from previous page)

std::vector<double>& Planes;

HullFunctor(vtkPoints *inPts, std::vector<double>& planes) : InPts(inPts),␣
→˓Planes(planes) {}

void operator()(vtkIdType ptId, vtkIdType endPtId)
{
vtkPoints *inPts = this->InPts;
std::vector<double>& planes = this->Planes;
auto numPlanes = planes.size() / 4;

for (; ptId < endPtId; ++ptId)
{
double v, coord[3];
inPts->GetPoint(ptId, coord);
for (size_t j = 0; j < numPlanes; j++)
{
v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
planes[j * 4 + 2] * coord[2]);

// negative means further in + direction of plane
if (v < planes[j * 4 + 3])
{
planes[j * 4 + 3] = v;

}
}

}
}
}; //HullFunctor

To use the functor and invoke vtkSMPTools::For():

HullFunctor hull(pts,planes);
vtkSMPTools::For(0,numPts, hull);

Note that same code can be conveniently and compactly defined inline via a C++ lambda function. Lambdas are
particularly useful when thread local storage and/or local variable are not required.

vtkSMPTools::For(0, numPts, [&](vtkIdType ptId, vtkIdType endPtId) {
for (; ptId < endPtId; ++ptId)
{
double v, coord[3];
pts->GetPoint(ptId, coord);
for (auto j = 0; j < numPlanes; j++)
{
v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
planes[j * 4 + 2] * coord[2]);

// negative means further in + direction of plane
if (v < planes[j * 4 + 3])
{
planes[j * 4 + 3] = v;

}
}

(continues on next page)

10.2. Parallel Processing with VTK’s SMP Framework 309

VTK

(continued from previous page)

}
}); // end lambda

With alternative signatures for For() it is possible to provide a grain parameter. Grain is a hint to the underlying
backend about the coarseness of the typical range when parallelizing a for loop. If you don’t know what grain will work
best for a particular problem, omit the grain specification and let the backend find a suitable grain. TBB in particular
does a good job with this. Sometimes, you can eek out a little bit more performance by setting the grain just right. Too
small, the task queuing overhead will be too much. Too little, load balancing will suffer.

Thread Local Storage

Thread local storage is generally referred to memory that is accessed by one thread only. In the SMP framework,
vtkSMPThreadLocal and vtkSMPThreadLocalObject enable the creation objects local to executing threads. The main
difference between the two is that vtkSMPThreadLocalObject makes it easy to manage vtkObject and subclasses by
allocating and deleting them appropriately.

Below is an example of thread local objects in use. This example computes the bounds of a set of points represented
by a vtkFloatArray. Note in particular the introduction of the Initialize() and Reduce() methods:

using BoundsArray = std::array<double,6>;
using TLS = vtkSMPThreadLocal<BoundsArray>;

struct BoundsFunctor
{
vtkFloatArray* Pts;
BoundsArray Bounds;
TLS LocalBounds;

BoundsFunctor(vtkFloatArray *pts) : Pts(pts) {}

// Initialize thread local storage
void Initialize()
{
// The first call to .Local() will create the array,
// all others will return the same.
std::array<double,6>& bds = this->LocalBounds.Local();
bds[0] = VTK_DOUBLE_MAX;
bds[1] = -VTK_DOUBLE_MAX;
bds[2] = VTK_DOUBLE_MAX;
bds[3] = -VTK_DOUBLE_MAX;
bds[4] = VTK_DOUBLE_MAX;
bds[5] = -VTK_DOUBLE_MAX;

}

// Process the range of points [begin,end)
void operator()(vtkIdType begin, vtkIdType end)
{
BoundsArray& lbounds = this->LocalBounds.Local();
float* x = this->Pts->GetPointer(3*begin);
for (vtkIdType i=begin; i<end; i++)
{
lbounds[0] = (x[0] < lbounds[0] ? x[0] : lbounds[0]);

(continues on next page)

310 Chapter 10. Design Documents

VTK

(continued from previous page)

lbounds[1] = (x[0] > lbounds[1] ? x[0] : lbounds[1]);
lbounds[2] = (x[1] < lbounds[2] ? x[1] : lbounds[2]);
lbounds[3] = (x[1] > lbounds[3] ? x[1] : lbounds[3]);
lbounds[4] = (x[2] < lbounds[4] ? x[2] : lbounds[4]);
lbounds[5] = (x[2] > lbounds[5] ? x[2] : lbounds[5]);

x += 3;
}

}

// Composite / combine the thread local storage into a global result.
void Reduce()
{
this->Bounds[0] = VTK_DOUBLE_MAX;
this->Bounds[1] = -VTK_DOUBLE_MAX;
this->Bounds[2] = VTK_DOUBLE_MAX;
this->Bounds[3] = -VTK_DOUBLE_MAX;
this->Bounds[4] = VTK_DOUBLE_MAX;
this->Bounds[5] = -VTK_DOUBLE_MAX;

using TLSIter = TLS::iterator;
TLSIter end = this->LocalBounds.end();
for (TLSIter itr = this->LocalBounds.begin(); itr != end; ++itr)
{

BoundsArray& lBounds = *itr;
this->Bounds[0] = (this->Bounds[0] < lBounds[0] ? this->Bounds[0] : lBounds[0]);
this->Bounds[1] = (this->Bounds[1] > lBounds[1] ? this->Bounds[1] : lBounds[1]);
this->Bounds[2] = (this->Bounds[2] < lBounds[2] ? this->Bounds[2] : lBounds[2]);
this->Bounds[3] = (this->Bounds[3] > lBounds[3] ? this->Bounds[3] : lBounds[3]);
this->Bounds[4] = (this->Bounds[4] < lBounds[4] ? this->Bounds[4] : lBounds[4]);
this->Bounds[5] = (this->Bounds[5] > lBounds[5] ? this->Bounds[5] : lBounds[5]);

}
}

}; // BoundsFunctor

Then to use the functor:

vtkFloatArray* ptsArray = vtkFloatArray::SafeDownCast(pts->GetData());
BoundsFunctor calcBounds(ptsArray);
vtkSMPTools::For(0, numPts, calcBounds);
std::array<double,6>& bds = calcBounds.Bounds;

A few things to note here:

• LocalBounds.Local() will return a new instance of a std::vector<std::vector<double>> per thread the
first time it is called by that thread. All calls afterwards will return the same instance for that thread. Therefore,
threads can safely access the local object over and over again without worrying about race conditions.

• The Initialize() method initializes the new instance of the thread local vector with invalid bound values.

So at the end of the threaded computation, the LocalBounds will contain a number of arrays, each that was popu-
lated by one thread during the parallel execution. These still need to be composited to produce the global bounds.
This can be achieved by iterating over all thread local values and combining them in the Reduce() method as shown
previously. Consequently the user can simply retrieve the final bounds by accessing calcBounds.Bounds once

10.2. Parallel Processing with VTK’s SMP Framework 311

VTK

vtkSMPTools::For() completes execution. Note that, if the methods exist, Initialize() and Reduce() are in-
voked automatically by vtkSMPTools::For().

Very important note: if you use more than one thread local storage object, don’t assume that the iterators will traverse
them in the same order. The iterator for one may return the value from thread i with begin() whereas the other may
return the value form thread j. If you need to store and access values together, make sure to use a struct or class to
group them.

Thread local objects are immensely useful. Often, visualization algorithms want to accumulate their output by append-
ing to a data structure. For example, the contour filter iterates over cells and produces polygons that it adds to an output
vtkPolyData. This is usually not a thread safe operation. One way to address this is to use locks that serialize writing
to the output data structure.

However, mutexes have a major impact on the scalability of parallel operations. Another solution is to produce a
different vtkPolyData for each execution of the functor. However, this can lead to hundreds if not thousands of outputs
that need to be merged, which is a difficult operation to scale. The best option is to use one vtkPolyData per thread using
thread local objects. Since it is guaranteed that thread local objects are accessed by one thread at a time (but possibly
in many consecutive functor invocations), it is thread safe for functors to keep adding polygons to these objects. The
result is that the parallel section will produce only a few vtkPolyData, usually the same as the number of threads in the
pool. It is much easier to efficiently merge these vtkPolyData.

Atomic Integers

As mentioned previously, atomics should be represented by the C++ std::atomic<>. However, to provide a brief expla-
nation of the importance of atomics we provide the following simple example.

int Total = 0;
std::atomic<vtkTypeInt32> TotalAtomic(0);
constexpr int Target = 1000000;
constexpr int NumThreads = 2;

VTK_THREAD_RETURN_TYPE MyFunction(void *)
{
for (int i=0; i<Target/NumThreads; i++)
{
++Total;
++TotalAtomic;

}
return VTK_THREAD_RETURN_VALUE;

}

// Now exercise atomics
vtkNew<vtkMultiThreader> mt;
mt->SetSingleMethod(MyFunction, NULL);
mt->SetNumberOfThreads(NumThreads);
mt->SingleMethodExecute();
std::cout << Total << " " << TotalAtomic.load() << endl;

When this program is executed, most of the time Total will be different (smaller) than Target whereas TotalAtomic
will be exactly the same as Target. For example, a test run on a Mac prints: 999982 1000000. This is because when
the integer is not atomic, both threads can read the same value of Total, increment and write out the same value,
which leads to losing one increment operation. Whereas, when ++ happens atomically, it is guaranteed that it will read,
increment and write out Total all in one uninterruptible operation. When atomic operations are supported at hardware
level, they are very fast.

312 Chapter 10. Design Documents

VTK

10.2.6 Tips

In this section, we provide some tips that we hope will be useful to those that want to develop shared memory parallel
algorithms.

Think about Thread Safety

First things first, it is essential to keep thread safety in mind. If the parallel section does not produce correct results
consistently, there is not a lot of point in the performance improvement it produces. To create thread-safe algorithms,
consider using common parallel design patterns. Also verify that the API you are using is thread safe under your
particular application. While VTK continues to add additional thread-safe capabilities, there are still many booby traps
to avoid.

Analysis Tools Are Your Friend

The LLVM/Clang-based ThreadSanitizer is widely used to detect data races. Valgrind’s Helgrind is also a wonderful
tool. Use these tools often. We developed the original backends mainly using Helgrind. Note that backends like TBB
can produce many false positives; you may want to try different backends to reduce these. There are commercial tools
with similar functionality, e.g., Intel’s Parallel Studio has static and dynamic checking.

Debugging Tricks

Beyond using the analysis tools mentioned previously (e.g., ThreadSanitizer), there are some simple tricks that can be
used to resolve programming issues relatively quickly. Firstly, switch between different backends. For example, if a
program runs correctly when the backend is set to Sequential, but incorrectly when the backend is other than Sequential,
it’s likely that there is a race condition. Such broken code, when run repeatedly, while not always failing at the same
point due to the variability of thread execution, will often fail at or near the same function, providing clues as to the
location of the race. Also, empirically the STDThread backend seems to be most sensitive to race conditions. So make
sure to test with more than one backend especially STDThread.

Avoid Locks

Mutexes are expensive. Avoid them as much as possible. Mutexes are usually implemented as a table of locks by the
kernel. They take a lot of CPU cycles to acquire. Specially, if multiple threads want to acquire them in the same parallel
section. Use atomic integers if necessary. Try your best to design your algorithm without modifying the same data
concurrently.

Use Atomics Sparingly

Atomics are very useful and much more efficient that mutexes. However, overusing them may lead to performance
issues. Try to design your algorithm in a way that you avoid locks and atomics. This also applies to using VTK classes
that manipulate atomic integers such as MTime and reference count. Try to minimize operations that cause MTime or
shared reference counts to change in parallel sections.

10.2. Parallel Processing with VTK’s SMP Framework 313

VTK

Grain Can Be Important

In some situation, setting the right value for grain may be important. TBB does a decent job with this but there are
situations where it can’t do the optimal thing. There are a number of documents on setting the grain size with TBB on
the Web. If you are interested in tuning your code further, we recommend taking a look at some of them.

Minimize Data Movement

This is true for serial parts of your code too but it is specially important when there are bunch of threads all accessing
main memory. This can really push the limits of the memory bus. Code that is not very intensive computationally
compared to how much memory it consumes is unlikely to scale well. Good cache use helps of course but may not be
always sufficient. Try to group work together in tighter loops.

Choose Computation over Memory

As mentioned earlier in this document, typically computation is much cheaper than data movement. As a result, it’s
a good idea to create compact data structures with minimal representational fat. Such data structures may require
computation to extract important information: for example, a data structure that contains a vector 3-tuple need not
represent the vector magnitude since this can be quickly computed. Depending on the number of times vector magnitude
is needed, the cost of computing it is usually less than the cost of placing vector magnitude into memory. Of course,
effects like this are a function of scale / data size and must be considered when designing applications.

Multi-Pass Implementations

Parallel algorithms often require significant bookkeeping to properly partition and transform input data to output data.
Trivial algorithms, such as mapping an input vector array of 3-tuples to an output scalar array of vector magnitudes,
are easy to partition and map: for each vector tuple, a single scalar is produced; and if there are N tuples, there are N
scalars. However, more complex algorithms such as building cell links (creating lists of cells connected to a point) or
smoothing stencils (identifying points connected to each other via a cell edge) require an initial pass to determine the
size of output arrays (and then to allocate the output), followed by another pass to actually populate the output arrays.
While at first counterintuitive, it turns out that allocating a small number of large memory blocks is much, much faster
than many dynamic allocations of small amounts of memory. This is one reason that a common implementation pattern
for parallel algorithms is to use multiple data processing passes consisting of simple computing operations. Such an
approach is quite different than many serial algorithms that often perform multiple, complex algorithmic steps for each
input data item to be processed.

A variation of this approach is to use thread local storage to perform computation on a local range of input, store the
result in thread local, and then reduce/composite the local storage into the global output. While this is problematic for
many reasons (especially since data movement is needed to composite the output data), it still can be used to effectively
partition and transform input data to the output, especially if the thread local storage is relatively small in size.

Whatever approach is used, parallel algorithms are often implemented using multiple passes. When designing parallel
algorithms, it is important to think in terms of passes, and implement algorithms accordingly.

314 Chapter 10. Design Documents

VTK

Use Parallel Design Patterns

There are many parallel operations that are used repeatedly. Of course for loops and fill() are two obvious opera-
tions, but the sort() operation is more widely used than might be expected. Another is the prefix sum (or inclusive
scan, or simply scan) typically used to build indices into data arrays. Become familiar with these and other parallel
operations and the task of designing and implementing algorithms will be much easier.

10.2.7 Parallel Is Not Always Faster

Threading introduces overhead into computation. As a result, threaded computation is not always faster than an equiv-
alent serial operation. For example, for loops across a small number of data items can easily slow down computation
due to thread creation overhead. A simple addition on each entry of an array may become a bottleneck if done using a
too fine grain, due to false sharing (threads continuously invalidating other thread’s cache). Even complex operations
such as prefix sums across large amounts of data may be slower than serial implementations because of synchroniza-
tion issues. For this reason, use threading sparingly to address data or computation of large scale. In VTK it is not
uncommon to see code that switches between serial and parallel implementations based on input data size. For that
reason, vtkSMPTools has an empirically determined THRESHOLD value that can be used by a developer to switch
between serial and parallel implementations.

Different backends may have significantly performance characteristics as well. TBB for example uses a thread pool
combined with task stealing to address load balancing challenges. Empirically at the time of writing, in some situations
TBB can significantly outperform the STDThread backend especially in situations where task loads are highly variable.
Of course this may change as std::thread implementations mature and evolve.

10.3 vtkArrayDispatch and Related Tools

10.3.1 Background

VTK datasets store most of their important information in subclasses of vtkDataArray. Vertex loca-
tions (vtkPoints::Data), cell topology (vtkCellArray::Ia), and numeric point, cell, and generic attributes
(vtkFieldData::Data) are the dataset features accessed most frequently by VTK algorithms, and these all rely on
the vtkDataArray API.

10.3.2 Terminology

This page uses the following terms:

A ValueType is the element type of an array. For instance, vtkFloatArray has a ValueType of float.

An ArrayType is a subclass of vtkDataArray. It specifies not only a ValueType, but an array implementation as well.
This becomes important as vtkDataArray subclasses will begin to stray from the typical “array-of-structs” ordering
that has been exclusively used in the past.

A dispatch is a runtime-resolution of a vtkDataArray’s ArrayType, and is used to call a section of executable code
that has been tailored for that ArrayType. Dispatching has compile-time and run-time components. At compile-time,
the possible ArrayTypes to be used are determined and a worker code template is generated for each type. At run-time,
the type of a specific array is determined and the proper worker instantiation is called.

Template explosion refers to a sharp increase in the size of a compiled binary that results from instantiating a template
function or class on many different types.

10.3. vtkArrayDispatch and Related Tools 315

VTK

vtkDataArray

The data array type hierarchy in VTK has a unique feature when compared to typical C++ containers: a non-templated
base class. All arrays containing numeric data inherit vtkDataArray, a common interface that sports a very useful
API. Without knowing the underlying ValueType stored in data array, an algorithm or user may still work with any
vtkDataArray in meaningful ways: The array can be resized, reshaped, read, and rewritten easily using a generic API
that substitutes double-precision floating point numbers for the array’s actual ValueType. For instance, we can write
a simple function that computes the magnitudes for a set of vectors in one array and store the results in another using
nothing but the typeless vtkDataArray API:

// 3 component magnitude calculation using the vtkDataArray API.
// Inefficient, but easy to write:
void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
vtkIdType numVectors = vectors->GetNumberOfTuples();
for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
{
// What data types are magnitude and vectors using?
// We don't care! These methods all use double.
magnitude->SetComponent(tupleIdx, 0,
std::sqrt(vectors->GetComponent(tupleIdx, 0) *

vectors->GetComponent(tupleIdx, 0) +
vectors->GetComponent(tupleIdx, 1) *
vectors->GetComponent(tupleIdx, 1) +
vectors->GetComponent(tupleIdx, 2) *
vectors->GetComponent(tupleIdx, 2));

}
}

The Costs of Flexibility

However, this flexibility comes at a cost. Passing data through a generic API has a number of issues:

Accuracy

Not all ValueTypes are fully expressible as a double. The truncation of integers with > 52 bits of precision can be a
particularly nasty issue.

Performance

Virtual overhead: The only way to implement such a system is to route the vtkDataArray calls through a run-time
resolution of ValueTypes. This is implemented through the virtual override mechanism of C++, which adds a small
overhead to each API call.

Missed optimization: The virtual indirection described above also prevents the compiler from being able to make
assumptions about the layout of the data in-memory. This information could be used to perform advanced optimizations,
such as vectorization.

So what can one do if they want fast, optimized, type-safe access to the data stored in a vtkDataArray? What options
are available?

316 Chapter 10. Design Documents

VTK

The Old Solution: vtkTemplateMacro

The vtkTemplateMacro is described in this section. While it is no longer considered a best practice to use this
construct in new code, it is still usable and likely to be encountered when reading the VTK source code. Newer code
should use the vtkArrayDispatch mechanism, which is detailed later. The discussion of vtkTemplateMacro will
help illustrate some of the practical issues with array dispatching.

With a few minor exceptions that we won’t consider here, prior to VTK 7.1 it was safe to assume that all numeric
vtkDataArray objects were also subclasses of vtkDataArrayTemplate. This template class provided the imple-
mentation of all documented numeric data arrays such as vtkDoubleArray, vtkIdTypeArray, etc, and stores the
tuples in memory as a contiguous array-of-structs (AOS). For example, if we had an array that stored 3-component
tuples as floating point numbers, we could define a tuple as:

struct Tuple { float x; float y; float z; };

An array-of-structs, or AOS, memory buffer containing this data could be described as:

Tuple ArrayOfStructsBuffer[NumTuples];

As a result, ArrayOfStructsBuffer will have the following memory layout:

{ x1, y1, z1, x2, y2, z2, x3, y3, z3, ...}

That is, the components of each tuple are stored in adjacent memory locations, one tuple after another. While this is not
exactly how vtkDataArrayTemplate implemented its memory buffers, it accurately describes the resulting memory
layout.

vtkDataArray also defines a GetDataType method, which returns an enumerated value describing a type. We can
used to discover the ValueType stored in the array.

Combine the AOS memory convention and GetDataType() with a horrific little method on the data arrays named
GetVoidPointer(), and a path to efficient, type-safe access was available. GetVoidPointer() does what it says on
the tin: it returns the memory address for the array data’s base location as a void*. While this breaks encapsulation
and sets off warning bells for the more pedantic among us, the following technique was safe and efficient when used
correctly:

// 3-component magnitude calculation using GetVoidPointer.
// Efficient and fast, but assumes AOS memory layout
template <typename ValueType>
void calcMagnitudeWorker(ValueType *vectors, ValueType *magnitude,

vtkIdType numVectors)
{
for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
{
// We now have access to the raw memory buffers, and assuming
// AOS memory layout, we know how to access them.
magnitude[tupleIdx] =
std::sqrt(vectors[3 * tupleIdx + 0] *

vectors[3 * tupleIdx + 0] +
vectors[3 * tupleIdx + 1] *
vectors[3 * tupleIdx + 1] +
vectors[3 * tupleIdx + 2] *
vectors[3 * tupleIdx + 2]);

}
}

(continues on next page)

10.3. vtkArrayDispatch and Related Tools 317

VTK

(continued from previous page)

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
assert("Arrays must have same datatype!" &&

vtkDataTypesCompare(vectors->GetDataType(),
magnitude->GetDataType()));

switch (vectors->GetDataType())
{
vtkTemplateMacro(calcMagnitudeWorker<VTK_TT*>(
static_cast<VTK_TT*>(vectors->GetVoidPointer(0)),
static_cast<VTK_TT*>(magnitude->GetVoidPointer(0)),
vectors->GetNumberOfTuples());

}
}

The vtkTemplateMacro, as you may have guessed, expands into a series of case statements that determine an array’s
ValueType from the int GetDataType() return value. The ValueType is then typedef’d to VTK_TT, and the macro’s
argument is called for each numeric type returned from GetDataType. In this case, the call to calcMagnitudeWorker
is made by the macro, with VTK_TT typedef’d to the array’s ValueType.

This is the typical usage pattern for vtkTemplateMacro. The calcMagnitude function calls a templated worker
implementation that uses efficient, raw memory access to a typesafe memory buffer so that the worker’s code can be
as efficient as possible. But this assumes AOS memory ordering, and as we’ll mention, this assumption may no longer
be valid as VTK moves further into the field of in-situ analysis.

But first, you may have noticed that the above example using vtkTemplateMacro has introduced a step backwards in
terms of functionality. In the vtkDataArray implementation, we didn’t care if both arrays were the same ValueType,
but now we have to ensure this, since we cast both arrays’ void pointers to VTK_TT*. What if vectors is an array of
integers, but we want to calculate floating point magnitudes?

vtkTemplateMacro with Multiple Arrays

The best solution prior to VTK 7.1 was to use two worker functions. The first is templated on vector’s ValueType, and
the second is templated on both array ValueTypes:

// 3-component magnitude calculation using GetVoidPointer and a
// double-dispatch to resolve ValueTypes of both arrays.
// Efficient and fast, but assumes AOS memory layout, lots of boilerplate
// code, and the sensitivity to template explosion issues increases.
template <typename VectorType, typename MagnitudeType>
void calcMagnitudeWorker2(VectorType *vectors, MagnitudeType *magnitude,

vtkIdType numVectors)
{
for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
{
// We now have access to the raw memory buffers, and assuming
// AOS memory layout, we know how to access them.
magnitude[tupleIdx] =
std::sqrt(vectors[3 * tupleIdx + 0] *

vectors[3 * tupleIdx + 0] +
vectors[3 * tupleIdx + 1] *
vectors[3 * tupleIdx + 1] +

(continues on next page)

318 Chapter 10. Design Documents

VTK

(continued from previous page)

vectors[3 * tupleIdx + 2] *
vectors[3 * tupleIdx + 2]);

}
}

// Vector ValueType is known (VectorType), now use vtkTemplateMacro on
// magnitude:
template <typename VectorType>
void calcMagnitudeWorker1(VectorType *vectors, vtkDataArray *magnitude,

vtkIdType numVectors)
{
switch (magnitude->GetDataType())
{
vtkTemplateMacro(calcMagnitudeWorker2(vectors,
static_cast<VTK_TT*>(magnitude->GetVoidPointer(0)), numVectors);

}
}

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
// Dispatch vectors first:
switch (vectors->GetDataType())
{
vtkTemplateMacro(calcMagnitudeWorker1<VTK_TT*>(
static_cast<VTK_TT*>(vectors->GetVoidPointer(0)),
magnitude, vectors->GetNumberOfTuples());

}
}

This works well, but it’s a bit ugly and has the same issue as before regarding memory layout. Double dispatches
using this method will also see more problems regarding binary size. The number of template instantiations that
the compiler needs to generate is determined by I = T^D, where I is the number of template instantiations, T is the
number of types considered, and D is the number of dispatches. As of VTK 7.1, vtkTemplateMacro considers 14
data types, so this double-dispatch will produce 14 instantiations of calcMagnitudeWorker1 and 196 instantiations
of calcMagnitudeWorker2. If we tried to resolve 3 vtkDataArrays into raw C arrays, 2744 instantiations of the
final worker function would be generated. As more arrays are considered, the need for some form of restricted dispatch
becomes very important to keep this template explosion in check.

Data Array Changes in VTK 7.1

Starting with VTK 7.1, the Array-Of-Structs (AOS) memory layout is no longer the only vtkDataArray im-
plementation provided by the library. The Struct-Of-Arrays (SOA) memory layout is now available through the
vtkSOADataArrayTemplate class. The SOA layout assumes that the components of an array are stored separately,
as in:

struct StructOfArraysBuffer
{
float *x; // Pointer to array containing x components
float *y; // Same for y
float *z; // Same for z

};

10.3. vtkArrayDispatch and Related Tools 319

VTK

The new SOA arrays were added to improve interoperability between VTK and simulation packages for live visualiza-
tion of in-situ results. Many simulations use the SOA layout for their data, and natively supporting these arrays in VTK
will allow analysis of live data without the need to explicitly copy it into a VTK data structure.

As a result of this change, a new mechanism is needed to efficiently access array data. vtkTemplateMacro and
GetVoidPointer are no longer an acceptable solution – implementing GetVoidPointer for SOA arrays requires
creating a deep copy of the data into a new AOS buffer, a waste of both processor time and memory.

So we need a replacement for vtkTemplateMacro that can abstract away things like storage details while providing
performance that is on-par with raw memory buffer operations. And while we’re at it, let’s look at removing the tedium
of multi-array dispatch and reducing the problem of ‘template explosion’. The remainder of this page details such a
system.

10.3.3 Best Practices for vtkDataArray Post-7.1

We’ll describe a new set of tools that make managing template instantiations for efficient array access both easy and
extensible. As an overview, the following new features will be discussed:

• vtkGenericDataArray: The new templated base interface for all numeric vtkDataArray subclasses.

• vtkArrayDispatch: Collection of code generation tools that allow concise and precise specification of re-
strictable dispatch for up to 3 arrays simultaneously.

• vtkArrayDownCast: Access to specialized downcast implementations from code templates.

• vtkDataArrayAccessor: Provides Get and Set methods for accessing/modifying array data as efficiently as
possible. Allows a single worker implementation to work efficiently with vtkGenericDataArray subclasses,
or fallback to use the vtkDataArray API if needed.

• VTK_ASSUME: New abstraction for the compiler __assume directive to provide optimization hints.

These will be discussed more fully, but as a preview, here’s our familiar calcMagnitude example implemented using
these new tools:

// Modern implementation of calcMagnitude using new concepts in VTK 7.1:
// A worker functor. The calculation is implemented in the function template
// for operator().
struct CalcMagnitudeWorker
{
// The worker accepts VTK array objects now, not raw memory buffers.
template <typename VectorArray, typename MagnitudeArray>
void operator()(VectorArray *vectors, MagnitudeArray *magnitude)
{
// This allows the compiler to optimize for the AOS array stride.
VTK_ASSUME(vectors->GetNumberOfComponents() == 3);
VTK_ASSUME(magnitude->GetNumberOfComponents() == 1);

// These allow this single worker function to be used with both
// the vtkDataArray 'double' API and the more efficient
// vtkGenericDataArray APIs, depending on the template parameters:
vtkDataArrayAccessor<VectorArray> v(vectors);
vtkDataArrayAccessor<MagnitudeArray> m(magnitude);

vtkIdType numVectors = vectors->GetNumberOfTuples();
for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
{

(continues on next page)

320 Chapter 10. Design Documents

VTK

(continued from previous page)

// Set and Get compile to inlined optimizable raw memory accesses for
// vtkGenericDataArray subclasses.
m.Set(tupleIdx, 0, std::sqrt(v.Get(tupleIdx, 0) * v.Get(tupleIdx, 0) +

v.Get(tupleIdx, 1) * v.Get(tupleIdx, 1) +
v.Get(tupleIdx, 2) * v.Get(tupleIdx, 2)));

}
}

};

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
// Create our worker functor:
CalcMagnitudeWorker worker;

// Define our dispatcher. We'll let vectors have any ValueType, but only
// consider float/double arrays for magnitudes. These combinations will
// use a 'fast-path' implementation generated by the dispatcher:
typedef vtkArrayDispatch::Dispatch2ByValueType
<
vtkArrayDispatch::AllTypes, // ValueTypes allowed by first array
vtkArrayDispatch::Reals // ValueTypes allowed by second array

> Dispatcher;

// Execute the dispatcher:
if (!Dispatcher::Execute(vectors, magnitude, worker))

{
// If Execute() fails, it means the dispatch failed due to an
// unsupported array type. In this case, it's likely that the magnitude
// array is using an integral type. This is an uncommon case, so we won't
// generate a fast path for these, but instead call an instantiation of
// CalcMagnitudeWorker::operator()<vtkDataArray, vtkDataArray>.
// Through the use of vtkDataArrayAccessor, this falls back to using the
// vtkDataArray double API:
worker(vectors, magnitude);
}

}

10.3.4 vtkGenericDataArray

The vtkGenericDataArray class template drives the new vtkDataArray class hierarchy. The ValueType is intro-
duced here, both as a template parameter and a class-scope typedef. This allows a typed API to be written that doesn’t
require conversion to/from a common type (as vtkDataArray does with double). It does not implement any storage
details, however. Instead, it uses the CRTP idiom to forward key method calls to a derived class without using a vir-
tual function call. By eliminating this indirection, vtkGenericDataArray defines an interface that can be used to
implement highly efficient code, because the compiler is able to see past the method calls and optimize the underlying
memory accesses instead.

There are two main subclasses of vtkGenericDataArray: vtkAOSDataArrayTemplate and
vtkSOADataArrayTemplate. These implement array-of-structs and struct-of-arrays storage, respectively.

10.3. vtkArrayDispatch and Related Tools 321

VTK

10.3.5 vtkTypeList

Type lists are a metaprogramming construct used to generate a list of C++ types. They are used in VTK to implement
restricted array dispatching. As we’ll see, vtkArrayDispatch offers ways to reduce the number of generated template
instantiations by enforcing constraints on the arrays used to dispatch. For instance, if one wanted to only generate
templated worker implementations for vtkFloatArray and vtkIntArray, a typelist is used to specify this:

// Create a typelist of 2 types, vtkFloatArray and vtkIntArray:
typedef vtkTypeList::Create<vtkFloatArray, vtkIntArray> MyArrays;

Worker someWorker = ...;
vtkDataArray *someArray = ...;

// Use vtkArrayDispatch to generate code paths for these arrays:
vtkArrayDispatch::DispatchByArray<MyArrays>(someArray, someWorker);

There’s not much to know about type lists as a user, other than how to create them. As seen above, there is a set of
macros named vtkTypeList::Create<...>, where X is the number of types in the created list, and the arguments
are the types to place in the list. In the example above, the new type list is typically bound to a friendlier name using a
local typedef, which is a common practice.

The vtkTypeList.h header defines some additional type list operations that may be useful, such as deleting and
appending types, looking up indices, etc. vtkArrayDispatch::FilterArraysByValueType may come in handy,
too. But for working with array dispatches, most users will only need to create new ones, or use one of the following
predefined vtkTypeLists:

• vtkArrayDispatch::Reals: All floating point ValueTypes.

• vtkArrayDispatch::Integrals: All integral ValueTypes.

• vtkArrayDispatch::AllTypes: Union of Reals and Integrals.

• vtkArrayDispatch::Arrays: Default list of ArrayTypes to use in dispatches.

The last one is special – vtkArrayDispatch::Arrays is a typelist of ArrayTypes set application-wide when VTK
is built. This vtkTypeList of vtkDataArray subclasses is used for unrestricted dispatches, and is the list that gets
filtered when restricting a dispatch to specific ValueTypes.

Refining this list allows the user building VTK to have some control over the dispatch process. If SOA arrays are never
going to be used, they can be removed from dispatch calls, reducing compile times and binary size. On the other hand,
a user applying in-situ techniques may want them available, because they’ll be used to import views of intermediate
results.

By default, vtkArrayDispatch::Arrays contains all AOS arrays. The CMake option VTK_DISPATCH_SOA_ARRAYS
will enable SOA array dispatch as well. More advanced possibilities exist and are described in VTK/Common/Core/
vtkCreateArrayDispatchArrayList.cmake.

10.3.6 vtkArrayDownCast

In VTK, all subclasses of vtkObject (including the data arrays) support a downcast method called SafeDownCast.
It is used similarly to the C++ dynamic_cast – given an object, try to cast it to a more derived type or return NULL if
the object is not the requested type. Say we have a vtkDataArray and want to test if it is actually a vtkFloatArray.
We can do this:

void DoSomeAction(vtkDataArray *dataArray)
{
vtkFloatArray *floatArray = vtkFloatArray::SafeDownCast(dataArray);

(continues on next page)

322 Chapter 10. Design Documents

VTK

(continued from previous page)

if (floatArray)
{
// ... (do work with float array)
}

}

This works, but it can pose a serious problem if DoSomeAction is called repeatedly. SafeDownCast works by per-
forming a series of virtual calls and string comparisons to determine if an object falls into a particular class hierarchy.
These string comparisons add up and can actually dominate computational resources if an algorithm implementation
calls SafeDownCast in a tight loop.

In such situations, it’s ideal to restructure the algorithm so that the downcast only happens once and the same result
is used repeatedly, but sometimes this is not possible. To lessen the cost of downcasting arrays, a FastDownCast
method exists for common subclasses of vtkAbstractArray. This replaces the string comparisons with a single
virtual call and a few integer comparisons and is far cheaper than the more general SafeDownCast. However, not all
array implementations support the FastDownCast method.

This creates a headache for templated code. Take the following example:

template <typename ArrayType>
void DoSomeAction(vtkAbstractArray *array)
{
ArrayType *myArray = ArrayType::SafeDownCast(array);
if (myArray)
{
// ... (do work with myArray)
}

}

We cannot use FastDownCast here since not all possible ArrayTypes support it. But we really want that performance
increase for the ones that do – SafeDownCasts are really slow! vtkArrayDownCast fixes this issue:

template <typename ArrayType>
void DoSomeAction(vtkAbstractArray *array)
{
ArrayType *myArray = vtkArrayDownCast<ArrayType>(array);
if (myArray)
{
// ... (do work with myArray)
}

}

vtkArrayDownCast automatically selects FastDownCast when it is defined for the ArrayType, and otherwise falls
back to SafeDownCast. This is the preferred array downcast method for performance, uniformity, and reliability.

10.3. vtkArrayDispatch and Related Tools 323

VTK

10.3.7 vtkDataArrayAccessor

Array dispatching relies on having templated worker code carry out some operation. For instance, take this
vtkArrayDispatch code that locates the maximum value in an array:

// Stores the tuple/component coordinates of the maximum value:
struct FindMax
{
vtkIdType Tuple; // Result
int Component; // Result

FindMax() : Tuple(-1), Component(-1) {}

template <typename ArrayT>
void operator()(ArrayT *array)
{
// The type to use for temporaries, and a temporary to store
// the current maximum value:
typedef typename ArrayT::ValueType ValueType;
ValueType max = std::numeric_limits<ValueType>::min();

// Iterate through all tuples and components, noting the location
// of the largest element found.
vtkIdType numTuples = array->GetNumberOfTuples();
int numComps = array->GetNumberOfComponents();
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for (int compIdx = 0; compIdx < numComps; ++compIdx)
{
if (max < array->GetTypedComponent(tupleIdx, compIdx))

{
max = array->GetTypedComponent(tupleIdx, compIdx);
this->Tuple = tupleIdx;
this->Component = compIdx;
}

}
}

}
};

void someFunction(vtkDataArray *array)
{
FindMax maxWorker;
vtkArrayDispatch::Dispatch::Execute(array, maxWorker);
// Do work using maxWorker.Tuple and maxWorker.Component...

}

There’s a problem, though. Recall that only the arrays in vtkArrayDispatch::Arrays are tested for dispatching.
What happens if the array passed into someFunction wasn’t on that list?

The dispatch will fail, and maxWorker.Tuple and maxWorker.Component will be left to their initial values of -1.
That’s no good. What if someFunction is a critical path where we want to use a fast dispatched worker if possible,
but still have valid results to use if dispatching fails? Well, we can fall back on the vtkDataArray API and do things
the slow way in that case. When a dispatcher is given an unsupported array, Execute() returns false, so let’s just add a
backup implementation:

324 Chapter 10. Design Documents

VTK

// Stores the tuple/component coordinates of the maximum value:
struct FindMax
{ /* As before... */ };

void someFunction(vtkDataArray *array)
{
FindMax maxWorker;
if (!vtkArrayDispatch::Dispatch::Execute(array, maxWorker))

{
// Reimplement FindMax::operator(), but use the vtkDataArray API's
// "virtual double GetComponent()" instead of the more efficient
// "ValueType GetTypedComponent()" from vtkGenericDataArray.
}

}

Ok, that works. But ugh. . .why write the same algorithm twice? That’s extra debugging, extra testing, extra mainte-
nance burden, and just plain not fun.

Enter vtkDataArrayAccessor. This utility template does a very simple, yet useful, job. It provides component and
tuple based Get and Set methods that will call the corresponding method on the array using either the vtkDataArray
or vtkGenericDataArrayAPI, depending on the class’s template parameter. It also defines an APIType, which can be
used to allocate temporaries, etc. This type is double for vtkDataArrays and vtkGenericDataArray::ValueType
for vtkGenericDataArrays.

Another nice benefit is that vtkDataArrayAccessor has a more compact API. The only defined methods are Get and
Set, and they’re overloaded to work on either tuples or components (though component access is encouraged as it is
much, much more efficient). Note that all non-element access operations (such as GetNumberOfTuples) should still
be called on the array pointer using vtkDataArray API.

Using vtkDataArrayAccessor, we can write a single worker template that works for both vtkDataArray and
vtkGenericDataArray, without a loss of performance in the latter case. That worker looks like this:

// Better, uses vtkDataArrayAccessor:
struct FindMax
{
vtkIdType Tuple; // Result
int Component; // Result

FindMax() : Tuple(-1), Component(-1) {}

template <typename ArrayT>
void operator()(ArrayT *array)
{
// Create the accessor:
vtkDataArrayAccessor<ArrayT> access(array);

// Prepare the temporary. We'll use the accessor's APIType instead of
// ArrayT::ValueType, since that is appropriate for the vtkDataArray
// fallback:
typedef typename vtkDataArrayAccessor<ArrayT>::APIType ValueType;
ValueType max = std::numeric_limits<ValueType>::min();

// Iterate as before, but use access.Get instead of
// array->GetTypedComponent. GetTypedComponent is still used

(continues on next page)

10.3. vtkArrayDispatch and Related Tools 325

VTK

(continued from previous page)

// when ArrayT is a vtkGenericDataArray, but
// vtkDataArray::GetComponent is now used as a fallback when ArrayT
// is vtkDataArray.
vtkIdType numTuples = array->GetNumberOfTuples();
int numComps = array->GetNumberOfComponents();
for (vtkIdType tupleIdx = 0; tupleIdx < numTuples; ++tupleIdx)
{
for (int compIdx = 0; compIdx < numComps; ++compIdx)
{
if (max < access.Get(tupleIdx, compIdx))

{
max = access.Get(tupleIdx, compIdx);
this->Tuple = tupleIdx;
this->Component = compIdx;
}

}
}

}
};

Now when we call operator() with say, ArrayT=vtkFloatArray, we’ll get an optimized, efficient code path. But
we can also call this same implementation with ArrayT=vtkDataArray and still get a correct result (assuming that
the vtkDataArray’s double API represents the data well enough).

Using the vtkDataArray fallback path is straightforward. At the call site:

void someFunction(vtkDataArray *array)
{
FindMax maxWorker;
if (!vtkArrayDispatch::Dispatch::Execute(array, maxWorker))
{
maxWorker(array); // Dispatch failed, call vtkDataArray fallback
}

// Do work using maxWorker.Tuple and maxWorker.Component -- now we know
// for sure that they're initialized!

}

Using the above pattern for calling a worker and always going through vtkDataArrayAccessor to Get/Set array
elements ensures that any worker implementation can be its own fallback path.

10.3.8 VTK_ASSUME

While performance testing the new array classes, we compared the performance of a dispatched worker using the
vtkDataArrayAccessor class to the same algorithm using raw memory buffers. We managed to achieve the same per-
formance out of the box for most cases, using both AOS and SOA array implementations. In fact, with --ffast-math
optimizations on GCC 4.9, the optimizer is able to remove all function calls and apply SIMD vectorized instructions in
the dispatched worker, showing that the new array API is thin enough that the compiler can see the algorithm in terms
of memory access.

But there was one case where performance suffered. If iterating through an AOS data array with a known number of
components using GetTypedComponent, the raw pointer implementation initially outperformed the dispatched array.
To understand why, note that the AOS implementation of GetTypedComponent is along the lines of:

326 Chapter 10. Design Documents

VTK

ValueType vtkAOSDataArrayTemplate::GetTypedComponent(vtkIdType tuple,
int comp) const

{
// AOSData is a ValueType* pointing at the base of the array data.
return this->AOSData[tuple * this->NumberOfComponents + comp];

}

Because NumberOfComponents is unknown at compile time, the optimizer cannot assume anything about the stride
of the components in the array. This leads to missed optimizations for vectorized read/writes and increased complexity
in the instructions used to iterate through the data.

For such cases where the number of components is, in fact, known at compile time (due to a calling function performing
some validation, for instance), it is possible to tell the compiler about this fact using VTK_ASSUME.

VTK_ASSUME wraps a compiler-specific __assume statement, which is used to pass such optimization hints. Its argu-
ment is an expression of some condition that is guaranteed to always be true. This allows more aggressive optimizations
when used correctly, but be forewarned that if the condition is not met at runtime, the results are unpredictable and
likely catastrophic.

But if we’re writing a filter that only operates on 3D point sets, we know the number of components in the point array
will always be 3. In this case we can write:

VTK_ASSUME(pointsArray->GetNumberOfComponents() == 3);

in the worker function and this instructs the compiler that the array’s internal NumberOfComponents variable will
always be 3, and thus the stride of the array is known. Of course, the caller of this worker function should ensure that
this is a 3-component array and fail gracefully if it is not.

There are many scenarios where VTK_ASSUME can offer a serious performance boost, the case of known tuple size is a
common one that’s really worth remembering.

10.3.9 vtkArrayDispatch

The dispatchers implemented in the vtkArrayDispatch namespace provide array dispatching with customizable restric-
tions on code generation and a simple syntax that hides the messy details of type resolution and multi-array dispatch.
There are several “flavors” of dispatch available that operate on up to three arrays simultaneously.

Components Of A Dispatch

Using the vtkArrayDispatch system requires three elements: the array(s), the worker, and the dispatcher.

The Arrays

All dispatched arrays must be subclasses of vtkDataArray. It is important to identify as many restrictions as possi-
ble. Must every ArrayType be considered during dispatch, or is the array’s ValueType (or even the ArrayType itself)
restricted? If dispatching multiple arrays at once, are they expected to have the same ValueType? These scenarios are
common, and these conditions can be used to reduce the number of instantiations of the worker template.

10.3. vtkArrayDispatch and Related Tools 327

VTK

The Worker

The worker is some generic callable. In C++98, a templated functor is a good choice. In C++14, a generic lambda is a
usable option as well. For our purposes, we’ll only consider the functor approach, as C++14 is a long ways off for core
VTK code.

At a minimum, the worker functor should define operator() to make it callable. This should be a function template
with a template parameter for each array it should handle. For a three array dispatch, it should look something like this:

struct ThreeArrayWorker
{
template <typename Array1T, typename Array2T, typename Array3T>
void operator()(Array1T *array1, Array2T *array2, Array3T *array3)
{
/* Do stuff... */
}

};

At runtime, the dispatcher will call ThreeWayWorker::operator() with a set of Array1T, Array2T, and Array3T
that satisfy any dispatch restrictions.

Workers can be stateful, too, as seen in the FindMax worker earlier where the worker simply identified the component
and tuple id of the largest value in the array. The functor stored them for the caller to use in further analysis:

// Example of a stateful dispatch functor:
struct FindMax
{
// Functor state, holds results that are accessible to the caller:
vtkIdType Tuple;
int Component;

// Set initial values:
FindMax() : Tuple(-1), Component(-1) {}

// Template method to set Tuple and Component ivars:
template <typename ArrayT>
void operator()(ArrayT *array)
{
/* Do stuff... */

}
};

The Dispatcher

The dispatcher is the workhorse of the system. It is responsible for applying restrictions, resolving array types, and
generating the requested template instantiations. It has responsibilities both at run-time and compile-time.

During compilation, the dispatcher will identify the valid combinations of arrays that can be used according to the
restrictions. This is done by starting with a typelist of arrays, either supplied as a template parameter or by defaulting
to vtkArrayDispatch::Arrays, and filtering them by ValueType if needed. For multi-array dispatches, additional
restrictions may apply, such as forcing the second and third arrays to have the same ValueType as the first. It must then
generate the required code for the dispatch – that is, the templated worker implementation must be instantiated for each
valid combination of arrays.

328 Chapter 10. Design Documents

VTK

At runtime, it tests each of the dispatched arrays to see if they match one of the generated code paths. Runtime type
resolution is carried out using vtkArrayDownCast to get the best performance available for the arrays of interest. If it
finds a match, it calls the worker’s operator() method with the properly typed arrays. If no match is found, it returns
false without executing the worker.

Restrictions: Why They Matter

We’ve made several mentions of using restrictions to reduce the number of template instantiations during a dispatch
operation. You may be wondering if it really matters so much. Let’s consider some numbers.

VTK is configured to use 13 ValueTypes for numeric data. These are the standard numeric types float, int,
unsigned char, etc. By default, VTK will define vtkArrayDispatch::Arrays to use all 13 types with
vtkAOSDataArrayTemplate for the standard set of dispatchable arrays. If enabled during compilation, the SOA
data arrays are added to this list for a total of 26 arrays.

Using these 26 arrays in a single, unrestricted dispatch will result in 26 instantiations of the worker template. A double
dispatch will generate 676 workers. A triple dispatch with no restrictions creates a whopping 17,576 functions to handle
the possible combinations of arrays. That’s a lot of instructions to pack into the final binary object.

Applying some simple restrictions can reduce this immensely. Say we know that the arrays will only contain floats
or doubles. This would reduce the single dispatch to 4 instantiations, the double dispatch to 16, and the triple to 64.
We’ve just reduced the generated code size significantly. We could even apply such a restriction to just create some
‘fast-paths’ and let the integral types fallback to using the vtkDataArray API by using vtkDataArrayAccessors.
Dispatch restriction is a powerful tool for reducing the compiled size of a binary object.

Another common restriction is that all arrays in a multi-array dispatch have the same ValueType, even if that ValueType
is not known at compile time. By specifying this restriction, a double dispatch on all 26 AOS/SOA arrays will only
produce 52 worker instantiations, down from 676. The triple dispatch drops to 104 instantiations from 17,576.

Always apply restrictions when they are known, especially for multi-array dispatches. The savings are worth it.

Types of Dispatchers

Now that we’ve discussed the components of a dispatch operation, what the dispatchers do, and the importance of
restricting dispatches, let’s take a look at the types of dispatchers available.

vtkArrayDispatch::Dispatch

This family of dispatchers take no parameters and perform an unrestricted dispatch over all arrays in
vtkArrayDispatch::Arrays.

Variations:

• vtkArrayDispatch::Dispatch: Single dispatch.

• vtkArrayDispatch::Dispatch2: Double dispatch.

• vtkArrayDispatch::Dispatch3: Triple dispatch.

Arrays considered: All arrays in vtkArrayDispatch::Arrays.

Restrictions: None.

Usecase: Used when no useful information exists that can be used to apply restrictions.

Example Usage:

10.3. vtkArrayDispatch and Related Tools 329

VTK

vtkArrayDispatch::Dispatch::Execute(array, worker);

vtkArrayDispatch::DispatchByArray

This family of dispatchers takes a vtkTypeList of explicit array types to use during dispatching. They should only
be used when an array’s exact type is restricted. If dispatching multiple arrays and only one has such type restrictions,
use vtkArrayDispatch::Arrays (or a filtered version) for the unrestricted arrays.

Variations:

• vtkArrayDispatch::DispatchByArray: Single dispatch.

• vtkArrayDispatch::Dispatch2ByArray: Double dispatch.

• vtkArrayDispatch::Dispatch3ByArray: Triple dispatch.

Arrays considered: All arrays explicitly listed in the parameter lists.

Restrictions: Array must be explicitly listed in the dispatcher’s type.

Usecase: Used when one or more arrays have known implementations.

Example Usage:

An example here would be a filter that processes an input array of some integral type and produces either a
vtkDoubleArray or a vtkFloatArray, depending on some condition. Since the input array’s implementation is un-
known (it comes from outside the filter), we’ll rely on a ValueType-filtered version of vtkArrayDispatch::Arrays
for its type. However, we know the output array is either vtkDoubleArray or vtkFloatArray, so we’ll want to be
sure to apply that restriction:

// input has an unknown implementation, but an integral ValueType.
vtkDataArray *input = ...;

// Output is always either vtkFloatArray or vtkDoubleArray:
vtkDataArray *output = someCondition ? vtkFloatArray::New()

: vtkDoubleArray::New();

// Define the valid ArrayTypes for input by filtering
// vtkArrayDispatch::Arrays to remove non-integral types:
typedef typename vtkArrayDispatch::FilterArraysByValueType
<
vtkArrayDispatch::Arrays,
vtkArrayDispatch::Integrals
>::Result InputTypes;

// For output, create a new vtkTypeList with the only two possibilities:
typedef vtkTypeList::Create<vtkFloatArray, vtkDoubleArray> OutputTypes;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2ByArray
<
InputTypes,
OutputTypes
> MyDispatch;

(continues on next page)

330 Chapter 10. Design Documents

VTK

(continued from previous page)

// Execute the dispatch:
MyDispatch::Execute(input, output, someWorker);

vtkArrayDispatch::DispatchByValueType

This family of dispatchers takes a vtkTypeList of ValueTypes for each array and restricts dispatch to only arrays in
vtkArrayDispatch::Arrays that have one of the specified value types.

Variations:

• vtkArrayDispatch::DispatchByValueType: Single dispatch.

• vtkArrayDispatch::Dispatch2ByValueType: Double dispatch.

• vtkArrayDispatch::Dispatch3ByValueType: Triple dispatch.

Arrays considered: All arrays in vtkArrayDispatch::Arrays that meet the ValueType requirements.

Restrictions: Arrays that do not satisfy the ValueType requirements are eliminated.

Usecase: Used when one or more of the dispatched arrays has an unknown implementation, but a known (or restricted)
ValueType.

Example Usage:

Here we’ll consider a filter that processes three arrays. The first is a complete unknown. The second is known to
hold unsigned char, but we don’t know the implementation. The third holds either doubles or floats, but its
implementation is also unknown.

// Complete unknown:
vtkDataArray *array1 = ...;
// Some array holding unsigned chars:
vtkDataArray *array2 = ...;
// Some array holding either floats or doubles:
vtkDataArray *array3 = ...;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch3ByValueType
<
vtkArrayDispatch::AllTypes,
vtkTypeList::Create<unsigned char>,
vtkArrayDispatch::Reals
> MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, array3, someWorker);

10.3. vtkArrayDispatch and Related Tools 331

VTK

vtkArrayDispatch::DispatchByArrayWithSameValueType

This family of dispatchers takes a vtkTypeList of ArrayTypes for each array and restricts dispatch to only consider
arrays from those typelists, with the added requirement that all dispatched arrays share a ValueType.

Variations:

• vtkArrayDispatch::Dispatch2ByArrayWithSameValueType: Double dispatch.

• vtkArrayDispatch::Dispatch3ByArrayWithSameValueType: Triple dispatch.

Arrays considered: All arrays in the explicit typelists that meet the ValueType requirements.

Restrictions: Combinations of arrays with differing ValueTypes are eliminated.

Usecase: When one or more arrays are known to belong to a restricted set of ArrayTypes, and all arrays are known to
share the same ValueType, regardless of implementation.

Example Usage:

Let’s consider a double array dispatch, with array1 known to be one of four common array types (AOS float, double,
int, and vtkIdType arrays), and the other is a complete unknown, although we know that it holds the same ValueType
as array1.

// AOS float, double, int, or vtkIdType array:
vtkDataArray *array1 = ...;
// Unknown implementation, but the ValueType matches array1:
vtkDataArray *array2 = ...;

// array1's possible types:
typedef vtkTypeList;:Create<vtkFloatArray, vtkDoubleArray,

vtkIntArray, vtkIdTypeArray> Array1Types;

// array2's possible types:
typedef typename vtkArrayDispatch::FilterArraysByValueType
<
vtkArrayDispatch::Arrays,
vtkTypeList::Create<float, double, int, vtkIdType>
> Array2Types;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2ByArrayWithSameValueType
<
Array1Types,
Array2Types
> MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, someWorker);

332 Chapter 10. Design Documents

VTK

vtkArrayDispatch::DispatchBySameValueType

This family of dispatchers takes a single vtkTypeList of ValueType and restricts dispatch to only consider arrays from
vtkArrayDispatch::Arrays with those ValueTypes, with the added requirement that all dispatched arrays share a
ValueType.

Variations:

• vtkArrayDispatch::Dispatch2BySameValueType: Double dispatch.

• vtkArrayDispatch::Dispatch3BySameValueType: Triple dispatch.

• vtkArrayDispatch::Dispatch2SameValueType: Double dispatch using vtkArrayDispatch::AllTypes.

• vtkArrayDispatch::Dispatch3SameValueType: Triple dispatch using vtkArrayDispatch::AllTypes.

Arrays considered: All arrays in vtkArrayDispatch::Arrays that meet the ValueType requirements.

Restrictions: Combinations of arrays with differing ValueTypes are eliminated.

Usecase: When one or more arrays are known to belong to a restricted set of ValueTypes, and all arrays are known to
share the same ValueType, regardless of implementation.

Example Usage:

Let’s consider a double array dispatch, with array1 known to be one of four common ValueTypes (float, double,
int, and vtkIdType arrays), and array2 known to have the same ValueType as array1.

// Some float, double, int, or vtkIdType array:
vtkDataArray *array1 = ...;
// Unknown, but the ValueType matches array1:
vtkDataArray *array2 = ...;

// The allowed ValueTypes:
typedef vtkTypeList::Create<float, double, int, vtkIdType> ValidValueTypes;

// Typedef the dispatch to a more manageable name:
typedef vtkArrayDispatch::Dispatch2BySameValueType
<
ValidValueTypes
> MyDispatch;

// Execute the dispatch:
MyDispatch::Execute(array1, array2, someWorker);

10.3.10 Advanced Usage

Accessing Memory Buffers

Despite the thin vtkGenericDataArray API’s nice feature that compilers can optimize memory accesses, sometimes
there are still legitimate reasons to access the underlying memory buffer. This can still be done safely by providing
overloads to your worker’s operator() method. For instance, vtkDataArray::DeepCopy uses a generic implemen-
tation when mixed array implementations are used, but has optimized overloads for copying between arrays with the
same ValueType and implementation. The worker for this dispatch is shown below as an example:

10.3. vtkArrayDispatch and Related Tools 333

VTK

// Copy tuples from src to dest:
struct DeepCopyWorker
{
// AoS --> AoS same-type specialization:
template <typename ValueType>
void operator()(vtkAOSDataArrayTemplate<ValueType> *src,

vtkAOSDataArrayTemplate<ValueType> *dst)
{
std::copy(src->Begin(), src->End(), dst->Begin());

}

// SoA --> SoA same-type specialization:
template <typename ValueType>
void operator()(vtkSOADataArrayTemplate<ValueType> *src,

vtkSOADataArrayTemplate<ValueType> *dst)
{
vtkIdType numTuples = src->GetNumberOfTuples();
for (int comp; comp < src->GetNumberOfComponents(); ++comp)
{
ValueType *srcBegin = src->GetComponentArrayPointer(comp);
ValueType *srcEnd = srcBegin + numTuples;
ValueType *dstBegin = dst->GetComponentArrayPointer(comp);

std::copy(srcBegin, srcEnd, dstBegin);
}

}

// Generic implementation:
template <typename Array1T, typename Array2T>
void operator()(Array1T *src, Array2T *dst)
{
vtkDataArrayAccessor<Array1T> s(src);
vtkDataArrayAccessor<Array2T> d(dst);

typedef typename vtkDataArrayAccessor<Array2T>::APIType DestType;

vtkIdType tuples = src->GetNumberOfTuples();
int comps = src->GetNumberOfComponents();

for (vtkIdType t = 0; t < tuples; ++t)
{
for (int c = 0; c < comps; ++c)
{
d.Set(t, c, static_cast<DestType>(s.Get(t, c)));
}

}
}

};

334 Chapter 10. Design Documents

VTK

10.3.11 Putting It All Together

Now that we’ve explored the new tools introduced with VTK 7.1 that allow efficient, implementation agnostic array
access, let’s take another look at the calcMagnitude example from before and identify the key features of the imple-
mentation:

// Modern implementation of calcMagnitude using new concepts in VTK 7.1:
struct CalcMagnitudeWorker
{
template <typename VectorArray, typename MagnitudeArray>
void operator()(VectorArray *vectors, MagnitudeArray *magnitude)
{
VTK_ASSUME(vectors->GetNumberOfComponents() == 3);
VTK_ASSUME(magnitude->GetNumberOfComponents() == 1);

vtkDataArrayAccessor<VectorArray> v(vectors);
vtkDataArrayAccessor<MagnitudeArray> m(magnitude);

vtkIdType numVectors = vectors->GetNumberOfTuples();
for (vtkIdType tupleIdx = 0; tupleIdx < numVectors; ++tupleIdx)
{
m.Set(tupleIdx, 0, std::sqrt(v.Get(tupleIdx, 0) * v.Get(tupleIdx, 0) +

v.Get(tupleIdx, 1) * v.Get(tupleIdx, 1) +
v.Get(tupleIdx, 2) * v.Get(tupleIdx, 2)));

}
}

};

void calcMagnitude(vtkDataArray *vectors, vtkDataArray *magnitude)
{
CalcMagnitudeWorker worker;
typedef vtkArrayDispatch::Dispatch2ByValueType
<
vtkArrayDispatch::AllTypes,
vtkArrayDispatch::Reals

> Dispatcher;

if (!Dispatcher::Execute(vectors, magnitude, worker))
{
worker(vectors, magnitude); // vtkDataArray fallback
}

}

This implementation:

• Uses dispatch restrictions to reduce the number of instantiated templated worker functions.

• Assuming 26 types are in vtkArrayDispatch::Arrays (13 AOS + 13 SOA).

• The first array is unrestricted. All 26 array types are considered.

• The second array is restricted to float or double ValueTypes, which translates to 4 array types (one each, SOA
and AOS).

• 26 * 4 = 104 possible combinations exist. We’ve eliminated 26 * 22 = 572 combinations that an unrestricted
double-dispatch would have generated (it would create 676 instantiations).

10.3. vtkArrayDispatch and Related Tools 335

VTK

• The calculation is still carried out at double precision when the ValueType restrictions are not met.

• Just because we don’t want those other 572 cases to have special code generated doesn’t necessarily mean that
we wouldn’t want them to run.

• Thanks to vtkDataArrayAccessor, we have a fallback implementation that reuses our templated worker code.

• In this case, the dispatch is really just a fast-path implementation for floating point output types.

• The performance should be identical to iterating through raw memory buffers.

• The vtkGenericDataArray API is transparent to the compiler. The specialized instantiations of operator()
can be heavily optimized since the memory access patterns are known and well-defined.

• Using VTK_ASSUME tells the compiler that the arrays have known strides, allowing further compile-time opti-
mizations.

Hopefully this has convinced you that the vtkArrayDispatch and related tools are worth using to create flexible,
efficient, typesafe implementations for your work with VTK. Please direct any questions you may have on the subject
to the VTK Discourse forum.

10.4 Data Assembly

VTK 10.0 introduces a new mechanism for representing data hierarchies using vtkPartitionedDataSetCollection and
vtkDataAssembly. This document describes the design details.

10.4.1 Data Model

The design is based on three classes:

• vtkPartitionedDataSet is a collection of datasets (not to be confused with vtkDataSet).

• vtkPartitionedDataSetCollection is a collection of vtkPartitionedDataSets.

• vtkDataAssembly defines the hierarchical relationships between items in a
vtkPartitionedDataSetCollection.

Partitioned Dataset

vtkPartitionedDataSet is simply a collection of datasets that are to be treated as a logical whole. In data-parallel
applications, each dataset may represent a partition of the complete dataset on the current worker process, rank, or
thread. Each dataset in a vtkPartitionedDataSet is called a partition, implying it is only a part of a whole.

All non-null partitions have similar field and attribute arrays. For example, if a vtkPartitionedDataSet comprises
of vtkDataSet subclasses, all will have exactly the same number of point data/cell data arrays, with same names,
same number of components, and same data types.

336 Chapter 10. Design Documents

https://discourse.vtk.org

VTK

Partitioned Dataset Collection

vtkPartitionedDataSetCollection is a collection of vtkPartitionedDataSet. Thus, it is simply a mech-
anism to group multiple vtkPartitionedDataSet instances together. Since each vtkPartitionedDataSet
represents a whole dataset (not be confused with vtkDataSet), we can refer to each item in a
vtkPartitionedDataSetCollection as a partitioned-dataset.

Unlike items in the vtkPartitionedDataSet, there are no restrictions of consistency between each items, partitioned-
datasets, in the vtkPartitionedDataSetCollection. Thus, in the multiblock-dataset parlance, each item in this
collection can be thought of as a block.

Data Assembly

vtkDataAssembly is a means to define an hierarchical organization of items in a
vtkPartitionedDataSetCollection. This is literally a tree made up of named nodes. Each
node in the tree can have associated dataset-indices. For a vtkDataAssembly is associated with a
vtkPartitionedDataSetCollection, each of the dataset-indices is simply the index of a partitioned-dataset
in the vtkPartitionedDataSetCollection. A dataset-index can be associated with multiple nodes in the
assembly, however, a dataset-index cannot be associated with the same node more than once.

An assembly provides an ability to define a more complex view of the raw data blocks in a more application-specific
form. This is not much different than what could be achieved using simply a vtkMultiBlockDataSet. However,
there are several advantages to this separation of storage (vtkPartitionedDataSetCollection) and organization
(vtkDataAssembly). These will become clear as we cover different use-cases.

While nodes in the data-assembly have unique ids, public facing algorithm APIs should not use them. For example
an extract-block filter that allows users to choose which blocks (rather partitioned-datasets) to extract from vtkParti-
tionedDataSetCollection can expose an API that lets users provide path-expression to identify nodes in the associated
data-assembly using their names.

Besides accessing nodes by querying using their names, vtkDataAssembly also supports a mechanism to iterate
over all nodes in depth-first or breadth-first order using a visitor. vtkDataAssemblyVisitor defines a API that can be
implemented to do custom action as each node in the tree is visited.

10.4.2 Design Implications

1. Since vtkPartitionedDataSet is simply parts of a whole, there is no specific significance to the number of
partitions. In distributed pipelines, for example, a vtkPartitionedDataSet on each rank can have arbitrarily
many partitions. Furthermore, filters can add/remove partitions as needed. Since the vtkDataAssembly never
refers to individual partitions, this has no implication to filters that use the hierarchical relationships.

2. When constructing vtkPartitionedDataSetCollection in distributed data-parallel cases, each rank should
have exactly the same number of partitioned-datasets. In this case, each vtkPartitionedDataSet at a specific
index across all ranks together is treated as a whole dataset. Similarly, the vtkDataAssembly on each should
be identical.

3. When developing filters, it is worth considering whether the filter really is a
vtkPartitionedDataSetCollection filter or simply a vtkPartitionedDataSet-aware filter that
needs to operate on each vtkPartitionedDataSet individually. For example, typical multiblock-aware
filters like ghost-cell-generation, data-redistribution, etc., are simply vtkPartitionedDataSet filters. For
vtkPartitionedDataSet-only filters, when the input is a vtkPartitionedDataSetCollection, the
executive takes care of looping over each of the partitioned-dataset in the collection, thus simplifying the filter
development.

4. Filters that don’t change the number of partitioned-datasets in a vtkPartitionedDataSetCollection don’t generally
affect the relationships between the partitioned-datasets and hence can largely pass through the vtkDataAssembly.

10.4. Data Assembly 337

VTK

Only filter like extract-block that remove partitioned-datasets need to update the vtkDataAssembly. There too,
vtkDataAssembly provides several convenience methods to update the tree with ease.

5. It is possible to develop a mapper that uses the vtkDataAssembly. Using APIs that let users use path-queries
to specify rendering properties for various nodes, the mapper can support use-cases where the input structure
keeps changing but the relationships remain largely intact. Since the same dataset-index can be associated with
multiple nodes in a vtkDataAssembly, the mapper can effectively support scene-graph like capabilities where
user can specify transforms, and other rendering parameters, while reusing the heavy datasets. The mapper can
easily tell if a dataset has already been uploaded to the rendering pipeline since it will have the same id and
indeed be the same instance even if is being visited through different branches in the tree.

10.5 VTK Legacy Reader/Writer Information Format

10.5.1 Overview

The legacy vtk data file readers / writers store certain vtkInformation entries that are set on vtkAbstractArray’s
GetInformation() object. Support is currently limited to numeric and string information keys, both single- and
vector-valued. Only the information objects attached to arrays are encoded.

10.5.2 Array Metadata Blocks

A block of metadata may immediately follow the specification of an array. Whitespace is permitted between the array
data and the opening METADATA tag. The metadata block is terminated by an empty line.

vtk DataFile Version 4.1
vtk output
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 6 float
0 0 0 1 0 0 0.5 1 0
0.5 0.5 1 0.5 -1 0 0.5 -0.5 1

METADATA
COMPONENT_NAMES
X%20coordinates
Y%20coordinates
Z%20coordinates
INFORMATION 8
NAME Double LOCATION TestKey
DATA 1
NAME DoubleVector LOCATION TestKey
DATA 3 1 90 260
NAME IdType LOCATION TestKey
DATA 5
NAME String LOCATION TestKey
DATA Test%20String!%0ALine2
NAME Integer LOCATION TestKey
DATA 408
NAME IntegerVector LOCATION TestKey
DATA 3 1 5 45
NAME StringVector LOCATION TestKey

(continues on next page)

338 Chapter 10. Design Documents

VTK

(continued from previous page)

DATA 3
First
Second%20(with%20whitespace!)
Third%20(with%0Anewline!)
NAME UnsignedLong LOCATION TestKey
DATA 9

CELLS 3 15
4 0 1 2 3
4 0 4 1 5
4 5 3 1 0

CELL_TYPES 3
10
10
10

CELL_DATA 3
FIELD FieldData 1
vtkGhostType 1 3 unsigned_char
0 1 1
METADATA
COMPONENT_NAMES
Ghost%20level%20information
INFORMATION 1
NAME UNITS_LABEL LOCATION vtkDataArray
DATA radians

As shown, a metadata block can have two sections, COMPONENT_NAMES and INFORMATION. The INFORMATION tag is
followed by the number of information keys that follow.

COMPONENT_NAMES

If the METADATA block contains the line COMPONENT_NAMES, the following lines are expected to be encoded strings
containing the names of each component. There must be one line per component.

INFORMATION

If the METADATA block contains the line INFORMATION, the number of information keys is read from the INFORMA-
TION line and vtkInformation data that follows is parsed. The general form of a single valued information entry
is:

NAME [key name] LOCATION [key location (e.g. class name)]
DATA [value]

A vector information key is generally represented as:

NAME [key name] LOCATION [key location (e.g. class name)]
DATA [vector length] [value0] [value1] [value2] ...

10.5. VTK Legacy Reader/Writer Information Format 339

VTK

The exception is a string vector, which contains encoded entries separated by newlines.

Specific examples of supported key types:

vtkInformationDoubleKey

NAME Double LOCATION TestKey
DATA 1

vtkInformationDoubleVectorKey

NAME DoubleVector LOCATION TestKey
DATA 3 1 90 260

vtkInformationIdTypeKey

NAME IdType LOCATION TestKey
DATA 5

vtkInformationStringKey

NAME String LOCATION TestKey
DATA Test%20String!%0ALine2

vtkInformationIntegerKey

NAME Integer LOCATION TestKey
DATA 408

vtkInformationIntegerVectorKey

NAME IntegerVector LOCATION TestKey
DATA 3 1 5 45

340 Chapter 10. Design Documents

VTK

vtkInformationStringVectorKey

NAME StringVector LOCATION TestKey
DATA 3
First
Second%20(with%20whitespace!)
Third%20(with%0Anewline!)

vtkInformationUnsignedLongKey

NAME UnsignedLong LOCATION TestKey
DATA 9

10.6 VTK XML Reader/Writer Information Format

10.6.1 Overview

The vtk xml data file readers / writers store certain vtkInformation entries that are set on vtkAbstractArray’s
GetInformation() object. Support is currently limited to numeric and string information keys, both single- and
vector-valued. Only the information objects attached to arrays are written/read.

10.6.2 Array Information

Array information is embedded in the <DataArray> XML element as a series of <InformationKey> elements. The
required attributes name and location specify the name and location strings associated with the key – for instance, the
vtkDataArray::UNITS_LABEL() key has name="UNITS_LABEL" and location="vtkDataArray". The length
attribute is required for vector keys.

<DataArray [...]>
<InformationKey name="KeyName" location="KeyLocation" [length="N"]>
[...]

</InformationKey>
<InformationKey [...]>
[...]

</InformationKey>
[...]

</DataArray>

Specific examples of supported key types:

10.6. VTK XML Reader/Writer Information Format 341

VTK

vtkInformationDoubleKey

<InformationKey name="Double" location="XMLTestKey">
1

</InformationKey>

vtkInformationDoubleVectorKey

<InformationKey name="DoubleVector" location="XMLTestKey" length="3">
<Value index="0">
1

</Value>
<Value index="1">
90

</Value>
<Value index="2">
260

</Value>
</InformationKey>

vtkInformationIdTypeKey

<InformationKey name="IdType" location="XMLTestKey">
5

</InformationKey>

vtkInformationStringKey

<InformationKey name="String" location="XMLTestKey">
Test String!

Line2
</InformationKey>

vtkInformationIntegerKey

<InformationKey name="Integer" location="XMLTestKey">
408

</InformationKey>

342 Chapter 10. Design Documents

VTK

vtkInformationIntegerVectorKey

<InformationKey name="IntegerVector" location="XMLTestKey" length="3">
<Value index="0">

1
</Value>
<Value index="1">
5

</Value>
<Value index="2">
45

</Value>
</InformationKey>

vtkInformationStringVectorKey

<InformationKey name="StringVector" location="XMLTestKey" length="3">
<Value index="0">
First

</Value>
<Value index="1">
Second (with whitespace!)

</Value>
<Value index="2">
Third (with

newline!)
</Value>

</InformationKey>

vtkInformationUnsignedLongKey

<InformationKey name="UnsignedLong" location="XMLTestKey">
9

</InformationKey>

10.7 Field Data as Time Meta-Data in VTK XML File Formats

As of VTK 8.2, VTK XML readers and writers support embedding time meta-data as a field array. This is demonstrated
best with an example:

<VTKFile type="PolyData" version="1.0" byte_order="LittleEndian" header_type="UInt64">
<PolyData>
<FieldData>
<DataArray type="Float64" Name="TimeValue" NumberOfTuples="1">1.24
</DataArray>

</FieldData>
...

</VTKFile>

10.7. Field Data as Time Meta-Data in VTK XML File Formats 343

VTK

Here TimeValue is a regular double precision array that has a single value of 1.24. The XML readers will treat this
array in a special way. When they encounter this array during the meta-data stage (RequestInformation()), they
will read the value from this array and generate a vtkStreamingDemandDrivenPipeline::TIME_STEPS() key in
the output information containing this value.

In addition, the XML writers will generate a field array of name TimeValue in the output, if they encounter
time value in their input (vtkDataObject::DATA_TIME_STEP()). This is done even if the data does not have a
TimeValue array. Furthermore, even such an array exists, it will be replaced with one that contains the value from
vtkDataObject::DATA_TIME_STEP() to make sure that the value is consistent with the pipeline value.

This change may appear pointless on its own as a single time value is not very useful. Its main use is when reading file
series as it is done by ParaView’s file (time) series readers.

10.8 MomentInvariants Architecture

10.8.1 Rotation-invariant Pattern Detection

For pattern detection, the orientation of the pattern is usually not known a priory. The process should not be deceler-
ated more than necessary while the pattern detection algorithm looks for all possible rotated copies of the template.
Therefore, rotation invariance is a critical requirement. Moment invariants can achieve rotation invariance without the
need for point to point correlations, which are difficult to generate in smooth fields. For an introduction, we recommend

Flusser, J., Suk, T., & Zitová, B. (2016). 2D and 3D Image Analysis by Moments. John Wiley & Sons.

We have implemented the prototypes of two vtk filters that together are able to perform pattern detection. The algorithm,
which we used, is described in

Bujack, R., & Hagen, H. (2017). Moment Invariants for Multi-Dimensional Data. In Modeling, Analysis, and Visual-
ization of Anisotropy (pp. 43-64). Springer, Cham.

The first filter computes the moments and the second one performs the normalization based on the given pattern and
computes the similarity. They are able to handle two- and three-dimensional scalar, vector, and matrix fields in the
format of a vtkImageData. The architecture with inputs and outputs and their types can be found in the following
figure.

344 Chapter 10. Design Documents

VTK

The architecture illustrated with example images is shown the following figure.

10.8. MomentInvariants Architecture 345

VTK

346 Chapter 10. Design Documents

VTK

10.8.2 Extensions

The MomentInvariants module contains actually a bunch of extra algorithms and helper classes.

The class vtkMomentsHelper provides functions for the moments computation that will be needed by vtkCompute-
Moments and vtkMomentInvariants.

The class vtkMomentsTensor provides the functionality to treat tensors of arbitrary dimension and rank. It supports
addition, outer product, and contractions.

The algorithm vtkSimilarityBalls is a filter that takes the similarity field as produced by vtkMomentInvariants and a
grid of type vtkImageData. It computes the local maxima in space plus scale and produces the output localMaxSim-
ilarity that contains the similarity value together with the corresponding radius at the maxima. All other points are
zero. For further visualization, it also produces two output fields that encode the radius through drawing a solid ball
or a hollow sphere around those places. The second input, i.e. the grid, steers the resolution of the balls. It is helpful
if its extent is a multiple of the first input’s. Then, the circles are centered nicely. The spheres/circles are good for 2D
visualizations, because they can be laid over a visualization of the field. The balls are good for 3D volume rendering
or steering of the seeding of visualization elements. The 2D visualization is described in

Bujack, R., Hotz, I., Scheuermann, G., & Hitzer, E. (2015). Moment invariants for 2D flow fields via normalization in
detail. IEEE transactions on visualization and computer graphics, 21(8), 916-929

and the 3D counterpart in

Bujack, R., Kasten, J., Hotz, I., Scheuermann, G., & Hitzer, E. (2015, April). Moment invariants for 3D flow fields via
normalization. In Visualization Symposium (PacificVis), 2015 IEEE Pacific (pp. 9-16). IEEE.

A schematic overview of the use of vtkSimilarityBalls with example images is given in the following Figure.

10.8. MomentInvariants Architecture 347

VTK

The algorithm vtkReconstructFromMoments is a filter that takes the momentData as produced by vtkComputeMo-
ments or vtkMomentInvariants and a grid. It reconstructs the function from the moments, just like from the coefficients
of a Taylor series. For the reconstruction, we need to orthonormalize the moments first. Then, we multiply the coef-
ficients with their corresponding basis function and add them up. There are in principal three applications. First, if

348 Chapter 10. Design Documents

VTK

we put in the moments of the pattern and the grid of the pattern, we see which parts of the template the algorithm
can actually grasp with the given order during the pattern detection. Tte following Figure shows images created using
moments up to second order.

Second, if we put in the normalized moments of the pattern and the grid of the pattern, we can see how the standard
position looks like. There might be several standard positions due to the ambiguity of the eigenvectors that differ by
rotations of 180 degree and possibly a reflection. The algorithm will use the first one. In the previous Figure, the

10.8. MomentInvariants Architecture 349

VTK

reflection along the x-axis would also be a standard position.

Third, if we put in the moments of the field and the original field data, we can see how well the subset of points, on
which the moments were computed, actually represents the field. The following Figure depicts an example using a 16
x 16 coarse grid and moments up to second order.

350 Chapter 10. Design Documents

VTK

10.8. MomentInvariants Architecture 351

VTK

352 Chapter 10. Design Documents

CHAPTER

ELEVEN

DEVELOPER’S GUIDE

This guide is a comprehensive resource for contributing to VTK – for both new and experienced contributors. We
welcome your contributions to VTK !

11.1 Develop

This page documents how to develop VTK using GitLab and Git. See the README for more information.

Git is an extremely powerful version control tool that supports many different “workflows” for individual develop-
ment and collaboration. Here we document procedures used by the VTK development community. In the interest of
simplicity and brevity we do not provide an explanation of why we use this approach.

For a quickstart guide see here

11.1.1 Workflow

VTK development uses a branchy workflow based on topic branches. Our collaboration workflow consists of three
main steps:

1. Local Development:

• Update

• Create a Topic

2. Code Review (requires GitLab Access):

• Share a Topic

• Create a Merge Request

• Review a Merge Request

• Revise a Topic

3. Integrate Changes:

• Merge a Topic (requires permission in GitLab)

• Delete a Topic

353

https://gitlab.kitware.com
https://git-scm.com
https://public.kitware.com/Wiki/Git/Workflow/Topic
https://gitlab.kitware.com/users/sign_in

VTK

11.1.2 Update

1. Update your local master branch:

$ git checkout master
$ git pull

2. Optionally push master to your fork in GitLab:

$ git push gitlab master

to keep it in sync. The git gitlab-push script used to Share a Topic below will also do this.

11.1.3 Create a Topic

All new work must be committed on topic branches. Name topics like you might name functions: concise but precise.
A reader should have a general idea of the feature or fix to be developed given just the branch name.

1. To start a new topic branch:

$ git fetch origin

2. For new development, start the topic from origin/master:

$ git checkout -b my-topic origin/master

For release branch fixes, start the topic from origin/release, and by convention use a topic name starting in
release-:

$ git checkout -b release-my-topic origin/release

If backporting a change, you may rebase the branch back onto origin/release:

$ git checkout -b release-my-topic my-topic
$ git rebase --onto origin/release origin/master

Alternatively, for more targeted or aggregate backports, use the -x flag when performing git cherry-pick so
that a reference to the original commit is added to the commit message:

$ git checkout -b release-my-topic origin/release
$ git cherry-pick -x $hash_a $hash_b $hash_c
$ git cherry-pick -x $hash_d $hash_e $hash_f

3. Edit files and create commits (repeat as needed):

$ edit file1 file2 file3
$ git add file1 file2 file3
$ git commit

Caveats:

• To add data follow these instructions.

• If your change modifies third party code, see Updating Third Party Projects.

• To deprecate APIs, see Deprecation Process.

354 Chapter 11. Developer’s Guide

VTK

11.1.4 Guidelines for Commit logs

Remember to motivate & summarize. When writing commit logs, make sure that there is enough information there for
any developer to read and glean relevant information such as:

1. Is this change important and why?

2. If addressing an issue, which issue(s)?

3. If a new feature, why is it useful and/or necessary?

4. Are there background references or documentation?

A short description of what the issue being addressed and how will go a long way towards making the log more readable
and the software more maintainable.

Style guidelines for commit logs are as follows:

1. Separate subject from body with a blank line

2. Limit the subject line to 60 characters

3. Capitalize the subject line

4. Use the imperative mood in the subject line e.g. “Refactor foo” or “Fix Issue #12322”, instead of “Refactoring
foo”, or “Fixing issue #12322”.

5. Wrap the body at 80 characters

6. Use the body to explain what and why and if applicable a brief how.

11.1.5 Share a Topic

When a topic is ready for review and possible inclusion, share it by pushing to a fork of your repository in GitLab.
Be sure you have registered and signed in for GitLab Access and created your fork by visiting the main VTK GitLab
repository page and using the “Fork” button in the upper right.

1. Checkout the topic if it is not your current branch:

$ git checkout my-topic

2. Check what commits will be pushed to your fork in GitLab:

$ git prepush

3. Push commits in your topic branch to your fork in GitLab:

$ git gitlab-push

Notes:

• If you are revising a previously pushed topic and have rewritten the topic history, add -f or --force to
overwrite the destination.

• If the topic adds data see this note.

• The gitlab-push script also pushes the master branch to your fork in GitLab to keep it in sync with the
upstream master.

The output will include a link to the topic branch in your fork in GitLab and a link to a page for creating a Merge
Request.

11.1. Develop 355

https://gitlab.kitware.com/users/sign_in
https://gitlab.kitware.com/vtk/vtk

VTK

11.1.6 Create a Merge Request

(If you already created a merge request for a given topic and have reached this step after revising it, skip to the next
step.)

Visit your fork in GitLab, browse to the “Merge Requests” link on the left, and use the “New Merge Request” button
in the upper right to reach the URL printed at the end of the previous step. It should be of the form:

https://gitlab.kitware.com/<username>/vtk/-/merge_requests/new

Follow these steps:

1. In the “Source branch” box select the <username>/vtk repository and the my-topic branch.

2. In the “Target branch” box select the vtk/vtk repository and the master branch. It should be the default.

If your change is a fix for the release branch, you should still select the master branch as the target because
the change needs to end up there too.

For other release branches (e.g., release-6.3), merge requests should go directly to the branch (they are not
tied with master in our workflow).

3. Use the “Compare branches” button to proceed to the next page and fill out the merge request creation form.

4. In the “Title” field provide a one-line summary of the entire topic. This will become the title of the Merge
Request.

Example Merge Request Title:

Wrapping: Add Java 1.x support

5. In the “Description” field provide a high-level description of the change the topic makes and any relevant infor-
mation about how to try it.

• Use @username syntax to draw attention of specific developers. This syntax may be used anywhere outside
literal text and code blocks. Or, wait until the next step and add comments to draw attention of developers.

• If your change is a fix for the release branch, indicate this so that a maintainer knows it should be merged
to release.

• Optionally use a fenced code block with type message to specify text to be included in the generated merge
commit message when the topic is merged.

Example Merge Request Description:

This branch requires Java 1.x which is not generally available yet.
Get Java 1.x from ... in order to try these changes.

```message
Add support for Java 1.x to the wrapping infrastructure.
```

Cc: @user1 @user2

6. The “Assign to”, “Milestone”, and “Labels” fields may be left blank.

7. Use the “Submit merge request” button to create the merge request and visit its page.

356 Chapter 11. Developer’s Guide

VTK

11.1.7 Guidelines for Merge Requests

Remember to motivate & summarize. When creating a merge request, consider the reviewers and future perusers of the
software. Provide enough information to motivate the merge request such as:

1. Is this merge request important and why?

2. If addressing an issue, which issue(s)?

3. If a new feature, why is it useful and/or necessary?

4. Are there background references or documentation?

Also provide a summary statement expressing what you did and if there is a choice in implementation or design pattern,
the rationale for choosing a certain path. Notable software or data features should be mentioned as well.

A well written merge request will motivate your reviewers, and bring them up to speed faster. Future software developers
will be able to understand the reasons why something was done, and possibly avoid chasing down dead ends, Although
it may take you a little more time to write a good merge request, you’ll likely see payback in faster reviews and better
understood and maintainable software.

11.1.8 Review a Merge Request

Add comments mentioning specific developers using @username syntax to draw their attention and have the topic
reviewed. After typing @ and some text, GitLab will offer completions for developers whose real names or user names
match.

Here is a list of developers usernames and their specific area of expertise. A merge request without a developer tagged
has very low chance to be merged in a reasonable timeframe.

• @mwestphal: Qt, filters, data Model, widgets, parallel, anything else.

• @charles.gueunet: filters, data model, SMP, events, pipeline, computational geometry, distributed algorithms.

• @kmorel: General VTK Expertise, VTK-m accelerators.

• @demarle: Ray tracing.

• @will.schroeder: algorithms, computational geometry, filters, SPH, SMP, widgets, point cloud, spatial locators.

• @sujin.philip: VTK-m Accelerators, SMP, DIY.

• @yohann.bearzi: filters, data model, HTG, computational geometry, algorithms.

• @sebastien.jourdain: web, WebAssembly, Python, Java.

• @allisonvacanti: VTK-m, vtkDataArray, vtkArrayDispatch, vtk::Range, data model, text rendering.

• @sankhesh: volume rendering, Qt, OpenGL, widgets, vtkImageData, DICOM, VR.

• @ben.boeckel: CMake, module system, third-parties.

• @cory.quammen: readers, filters, data modeling, general usage, documentation.

• @seanm: macOS, Cocoa, cppcheck, clang.

• @spiros.tsalikis: filters, SMP, computational geometry.

• @thomas.galland: readers, filters, selection, VR.

If you would like to be included in this list, juste create a merge request.

11.1. Develop 357

VTK

Human Reviews

Reviewers may add comments providing feedback or to acknowledge their approval. When a human reviewers suggest
a change, please take it into account or discuss your choices with the reviewers until an agreement is reached. At this
point, please resolve the discussion by clicking on the dedicated button.

When all discussion have been addressed, the reviewers will either do another pass of comment or acknowledge their
approval in some form.

Please be swift to address or discuss comments, it will increase the speed at which your changes will be merged.

Comments Formatting

Comments use GitLab Flavored Markdown for formatting. See GitLab documentation on Special GitLab References
to add links to things like merge requests and commits in other repositories.

Lines of specific forms will be extracted during merging and included as trailing lines of the generated merge commit
message.

A commit message consists of up to three parts which must be specified in the following order: the leading line, then
middle lines, then trailing lines. Each part is optional, but they must be specified in this order.

Leading Line

The leading line of a comment may optionally be exactly one of the following votes followed by nothing but whitespace
before the end of the line:

• -1 or :-1: indicates “the change is not ready for integration”.

• +1 or :+1: indicates “I like the change”. This adds an Acked-by: trailer to the merge commit message.

• +2 indicates “the change is ready for integration”. This adds a Reviewed-by: trailer to the merge commit
message.

• +3 indicates “I have tested the change and verified it works”. This adds a Tested-by: trailer to the merge
commit message.

Middle Lines

The middle lines of a comment may be free-form GitLab Flavored Markdown.

Trailing Lines

Zero or more trailing lines in the last section of a comment may each contain exactly one of the following votes followed
by nothing but whitespace before the end of the line:

• Rejected-by: me means “The change is not ready for integration.”

• Acked-by: me means “I like the change but defer to others.”

• Reviewed-by: me means “The change is ready for integration.”

• Tested-by: me means “I have tested the change and verified it works.”

Each me reference may instead be an @username reference or a full Real Name <user@domain> reference to credit
someone else for performing the review. References to me and @username will automatically be transformed into a
real name and email address according to the user’s GitLab account profile.

358 Chapter 11. Developer’s Guide

https://gitlab.kitware.com/help/markdown/markdown
https://gitlab.kitware.com/help/markdown/markdown#special-gitlab-references
https://gitlab.kitware.com/help/markdown/markdown

VTK

Fetching Changes

One may fetch the changes associated with a merge request by using the git fetch command line shown at the top
of the Merge Request page. It is of the form:

$ git fetch https://gitlab.kitware.com/$username/vtk.git $branch

This updates the local FETCH_HEAD to refer to the branch.

There are a few options for checking out the changes in a work tree:

• One may checkout the branch:

$ git checkout FETCH_HEAD -b $branch

or checkout the commit without creating a local branch:

$ git checkout FETCH_HEAD

• Or, one may cherry-pick the commits to minimize rebuild time:

$ git cherry-pick ..FETCH_HEAD

Robot Reviews

The “Kitware Robot” automatically performs basic checks on the commits and adds a comment acknowledging or
rejecting the topic. This will be repeated automatically whenever the topic is pushed to your fork again. A re-check
may be explicitly requested by adding a comment with a single trailing line:

Do: check

A topic cannot be merged until the automatic review succeeds.

Continuous Integration

VTK uses GitLab CI to test its functionality. CI results are published to CDash and a link is added to the External
stage of the CI pipeline by @kwrobot. Developers and reviewers should start jobs which make sense for the change
using the following methods:

• The first thing to check is that CI is enabled in your fork of VTK. If you see a CI/CD item on the left sidebar in
your fork’s project, you’re all set. If not, go to Settings > General and enable CI/CD for “Everyone With
Access” under the “Visibility, project features, permissions” section.

• Merge request authors should visit their merge request’s pipeline and click the “Play” button on one or more
jobs manually. If the merge request has the “Allow commits from members who can merge to the target branch”
check box enabled, VTK developers and maintainers may use the “Play” button as well. This flag is visible
when editing the merge request. When in doubt, it’s a good idea to run a few jobs as smoke tests to catch early
build/test failures before a full CI run that would tie up useful resources. Note that, as detailed below, a full CI
run is necessary before the request can be merged.

• VTK Project developers may trigger CI on a merge request by adding a comment with a command among the
[trailing lines][#trailing-lines]:

Do: test

11.1. Develop 359

https://gitlab.kitware.com/help/ci/examples/README.md

VTK

@kwrobot will add an award emoji to the comment to indicate that it was processed and trigger all jobs that are
awaiting manual interaction in the merge request’s pipelines.

The Do: test command accepts the following arguments:

– --named <regex> or -n <regex>: Trigger jobs matching <regex> anywhere in their name. Job names
may be seen on the merge request’s Pipelines tab.

– --stage <stage> or -s <stage>: Only affect jobs in a given stage. Stage names may be seen on the
merge request’s Pipelines tab. Note that the stage names are determined by what is in the .gitlab-ci.yml
file and may be capitalized in the web page, so lowercasing the webpage’s display name for stages may be
required.

– --action <action> or -a <action>: The action to perform on the jobs. Possible actions:

∗ manual (the default): Start jobs awaiting manual interaction.

∗ unsuccessful: Start or restart jobs which have not completed successfully.

∗ failed: Restart jobs which have completed, but without success.

∗ completed: Restart all completed jobs.

If the merge request topic branch is updated by a push, a new manual trigger using one of the above methods is needed
to start CI again.

Before the merge, all the jobs, including tidy, must be run and reviewed, see below.

If you have any question about the CI process, do not hesitate to ask a CI maintainer:

• @ben.boeckel

• @mwestphal

Reading CI Results

Reading CI results is a very important part of the merge request process and is the responsibility of the author of the
merge request, although reviewers can usually help. There are two locations to read the results, GitLab CI and CDash.
Both should be checked and considered clean before merging.

To read GitLab CI result, click on the Pipelines tab then on the last pipeline. It is expected to be fully green. If there is
a yellow warning job, please consult CDash. If there is a red failed job, click on it to see the reason for the failure. It
should clearly appears at the bottom of the log. Possible failures are:

• Timeouts: please rerun the job and report to CI maintainers

• Memory related errors: please rerun the job and report to CI maintainers

• Testing errors: please consult CDash for more information, usually an issue in your code

• Non disclosed error: please consult CDash, usually a build error in your code

To read CDash results, on the job page, click on the “cdash-commit” external job which will open the commit-specific
CDash page. Once it is open, make sure to show “All Build” on the bottom left of the page. CDash results displays
error, warnings, and test failures for all the jobs. It is expected to be green except for the “NoRun” and “Test Timings”
categories, which can be ignored.

• Configure warnings: there must not be any; to fix before the merge

• Configure errors: there must not be any; to fix before the merge

• Build warnings: there must not be any; to fix before the merge. If unrelated to your code, report to CI maintainers.

• Build errors: there must not be any; to fix before the merge. If unrelated to your code, rerun the job and report
to CI maintainers.

360 Chapter 11. Developer’s Guide

VTK

• NotRun test : ignore; these tests have self-diagnosed that they are not relevant on the testing machine.

• Testing failure: there should not be any, ideally, to fix before the merge. If unrelated to your code, check the test
history to see if it is a flaky test and report to CI maintainers.

• Testing success: if your MR creates or modifies tests, please check that your test are listed there.

• Test timings errors: can be ignored, but if it is all red, you may want to report it to CI maintainers.

To check the history of a failing test, on the test page, click on the “Summary” link to see a summary of the test for the
day, then click on the date controls on the top of the page to go back in time. If the test fails on other MRs or on master,
this is probably a flaky test, currently in the process of being fixed or excluded. A flaky test can be ignored.

As a reminder, here is our current policy regarding CI results. All the jobs must be run before merging, including
tidy. Configure warnings and errors are not acceptable to merge and must be fixed. Build warning and errors are not
acceptable to merge and must be fixed. Testing failure should be fixed before merging but can be accepted if a flaky
test has been clearly identified.

11.1.9 Revise a Topic

If a topic is approved during GitLab review, skip to the next step. Otherwise, revise the topic and push it back to GitLab
for another review as follows:

1. Checkout the topic if it is not your current branch:

$ git checkout my-topic

2. To revise the 3rd commit back on the topic:

$ git rebase -i HEAD~3

(Substitute the correct number of commits back, as low as 1.) Follow Git’s interactive instructions.

3. Return to the above step to share the revised topic.

11.1.10 Merge a Topic

Once review has concluded that the MR topic is ready for integration (at least one +2), authorized developers may add
a comment with a single trailing line:

Do: merge

in order for your change to be merged into the upstream repository.

If your merge request has been already approved by developers but not merged yet, do not hesitate to tag an authorized
developer and ask for a merge.

By convention, do not request a merge if any -1 or Rejected-by: review comments have not been resolved and
superseded by at least +1 or Acked-by: review comments from the same user.

The Do: merge command accepts the following arguments:

• -t <topic>: substitute <topic> for the name of the MR topic branch in the constructed merge commit message.

Additionally, Do: merge extracts configuration from trailing lines in the MR description (the following have no effect
if used in a MR comment instead):

11.1. Develop 361

VTK

• Backport: release[:<commit-ish>]: merge the topic branch into the release branch to backport the
change. This is allowed only if the topic branch is based on a commit in release already. If only part of the
topic branch should be backported, specify it as :<commit-ish>. The <commit-ish> may use git rev-parse
syntax to reference commits relative to the topic HEAD. See additional backport instructions for details. For
example:

• Backport: release Merge the topic branch head into both release and master.

• Backport: release:HEAD~1^2 Merge the topic branch head’s parent’s second parent commit into the
release branch. Merge the topic branch head to master.

• Topic-rename: <topic>: substitute <topic> for the name of the MR topic branch in the constructed merge
commit message. It is also used in merge commits constructed by Do: stage. The -t option to a Do: merge
command overrides any topic rename set in the MR description.

Merge Success

If the merge succeeds the topic will appear in the upstream repository master branch and the Merge Request will be
closed automatically.

Merge Failure

If the merge fails (likely due to a conflict), a comment will be added describing the failure. In the case of a conflict,
fetch the latest upstream history and rebase on it:

$ git fetch origin
$ git rebase origin/master

(If you are fixing a bug in the latest release then substitute origin/release for origin/master.)

Return to the above step to share the revised topic.

11.1.11 Delete a Topic

After a topic has been merged upstream the Merge Request will be closed. Now you may delete your copies of the
branch.

1. In the GitLab Merge Request page a “Remove Source Branch” button will appear. Use it to delete the my-topic
branch from your fork in GitLab.

2. In your work tree checkout and update the master branch:

$ git checkout master
$ git pull

3. Delete the local topic branch:

$ git branch -d my-topic

The branch -d command works only when the topic branch has been correctly merged. Use -D instead of -d
to force the deletion of an unmerged topic branch (warning - you could lose commits).

362 Chapter 11. Developer’s Guide

https://git-scm.com/docs/git-rev-parse
https://gitlab.kitware.com/utils/git-workflow/-/wikis/Backport-topics

VTK

11.2 Regression Testing

11.2.1 Testing and dashboard submitter setup

Regression testing in VTK takes the form of a set of programs, that are included in the VTK source code and enabled in
builds configured through CMake to have the VTK_BUILD_TESTING flag turned on. Test pass/fail results are returned
to CTest via a test program’s exit code. VTK contains helper classes that do specific checks, such as comparing a
produced image against a known valid one, that are used in many of the regression tests. Test results may be submitted
to Kitware’s CDash instance, were they will be gathered and displayed at http://open.cdash.org/index.php?project=VTK

All proposed changes to VTK are automatically tested on Windows, Mac and Linux machines. All changes that are
merged into the master branch are subsequently tested again by more rigorously configured Windows, Mac and Linux
continuous dashboard submitters. After 9PM Eastern Time, the master branch is again tested by a wider set of machines
and platforms. These results appear in the next day’s page.

At each step in the code integration path the developers who contribute and merge code are responsible for checking
the test results to look for problems that the new code might have introduced. Plus signs in CDash indicate newly
detected problems. Developers can correlate problems with contributions by logging in to CDash. Submissions that
contain a logged in developer’s change are highlighted with yellow dots.

It is highly recommended that developers test changes locally before submitting them. To run tests locally:

1. Configure with VTK_BUILD_TESTING set ON

The exact set of tests created depends on many configuration options. Tests in non-default modules are only tested
when those modules are purposefully enabled, the smoke tests described in the Coding Style section above are
enabled only when the python or Tcl interpreter is installed, tests written in wrapped languages are only enabled
when wrapping is turned on, etc.

2. Build.

VTK tests are only available from the build tree.

3. Run ctest at the command line in the build directory or make the TESTING target in Visual Studio.

As ctest runs the tests it prints a summary. You should expect 90% of the tests or better to pass if your VTK is
configured correctly. Detailed results (which are also printed if you supply a –V argument to ctest) are put into
the Testing/Temporary directory. The detailed results include the command line that ctest uses to spawn each
test. Other particularly useful arguments are:

--R TestNameSubstringToInclude to choose tests by name

--E TestNameSubstringToExclude to reject tests by name

--I start,stop,step to run a portion of the tests

--j N to run N tests simultaneously.

Dashboard submitting machines work at a slightly higher level of abstraction that adds the additional stages of down-
loading, configuring and building VTK before running the tests, and submitting all results to CDash afterward. With a
build tree in place you can run “ctest –D Experimental” to run at this level and submit the results to the experimental
section of the VTK dashboard or “ctest –M Experimental -T Build –T Submit” etc to pick and choose from among the
stages. When setting up a test submitter machine one should start with the experimental configuration and then, once
the kinks are worked out, promote the submitter to the Nightly section.

The volunteer machines use cron or Windows task scheduler to run CMake scripts that configure a VTK build with
specific options, and then run ctest –D as above. Within CDash, you can see each test machine’s specific configuration
by clicking on the Advanced View and then clicking on the note icon in the Build Name column. This is a useful starting

11.2. Regression Testing 363

http://open.cdash.org/index.php?project=VTK

VTK

point when setting up a new submitter. It is important that each submitter’s dashboard script include the name of the
person who configures or maintains the machine so that, when the machine has problems, the dashboard maintainer
can address it.

For details about the Continuous Integration infrastructure hosted at Kitware see here.

11.2.2 Run-time environment of tests using ctest

When running a test using ctest, an extra empty environment variable is set: VTK_TESTING. One can catch this
environment variable and know that the code is executed under ctest. In particular, VTK_TESTING is used to disable
anti-aliasing in the constructor of vtkOpenGLRenderWindow for the sake of making comparing image baseline more
robust against graphics drivers discrepancies.

11.3 Adding Tests

This page documents how to add test data while developing VTK with Git. See the README for more information.

11.3.1 Setup

The workflow below depends on local hooks to function properly. Follow the main developer setup instructions before
proceeding. In particular, run SetupForDevelopment.sh:

$./Utilities/SetupForDevelopment.sh

11.3.2 Workflow

Our workflow for adding data integrates with our standard Git development process. Start by creating a topic. Return
here when you reach the “edit files” step.

These instructions follow a typical use case of adding a new test with a baseline image.

Writing new tests

All new features that go into VTK must be accompanied by tests. This ensures that the feature works on many platforms
and that it will continue to work as VTK evolves.

Tests for the classes in each module of VTK are placed underneath the module’s Testing/ subdirectory. Modules that the
tests depend upon beyond those that the module itself depends upon are declared with the TEST_DEPENDS argument
in the vtk.module file. Test executables are added to VTK’s build system by naming them in the CMakeLists.txt
files in each Testing/ directory. In those CMakeLists, standard add_executable() + add_test() command pairs
could be used, but the following macros defined in vtkModuleTesting.cmake are preferable as they consolidate
multiple tests together, participate in VTK’s modular build scripts, and ensure consistency:

• vtk_add_test_cxx()

• vtk_add_test_mpi()

• vtk_add_test_python()

Tests indicate success to CTest by returning EXIT_SUCCESS (0) and failure by returning EXIT_FAILURE (1). How
the test determines what result to return is up to the developer. VTK contains a number of utilities for this task. For

364 Chapter 11. Developer’s Guide

http://git-scm.com

VTK

example, vtkRegressionTester is a helper class that does a fuzzy comparison of images drawn by VTK against known
good baseline images and returns a metric that can be simply compared against a numeric threshold.

Many tests require data files to run. The image comparison tests for example need baseline images to compare against,
and many tests open up one or more files to visualize.

The source code and data file versions are kept in sync because the Testing/Data directory contains, instead of the
real files, similarly named files which contain only the SHA512 hash of the matching data files. During the build
process, when CMake sees that a required data file is not available, it downloads it into the directory defined by the
ExternalData_OBJECT_STORES cmake configuration entry. The test executables read all data from there. The default
setting for ExternalData_OBJECT_STORES is the ExternalData directory underneath the VTK build tree.

To make a change to VTK that modifies or adds a new test data file, place the new version in the Testing/Data or
directory (for input data files) or Module/Name/Testing/Data (for regression test images), and build (or run cmake).
CMake will do the work of moving the original out of the way and replacing it with an SHA512 link file. When you
push the new link file to Gitlab, git pre-commit hooks push the original file up to Kitware’s data service, where
everyone can retrieve it.

Add Test

1. Write a new test, e.g.

$ edit Some/Module/Testing/Cxx/MyTest.cxx

2. Edit the corresponding CMakeLists.txt file:

$ edit Some/Module/Testing/Cxx/CMakeLists.txt

and add the test in a vtk_add_test_... call (which references baselines automatically).

3. For tests not using such a call, reference the data file in an ExternalData_add_test call. Specify the file inside
DATA{...} using a path relative to the test directory:

$ edit Some/Module/Testing/Cxx/CMakeLists.txt
ExternalData_add_test("${_vtk_build_TEST_DATA_TARGET}"
NAME ${_vtk_build_test}Cxx-MyTest
COMMAND <VTK_MODULE_NAME>CxxTests MyTest

... -V DATA{../Data/Baseline/MyTest.png,:} ...
)

4. Some tests may require additional files not referenced on the command line. For these files, add references to a
vtk_module_test_data call (usually in the Testing parent directory). For example, adding Testing/Data/
lines.vtp would mean adding Data/lines.vtp entry to the call (the Testing directory is part of the path
that is looked in automatically.

vtk_module_test_data(
Data/lines.vtp)

Notes:

• If the data file references other data files, e.g. .mhd -> .raw, read the ExternalData module documentation on
“associated” files.

• Multiple baseline images and other series are handled automatically when the reference ends in the ,: option.
Read ExternalData module documentation for details.

11.3. Adding Tests 365

https://cmake.org/cmake/help/latest/module/ExternalData.html
https://cmake.org/cmake/help/latest/module/ExternalData.html

VTK

Build and Run the Test

If you already have a data file, skip to the next step to add it. Otherwise, use the following steps to produce a test
baseline image file. We assume a build tree has been previously generated by CMake.

1. Switch to the build tree:

$ cd ../VTK-build

2. Run CMake:

$ cmake .

Since we have not yet created the baseline image data file, CMake will warn that it does not exist but proceed to
generate the test anyway.

3. Build

$ make

4. Run the test

$ ctest -R MyTest

It will fail but place the baseline image in Testing/Temporary.

5. Switch back to the source tree:

$ cd ../VTK

Add Data

Copy the data file into your local source tree.

$ mkdir -p Some/Module/Testing/Data/Baseline
$ cp ../VTK-build/Testing/Temporary/MyTest.png Some/Module/Testing/Data/Baseline

Run CMake

1. Switch to the build tree:

$ cd ../VTK-build

2. Run CMake:

$ cmake .

CMake will move the original file. Keep your own copy if necessary. See below to recover the original file.

During configuration CMake will display a message such as:

Linked Some/Module/Testing/Data/Baseline/MyTest.png.sha512 to ExternalData SHA512/..
→˓.

This means that CMake converted the file into a data object referenced by a “content link” named like the original
file but with a .sha512 extension. CMake also renamed the original file.

366 Chapter 11. Developer’s Guide

VTK

3. Build

$ make

During the build, the ExternalData module will make the data file available where the test expects to find it.

4. Run the test

$ ctest -R MyTest

It should pass using the new data file.

5. Switch back to the source tree:

$ cd ../VTK

Commit

Continue to create the topic and edit other files as necessary. Add the content link and commit it along with the other
changes:

$ git add Some/Module/Testing/Data/Baseline/MyTest.png.sha512
$ git add Some/Module/Testing/Data/CMakeLists.txt
$ git commit

The local pre-commit hook will display a message such as:

Some/Module/Testing/Data/Baseline/MyTest.png.sha512: Added content to Git at refs/data/
→˓SHA512/...
Some/Module/Testing/Data/Baseline/MyTest.png.sha512: Added content to local store at .
→˓ExternalData/SHA512/...
Content link Some/Module/Testing/Data/Baseline/MyTest.png.sha512 -> .ExternalData/SHA512/
→˓...

This means that the pre-commit hook recognized that the content link references a new data object and prepared it for
upload.

Push

Follow the instructions to share the topic. When you push it to GitLab for review using

$ git gitlab-push

part of the output will be of the form:

* ...:refs/data/... [new branch]
* HEAD:refs/heads/my-topic [new branch]
Pushed refs/data/... and removed local ref.

This means that the git-gitlab-push script pushed the topic and uploaded the data it references.

Options for gitlab-push include:

• --dry-run: Report push that would occur without actually doing it

• --no-topic: Push the data referenced by the topic but not the topic itself

11.3. Adding Tests 367

https://cmake.org/cmake/help/latest/module/ExternalData.html

VTK

Note: One must git gitlab-push from the same work tree as was used to create the commit. Do not git push to
another computer first and try to push to GitLab from there because the data will not follow.

11.3.3 Building

Download

For the test data to be downloaded and made available to the tests in your build tree the VTKData target must be built.
One may build the target directly, e.g. make VTKData, to obtain the data without a complete build. The output will be
something like

-- Fetching ".../ExternalData/SHA512/..."
-- [download 100% complete]
-- Downloaded object: "VTK-build/ExternalData/Objects/SHA512/..."

The downloaded files appear in VTK-build/ExternalData by default.

Local Store

It is possible to configure one or more local ExternalData object stores shared among multiple builds. Configure for
each build the advanced cache entry ExternalData_OBJECT_STORES to a directory on your local disk outside all
build trees, e.g. /home/user/.ExternalData:

$ cmake -DExternalData_OBJECT_STORES=/home/user/.ExternalData ../VTK

The ExternalData module will store downloaded objects in the local store instead of the build tree. Once an object has
been downloaded by one build it will persist in the local store for re-use by other builds without downloading again.

11.3.4 Discussion

A VTK test data file is not stored in the main source tree under version control. Instead the source tree contains a
“content link” that refers to a data object by a hash of its content. At build time the ExternalData module fetches data
needed by enabled tests. This allows arbitrarily large data to be added and removed without bloating the version control
history.

The above workflow allows developers to add a new data file almost as if committing it to the source tree. The following
subsections discuss details of the workflow implementation.

ExternalData

While CMake runs the ExternalData module evaluates DATA{} references. VTK sets in vtkExternalData.cmake the
ExternalData_LINK_CONTENT option to SHA512 to enable automatic conversion of raw data files into content links.
When the module detects a real data file in the source tree it performs the following transformation as specified in the
module documentation:

• Compute the SHA512 hash of the file

• Store the ${hash} in a file with the original name plus .sha512

• Rename the original file to .ExternalData_SHA512_${hash}

The real data now sit in a file that we tell Git to ignore. For example:

368 Chapter 11. Developer’s Guide

https://cmake.org/cmake/help/latest/module/ExternalData.html
https://cmake.org/cmake/help/latest/module/ExternalData.html
https://cmake.org/cmake/help/latest/module/ExternalData.html

VTK

$ cat Some/Module/Testing/Data/Baseline/.ExternalData_SHA512_477e6028* |sha512sum
477e6028... -
$ cat Some/Module/Testing/Data/Baseline/MyTest.png.sha512
477e6028...

Recover Data File

To recover the original file after running CMake but before committing, undo the operation:

$ cd Some/Module/Testing/Data/Baseline
$ mv .ExternalData_SHA512_$(cat MyTest.png.sha512) MyTest.png

pre-commit

While committing a new or modified content link the pre-commit hook moves the real data object from the .
ExternalData_SHA512_${hash} file left by the ExternalData module to a local object repository stored in a .
ExternalData directory at the top of the source tree.

The hook also uses Git plumbing commands to store the data object as a blob in the local Git repository. The blob is
not referenced by the new commit but instead by refs/data/SHA512/${hash}. This keeps the blob alive in the local
repository but does not add it to the project history. For example:

$ git for-each-ref --format="%(refname)" refs/data
refs/data/SHA512/477e6028...
$ git cat-file blob refs/data/SHA512/477e6028... | sha512sum
477e6028... -

git gitlab-push

The git gitlab-push command is actually an alias for the git-gitlab-push script. In addition to pushing the topic
branch to GitLab the script also detects content links added or modified by the commits in the topic. It reads the data
object hashes from the content links and looks for matching refs/data/ entries in the local Git repository.

The script pushes the matching data objects to your VTK GitLab fork. For example:

$ git gitlab-push --dry-run --no-topic
* refs/data/SHA512/477e6028...:refs/data/SHA512/477e6028... [new branch]
Pushed refs/data/SHA512/477e6028... and removed local ref.

A GitLab webhook that triggers whenever a topic branch is pushed checks for refs/data/ in your VTK GitLab fork,
fetches them, erases the refs from your fork, and uploads them to a location that we tell ExternalData to search in
[vtkExternalData][] at build time.

To verify that the data has been uploaded as expected, you may direct a web browser to the location where ExternalData
has uploaded the files. For VTK, that location is currently http://www.vtk.org/files/ExternalData/SHA512/
XXXX where XXXX is the complete SHA512 hash stored in the content link file (e.g., the text in MyTest.png.sha512).

11.3. Adding Tests 369

https://cmake.org/cmake/help/latest/module/ExternalData.html

VTK

Publishing Data for an External Branch

The above workflow works well for developers working on a single machine to contribute changes directly to upstream
VTK. When working in an external branch of VTK, perhaps during a long-term topic development effort, data objects
need to be published separately.

The workflow for adding data to an external branch of VTK is the same as the above through the commit step, but
diverges at the push step because one will push to a separate repository. Our ExternalData infrastructure intentionally
hides the real data files from Git so only the content links (.sha512 files) will be pushed. The real data objects will
still be left in the .ExternalData/SHA512 directory at the top of the VTK source tree by the pre-commit hook.

The .ExternalData directory must be published somewhere visible to other machines that want to use the data, such
as on a web server. Once that is done then other machines can be told where to look for the data, e.g.

cmake ../VTK "-DExternalData_URL_TEMPLATES=https://username.github.io/VTK/ExternalData/
→˓%(algo)/%(hash)

In this example we assume the files are published on a Github Pages gh-pages branch in username’s fork of VTK.

Within the gh-pages branch the files are placed at ExternalData/SHA512/$sha512sum where $sha512sum is the
SHA512 hash of the content (these are the same names they have in the .ExternalData directory in the original
source tree).

11.4 Dashboard Scripts

This page documents how to use the VTK dashboard branch in Git. See the README for more information.

11.4.1 Using the Dashboard Scripts

The dashboard branch contains a dashboard client helper script. Use these commands to track it:

$ mkdir -p ~/Dashboards/VTKScripts
$ cd ~/Dashboards/VTKScripts
$ git init
$ git remote add -t dashboard origin https://gitlab.kitware.com/vtk/vtk.git
$ git pull origin

The vtk_common.cmake script contains setup instructions in its top comments.

Update the dashboard branch to get the latest version of this script by simply running:

$ git pull

Here is a link to the script as it appears today: vtk_common.cmake.

370 Chapter 11. Developer’s Guide

https://help.github.com/articles/creating-project-pages-manually
http://git-scm.com
https://gitlab.kitware.com/vtk/vtk/-/tree/dashboard/vtk_common.cmake

VTK

11.4.2 Changing the Dashboard Scripts

If you find bugs in the hooks themselves or would like to add new features, the can be edited in the usual Git manner:

$ git checkout -b my-topic-branch

Make your edits, test it, and commit the result. Create a patch file with:

$ git format-patch origin/dashboard

And post the results in the Development category in the VTK Discourse forum.

11.5 Updating Third Party Projects

When updating a third party project, any changes to the imported project itself (e.g., the zlib/vtkzlib directory for
zlib), should go through the update.sh framework. This framework ensures that all patches to the third party projects
are tracked externally and available for (preferably) upstream or other projects also embedding the library.

The Imported Third Party Projects document lists all projects grouped by import method:

1. update.sh framework

2. git submodule

3. copy

Important: Any updates to projects imported through the copy method should first be converted over to the update.
sh framework.

11.5.1 Updating a Project Upstream

Ideally, any code changes to third party code should first be submitted to the upstream project using whatever workflow
they prefer or require. Once that is done, the changes can next be brought into VTK.

11.5.2 Updating the Import

Examine the project’s update.sh script and note the value of the repo= field.

If it’s referring to anything other than Kitware’s GitLab, then skip to the next section.

Otherwise, you first need to bring in the upstream changes into the third-party repo. To do that, first fork and clone
the repository named in the repo= field. Then use git commands to bring in a copy of the upstream changes.

Here’s an example of updating the twisted project from tag 17.1.0 to 17.5.0:

$ cd twisted/
$ git checkout for/vtk
$ git fetch origin
$ git rebase --onto twisted-17.5.0 twisted-17.1.0
$ git push

When deciding what to rebase, you should generally use the first commit in the current history that isn’t upstream.

11.5. Updating Third Party Projects 371

https://discourse.vtk.org/c/development
https://discourse.vtk.org/
https://gitlab.kitware.com/third-party

VTK

11.5.3 Updating a Project into VTK

Bringing changes into VTK involves first deciding what to bring in. That is specified in the update.sh script under
the tag= field. Usually this is a for/vtk branch, but may be master, or a tag, or any other Git reference.

If update.sh needs to be edited (the usual case), create a branch in the usual way and commit just those changes.

Next, run the update.sh script as below. This will update the local copy of the project to the version specified within.

$ cd vtk/ThirdParty/zlib
$ git checkout -b update_zlib_YYYY_MM_DD
$./update.sh

Appending the date to the branch name is not necessary, it just prevents any conflict in the event of you doing this
procedure multiple times and inadvertently using the same branch name.

(All this requires a Git 2.5 or higher due the worktree tool being used to simplify the availability of the commits to
the main checkout.)

Make sure to update the SPDX_DOWNLOAD_LOCATION in CMakeLists.txt to reflect the changes made to the project.

Now you can review the change and make a merge request from the branch as normal.

11.5.4 Porting a Project

When converting a project, if there are any local patches, a project should be created on Kitware’s GitLab to track it
(requests may be filed on the repo-requests repository). If the upstream project does not use Git, it should be imported
into Git (there may be existing conversions available on Github already). The project’s description should indicate
where the source repository lives.

Once a mirror of the project is created, a branch named for/foo should be created where patches for the foo project
will be applied (i.e., for/vtk for VTK’s patches to the project). Usually, changes to the build system, the source code
for mangling, the addition of .gitattributes files, and other changes belong here. Functional changes should be
submitted upstream (but may still be tracked so that they may be used).

For mangling documentation, some guidelines are available.

The basic steps to import a project twisted based on the tag twisted-17.1.0 looks like this:

$ git clone https://github.com/twisted/twisted.git
$ cd twisted/
$ git remote add kitware git@gitlab.kitware.com:third-party/twisted.git
$ git push -u kitware
$ git push -u kitware --tags
$ git checkout twisted-17.1.0
$ git checkout -b for/vtk
$ git push --set-upstream kitware for/vtk

Making the initial import involves filling out the project’s update.sh script in its directory. The update-common.sh
script describes what is necessary, but in a nutshell, it is basically metadata such as the name of the project and where
it goes in the importing project.

The most important bit is the extract_source function which should subset the repository. If all that needs to be
done is to extract the files given in the paths variable (described in the update-common.sh script), the git_archive
function may be used if the git archive tool generates a suitable subset.

Make sure update.sh is executable before commit. On Unix, run:

372 Chapter 11. Developer’s Guide

https://gitlab.kitware.com/third-party
https://gitlab.kitware.com/third-party/repo-requests
https://gitlab.kitware.com/third-party/repo-requests/-/wikis/mangling

VTK

$ chmod u+x update.sh && git add -u update.sh

On Windows, run:

$ git update-index --chmod=+x update.sh

Also add an entry to Imported Third Party Projects for the project, and CMakeLists.txt and module.cmake as
appropriate.

11.5.5 Process

The basic process involves a second branch where the third party project’s changes are tracked. This branch has a
commit for each time it has been updated and is stripped to only contain the relevant parts (no unit tests, documentation,
etc.). This branch is then merged into the main branch as a subdirectory using the subtree merge strategy.

Initial conversions will require a manual push by the maintainers since the conversion involves a root commit which is
not allowed under normal circumstances. Please post a message on the VTK Discourse forum asking for assistance if
necessary.

11.6 Imported Third Party Projects

This page provides an overview of the imported third-party projects that VTK depends on, grouped by import method.

The lists below references project directory name found in either the ThirdParty or Utilities source sub-directory
available in the VTK GitLab repository where additional details may be found.

11.6.1 Using the update.sh framework

The following list shows third-party projects that were imported using the update.sh framework described in the
Updating Third Party Projects document:

• cgns

• cli11

• diy2

• doubleconversion

• eigen

• exodusII

• expat

• exprtk

• fast_float

• fides

• fmt

• freetype

• gl2ps

• glew

11.6. Imported Third Party Projects 373

https://discourse.vtk.org/
https://gitlab.kitware.com/vtk/vtk

VTK

• h5part

• hdf5

• ioss

• jpeg

• jsoncpp

• kissfft

• KWIML

• KWSys

• libharu

• libproj

• libxml2

• loguru

• lz4

• lzma

• MetaIO

• mpi4py

• netcdf

• nlohmannjson

• ogg

• pegtl

• png

• pugixml

• sqlite

• theora

• tiff

• utf8

• verdict

• xdmf3

• zfp

• zlib

374 Chapter 11. Developer’s Guide

VTK

11.6.2 Using git submodule

The following third-party project were imported as git submodules:

• vtkm

11.6.3 Using copy

The following third-party projects were imported by copying the files:

• vpic

• xdmf2

11.7 Deprecation Process

This page documents how to deprecate an API and mark it as no longer necessary for downstream consumers of VTK.

11.7.1 Deprecating classes and methods

Classes, functions, and methods may be deprecated using the deprecation macros.

#include "vtkDeprecation.h" // Include the macros.

// A deprecated class.
VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
class oldClass {
public:
// A deprecated method.
VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
void oldMethod();

};

// A deprecated function.
VTK_DEPRECATED_IN_X_Y_Z("reason for deprecation")
void oldFunction();

The X_Y_Z should be the newest macro available in the vtkDeprecation.h header when the API is added.

Note that, unlike, the old VTK_LEGACY_REMOVE mechanism, the APIs are not deleted. This does interfere with various
kinds of deprecations.

• Changing the return type: Don’t do this. Use a new name for the function/method.

• Deprecating macros: Use VTK_LEGACY_REMOVE. New macro APIs should be highly discouraged.

11.7. Deprecation Process 375

VTK

Lifetime of deprecated APIs

Deprecated APIs should exist for at least one release with the deprecation warning active. This gives consumers of
VTK at least one cycle to notice the deprecation and move off of it.

Upon branching for a release, master will soon after have all instances of deprecated symbols removed.

Avoiding warnings within VTK

VTK is providing the deprecated symbols and as such may still use them in tests or implementations. Since these
generate warnings when compiling VTK itself, classes which define deprecated symbols must suppress them.

Sources which continue to use the deprecated macros should add a comment to the top of the source file to hide
deprecation warnings in CI.

// Hide VTK_DEPRECATED_IN_X_Y_Z() warnings for this class.
#define VTK_DEPRECATION_LEVEL 0

If one already exists, please add another comment to it so that when deprecated symbols are removed, it shows up in
the search.

11.7.2 Using VTK_DEPRECATION_LEVEL

When using VTK, the VTK_DEPRECATION_LEVEL macro may be set to a version number. APIs which have been
deprecated after this point will not fire (as the API is not deprecated as of the level requested). It should be defined
using the VTK_VERSION_CHECK(major, minor, patch) macro.

Note that APIs on the verge of deletion (those deprecated in at least one release) will always raise deprecation warnings.

If not set, its value defaults to the current level of VTK.

11.8 Release Process

This document provides a high-level overview of the VTK release cycle and associated release process.

11.8.1 Overview

We aim to release a new version of VTK every six months. However, we recognize that this schedule is flexible. The
project is funded and developed by many different groups, each of which works towards their own particular sets of
features.

VTK releases are named with a Major.Minor.Patch scheme.

376 Chapter 11. Developer’s Guide

VTK

11.8.2 Branching Scheme

The overall release history resembles a skinny tree. Development proceeds along the master branch, consisting of
topic branches that start from and are merged into master. Every so often, a release is tagged and branched from it.

In general, no work takes place on the release branch, other than the handful of important patches that make up
occasional patch releases.

Hint: Steps for contributing changes specific to the release branch are documented in Create a Topic.

On the master branch, bug fixes and new features are continuously developed. At release time, the focus temporarily
shifts to producing a library that is as stable and robust as possible.

11.8.3 Steps

The process for cutting releases is as follows:

1. Announce upcoming release

A few weeks before the intended release branch, announce on VTK Discourse that a new release is coming.
This alerts developers to avoid making drastic changes that might delay the release and gives them a chance to
push important and nearly completed features in time for the release. For example, see this post.

2. Polish the dashboards and bug tracker by addressing outstanding issue and coordinate effort with relevant devel-
opers.

Persistent compilation and regression test problems are fixed. Serious outstanding bugs are fixed.

3. Create a new issue titled Release X.Y.Z[rcN] based of the new-release template.

Important: Specific steps to create eiter the candidate or the official release are found in the newly created
issue.

4. Perform the release candidate cycle

1. Tag the release branch and create and publish release candidate artifacts and change summaries.

2. Announce the release candidate and request feedback from the community, especially third-party packagers.

Hint: Bug reports should be entered into the bug tracker with the upcoming release number as the mile-
stone.

3. If the community reports bugs, classify them in the bug tracker and ensure they are fixed.

Only serious bugs and regressions need to be fixed before the release. New features and minor problems
should be merged into master as usual.

Patches for the release branch should start from the release branch, be submitted through GitLab, and then
merged into master. Once fully tested there, the branch can be merged into the release branch.

When the selected issues are fixed in the release branch, tag the tip of the release branch and release it as
the next candidate, then the cycle continues.

4. Distribution specific patches can accumulate over time. Consider reviewing the following distribution spe-
cific pages to identify potential fixes and improvements that could be integrated in VTK itself:

11.8. Release Process 377

https://discourse.vtk.org/
https://discourse.vtk.org/t/vtk-9-2-0-release-cycle/8149
https://gitlab.kitware.com/vtk/vtk/-/issues/new
https://gitlab.kitware.com/vtk/vtk/-/blob/master/.gitlab/issue_templates/new-release.md?plain=1

VTK

• Debian:

– https://tracker.debian.org/pkg/vtk9

– https://udd.debian.org/patches.cgi?src=vtk9

• Gentoo:

– https://packages.gentoo.org/packages/sci-libs/vtk

– https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/vtk/files

• openSUSE:

– https://build.opensuse.org/package/show/openSUSE:Factory/vtk

5. Package the official release

The official VTK package consists of tar balls and ZIP files of the source, Python Wheels, Doxygen documenta-
tion, and regression test data, all at the tag point.

Volunteer third-party packagers create binary packages from the official release for various platforms, so their
input is especially valuable during the release cycle.

The release manager also compiles release notes for the official release announcement. Release notes are com-
piled from various standardized topic documents added to the Documentation/release/dev folder while fea-
tures or issues are fixed. The aggregation of these topic files is done manually and results in the creation of a file
named Documentation/release/X.Y.md for the current release.

11.8.4 GitLab and Releases

GitLab milestones are used for keeping track of branches for the release. They allow keeping track of issues and merge
requests which should be “done” for the milestone to be considered complete.

For each release (including release candidates), a milestone is created with a plausible due date. The milestone page
allows for an easy overview of branches which need wrangling for a release.

Merge Requests

Merge requests which need to be rebased onto the relevant release branch should be marked with the
needs-rebase-for-release tag and commented on how the branch can be rebased properly:

This branch is marked for a release, but includes other commits in
`master`. Please either rebase the branch on top of the release branch and
remove the `needs-rebase-for-release` tag from the merge request:

```sh
$ git rebase --onto=origin/release origin/master $branch_name
$ git gitlab-push -f
```

or, if there are conflicts when using a single branch, open a new branch
and open a merge request against the `release` branch:

```sh
$ git checkout -b ${branch_name}-release $branch_name
$ git rebase --onto=origin/release origin/master ${branch_name}-release
$ git gitlab-push

(continues on next page)

378 Chapter 11. Developer’s Guide

https://tracker.debian.org/pkg/vtk9
https://udd.debian.org/patches.cgi?src=vtk9
https://packages.gentoo.org/packages/sci-libs/vtk
https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/vtk/files
https://build.opensuse.org/package/show/openSUSE:Factory/vtk
https://gitlab.kitware.com/vtk/vtk/-/tree/master/Documentation/release


VTK

(continued from previous page)

```

Thanks!

Wrangling Branches

Branches may be wrangled using the filters in the merge request page. Replace $release at the end with the relevant
milestone name:

https://gitlab.kitware.com/vtk/vtk/-/merge_requests?state=all&milestone_title=$release

The following states of a merge request indicate where they are in the flow:

• open for master: get into master first

• open for release: ensure it is already in master

• open with needs-rebase-for-release tag: wait for contributor to rebase properly; ping if necessary

• MERGED: merge into release

There is currently no good way of marking a branch that went towards master is also in release already since tags
cannot be added to closed merge requests. Suggestions welcome :) .

11.9 Coding Conventions

11.9.1 General

VTK is a large body of code with many users and developers. Coding in a consistent style eases shared development.
VTK’s style guidelines also ensure wide portability. All code that is contributed to VTK must conform to the following
style guidelines. Exceptions are permissible, following discussion in code review, as long as the result passes the nightly
regression tests. External code contributed into the ThirdParty directory is exempt from most of the following rules
except for the rules that say “All code”.

1. All code that is compiled into VTK by default must be compatible with VTK’s BSD- style license.

2. Copyright notices should appear at the top of C++ header and implementation files using SPDX syntax.

3. All C++ code must be valid C++11 code.

4. The Java and Python wrappers must work on new code, or it should be excluded from wrapping.

5. Multiple inheritance is not allowed in VTK classes.

Rationale: One important reason is that Java does not support it.

6. Only one public class per header file. Internal helper classes may be forward declared in header files, but can
then only be defined in implementation files, ie using the PIMPL idiom.

Rationale: helpful when searching the code and limits header inclusion bloat that slows compilation time.

7. Class names and file names must match, class names must be unique.

Rationale: helpful when searching the code, includes are flattened at install.

8. The indentation style can be characterized as the modified Allman (https://en.wikipedia.org/wiki/Indent_style#
Allman_style)style. Indentations are two spaces, and the curly brace (scope delimiter) is placed on the following
line and indented to the same level as the control statement.

11.9. Coding Conventions 379

https://en.wikipedia.org/wiki/Indent_style#Allman_style
https://en.wikipedia.org/wiki/Indent_style#Allman_style

VTK

Rationale: Readability and historical

9. Conditional clauses (including loop conditionals such as for and while) must be in braces below the conditional.
Ie, instead of if (test) clause or if (test) { clause }, use

if (test)
{
clause

}

Rationale: helpful when running code through a debugger

10. Two space indentation. Tabs are not allowed. Trailing whitespace is not allowed.

Rationale: Removing tabs ensures that blocks are indented consistently in all editors.

11. Only alphanumeric characters in names. Use capitalization to demarcate words within a name (i.e., camel case).
Preprocessor variables are the exception, and should be in all caps with a single underscore to demarcate words.

Rationale: Readability

12. Every class, macro, etc starts with either vtk or VTK. Classes should all start with lowercase vtk and macros or
constants can start with either.

Rationale: avoids name clashes with other libraries

13. After the vtk prefix, capitalize the first letter of class names, methods and static and instance variables. Local
variables are allowed to vary, but ideally should start in lower case and then proceed in camel case.

Rationale: Readability

14. Try to always spell out a name and not use abbreviations except in cases where the shortened form is obvious
and widely understood.

Rationale: Readability, self-documentation

15. Classes that derive from vtkObject should have protected constructors and destructors, and privately declared
but unimplemented copy constructor and assignment operator.

1. Classes that don’t derive from vtkObject should obey the rule of three. If the class implements the de-
structor, copy constructor or copy assignment operator they should implement all of them.

Rationale: VTK’s reference counting implementation depends on carefully controlling each object’s lifetime.

16. Following the copyright notice, the name and purpose of each class should be documented at the top of the header
with standard doxygen markup.:

/**
* @class vtkclassname
* @brief one line description
*
* Longer description of class here.
*/

Rationale: Doxygen generated documentation uses this to describe each class.

17. Public methods must be documented with doxygen markup.

/**
* Explanation of what the method/ivar is for
*/

380 Chapter 11. Developer’s Guide

VTK

Descriptions should do more than simply restate the method or ivar’s name.

The documentation for each public ivar should document the default value.

The documentation style for SetGet macros should be a single comment for the pair and a brief description of the
variable that is being set/get. Use doxygen group marking to make the comment apply to both macro expanded
functions.

///@{
/**
* Set / get the sharpness of decay of the splats.
* This is the exponent constant in the Gaussian
* equation. Normally this is a negative value.
*/
*/
vtkSetMacro(ExponentFactor,double);
vtkGetMacro(ExponentFactor,double);
///@}

The documentation style for vector macros is to name each of the resulting variables. For example comment

/**
* Set/Get the color which is used to draw shapes in the image. The parameters are␣
→˓SetDrawColor(red, green, blue, alpha)
*/
vtkSetVector4Macro(DrawColor, double);
vtkGetVector4Macro(DrawColor, double);

The description for SetClamp macros must describe the valid range of values.

/**
* Should the data with value 0 be ignored? Valid range (0, 1).
*/
vtkSetClampMacro(IgnoreZero, int, 0, 1);
vtkGetMacro(IgnoreZero, int);

Rationale: Doxygen generated documentation (http://www.vtk.org/doc/nightly/html/) is generated from these
comments and should be consistently readable.

18. Public and even Protected instance variables are allowed only in exceptional situations. Private variables should
be used instead with public access given via Set/Get macro methods when needed. Rationale: Consistent API,
ease of deprecation, and SetMacro takes part in reference counting.

19. Protected methods are allowed only when they are intended to be used by inheriting classes and overridden by
inheriting classes. Private methods should be the default for any method. Please note this is not true in many
classes but should be followed when adding new code. Rationale: Consistent API, ease of deprecation.

20. Accessors to vtkObject instance variables should be declared in the header file, and defined in the implementa-
tion file with the vtkCxxSetObjectMacro. Rationale: Reduces header file bloat and assists in reference counting.

21. Use this-> inside of methods to access class methods and instance variables. Rationale: Readability as it helps
to distinguish local variables from instance variables.

22. Header files should normally have just two includes, one for the superclass’ header file and one for the class’
module export header declaration. It is required that all but the superclass header have a comment explaining
why the extra includes are necessary. Care should be taken to minimize the number of includes in public headers,
with predeclaration/PIMPL preferred. Rationale: limits header inclusion bloat that slows compilation time.

11.9. Coding Conventions 381

http://www.vtk.org/doc/nightly/html/

VTK

23. Include statements in implementation files should generally be in alphabetical order, grouped by type. For exam-
ple, VTK includes first, system includes, STL includes, and Qt includes. Rationale: avoid redundant includes,
and keep a logical order.

24. All subclasses of vtkObject should include a PrintSelf() method that prints all publicly accessible ivars.

Rationale: useful in debugging and in wrapped languages that lack sufficient introspection.

25. All subclasses of vtkObject should include a type macro in their class declaration.

Rationale: VTK’s implementation of runtime type information depends on it

26. Do not use id as a variable name in public headers, also avoid min, max, and other symbols that conflict with
the Windows API.

Rationale: id is a reserved word in Objective-C++, and against variable name rules. min, max, and less common
identifiers listed in Testing/Core/WindowsMangleList.py are declared in the Windows API.

27. Prefer the use of vtkNew when the variable would be classically treated as a stack variable.

28. Eighty character line width is preferred.

Rationale: Readability

29. Method definitions in implementation files should be preceded by // followed by 78 - characters.

Rationale: Readability

30. New code must include regression tests that will run on the dashboards. The name of the file to test vtkClassName
should be TestClassName.cxx. Each test should call several functions, each as short as possible, to exercise a
specific functionality of the class. The main() function of the test file must be called TestClassName(int, char*[])

Rationale: Code that is not tested can not be said to be working.

31. All code must compile and run without warning or error messages on the nightly dashboards, which include
Windows, Mac, Linux and Unix machines. Exceptions can be made, for example to exclude warnings from
ThirdParty libraries, by adding exceptions to CMake/CTestCustom.cmake.in

32. Namespaces should not be brought into global scope in any public headers, i.e. the using keyword should not
appear in any public headers except within class scope. It can be used in implementations, but it is preferred to
bring symbols into the global scope rather than an entire namespace.

Rationale: Using VTK API should not have side-effects where parts of the std namespace (or the entire thing)
are suddenly moved to global scope.

33. While much of the legacy VTK API uses integers for boolean values, new interfaces should prefer the bool type.

Rationale: Readability.

34. Template classes are permitted, but must be excluded from wrapped languages.

Rationale: The concept of templates doesn’t exist in all wrapped languages.

11.9.2 Specific C++ Language Guidelines

C++ Standard Library

• Do not use vtkStdString in new API; prefer std::string

Rationale: vtkStdString was introduced as a workaround for compilers that couldn’t handle the long symbol
name for the expanded std::string type. It is no longer needed on modern platforms.

382 Chapter 11. Developer’s Guide

VTK

• STL usage in the Common modules’ public API is discouraged when possible, Common modules are free to use
STL in implementation files. The other modules may use STL, but should do so only when necessary if there is
not an appropriate VTK class. Care should be taken when using the STL in public API, especially in the context
of what can be wrapped.

Exception: std::string should be used as the container for all 8-bit character data, and is permitted throughout
VTK.

Rationale: limits header inclusion bloat, wrappers are not capable of handling many non-vtkObject derived
classes.

• References to STL derived classes in header files should be private. If the class is not intended to be subclassed
it is safe to put the references in the protected section.

Rationale: avoids DLL boundary issues.

C++ Language Features Required when using VTK

• nullptr Use nullptr instead of 0 and NULL when dealing with pointer types

• override VTK_OVERRIDE will be replaced with the override keyword

• final VTK_FINAL will be replaced with the final keyword

• delete The use of delete is preferred over making default members private and unimplemented.

C++11 Features allowed throughout VTK

• default The use of default is encouraged in preference to empty destructor implementations

• static_assert Must use the static_assert (bool_constexpr , message) signature. The signature without the
message in c++17

• non static data member initializers

• strongly typed enums VTK prefers the usage of strongly typed enums over classic weakly typed enums.

Weakly typed enums conversion to integers is undesirable, and the ability for strongly typed enums to specify
explicit storage size make it the preferred form of enums.

strongly typed: enum class Color { red, blue };

weakly typed: enum Color { red, blue };

While VTK is aware that conversion of all enums over to strongly typed enums will uncover a collection of
subtle faults and incorrect assumptions. Converting existing classes to use strongly typed enums will need to be
investigated and discussed with the mailing list, as this will break API/ABI, potentially cause issues with VTK
bindings, and possibly require changes to users VTK code.

11.9. Coding Conventions 383

http://en.cppreference.com/w/cpp/language/nullptr
http://en.cppreference.com/w/cpp/language/override
http://en.cppreference.com/w/cpp/language/final
http://en.cppreference.com/w/cpp/language/function#Deleted_functions
http://en.cppreference.com/w/cpp/language/default_constructor
http://en.cppreference.com/w/cpp/language/static_assert
http://en.cppreference.com/w/cpp/language/data_members
http://en.cppreference.com/w/cpp/language/enum

VTK

C++11 Features acceptable in VTK implementation files, private headers, and template implementa-
tions

• auto Use auto to avoid type names that are noisy, obvious, or unimportant - cases where the type doesn’t aid
in clarity for the reader. auto is permitted when it increases readability, particularly as described below. Never
initialize an auto-typed variable with a braced initializer list.

Specific cases where auto is allowed or encouraged:

– (Encouraged) For iterators and other long/convoluted type names, particularly when the type is clear from
context (calls to find, begin, or end for instance).

– (Allowed) When the type is clear from local context (in the same expression or within a few lines). Initial-
ization of a pointer or smart pointer with calls to new commonly falls into this category, as does use of auto
in a range-based loop over a container whose type is spelled out nearby.

– (Allowed) When the type doesn’t matter because it isn’t being used for anything other than equality com-
parison.

– (Encouraged) When iterating over a map with a range-based loop (because it is often assumed that the cor-
rect type is std::pair<KeyType, ValueType> whereas it is actually std::pair<const KeyType, ValueType>).
This is particularly well paired with local key and value aliases for .first and .second (often const-ref).

– for (const auto& item : some_map) {
const KeyType& key = item.first;
const ValType& value = item.second;
// The rest of the loop can now just refer to key and value,
// a reader can see the types in question, and we've avoided
// the too-common case of extra copies in this iteration.
}

– (Discouraged) When iterating in integer space. for (auto i=0; i < grid->GetNumberOfPoints();
++i). Because vtk data structures usually contain more than 2 billion elements, iterating using 32bit integer
is discouraged (and often doesn’t match the type used)

• braced initializer list Braced initializer list are allowed as they prevent implicit narrowing conversions, and “most
vexing parse” errors. They can be used when constructing POD’s and other containers.

Braced initializer lists are not allowed to be used as the right hand side for auto:

auto a = { 10, 20 }; //not allowed as a is std::initializer_list<int>

• lambda expressions

Usage of lambda expressions are allowed with the following guidelines.

– Use default capture by value ([=]) only as a means of binding a few variables for a short lambda, where the
set of captured variables is obvious at a glance. Prefer not to write long or complex lambdas with default
capture by value.

– Except for the above, all capture arguments must be explicitly captured. Using the default capture by
reference ([&]) is not allowed. This is to done so that it is easier to evaluate lifespan and reference ownership.

– Keep unnamed lambdas short. If a lambda body is more than maybe five lines long, prefer using a named
function instead of a lambda.

– Specify the return type of the lambda explicitly if that will make it more obvious to readers.

• shared_ptr

384 Chapter 11. Developer’s Guide

http://en.cppreference.com/w/cpp/language/auto
http://en.cppreference.com/w/cpp/language/list_initialization
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/memory/shared_ptr

VTK

– Do not combine shared_ptr and vtk derived objects. VTK internal reference counting makes the
shared_ptr reference counting (and destructor tracking) pointless.

• unique_ptr

– Do not combine unique_ptr and vtk derived objects. We prefer using vtkNew as VTK objects use internal
reference counting and custom deletion logic, the ownership semantics of unique_ptr are invalid.

– make_unique is not part of c++11

• template alias

– The use of alias templates is preferred over using ‘typedefs’. They provide the same language pattern of
normal declarations, and reduce the need for helper template structs. For example (Scott Meyers, Effective
Modern C++)

template<typename T> using MyAllocList = std::list<T, MyAlloc<T>>;

• universal references (&&) / std::move / std::forward

• extern templates

– Note: This should be investigated as an update to the current infrastructure used to export explicit template
instantiations used within VTK

• unordered maps

• std::array

– The use of std::array is preferred over using raw fixed sized arrays. They offer compile time bounds checking
without any runtime cost.

• range based for loop

C++11 Features allowed under certain conditions

• concurrency

Concurrency inside of vtk should be handled by using or extending the already existing collection of support
classes like vtkAtomic and vtkSMPThreadLocal.

Instead of directly using new c++11 constructs such as std::compare_exchange_weak instead extend the func-
tionality of vtk core concurrency classes.

Note: Thread local storage has not been supported on OSX previously to XCode 8. VTK offers the following
classes that should be used instead:

– vtkSMPThreadLocalObject

– vtkSMPThreadLocal

• std::isnan, std::isfinite, std::isinf

These functions should not be called directly, instead the wrapped versions provided by vtk should be used
instead.

– vtk::isnan -> std::isnan

– vtk::isfinite -> std::isfinite

– vtk::isisinfnan -> std::isinf

11.9. Coding Conventions 385

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/language/type_alias
http://en.cppreference.com/w/cpp/language/class_template
http://en.cppreference.com/w/cpp/concept/UnorderedAssociativeContainer
http://en.cppreference.com/w/cpp/container/array
http://en.cppreference.com/w/cpp/language/range-for
https://isocpp.org/wiki/faq/cpp11-library-concurrency
http://www.vtk.org/doc/release/7.0/html/classvtkSMPThreadLocalObject.html
http://www.vtk.org/doc/release/6.3/html/classvtkSMPThreadLocal.html
http://en.cppreference.com/w/cpp/numeric/math/isnan
http://en.cppreference.com/w/cpp/numeric/math/isfinite
http://en.cppreference.com/w/cpp/numeric/math/isinf

VTK

The reason for these wrappings is to work around compiler performance issues. For example, some clang version
would convert integral types to double and do the operation on the double value, instead of simply returning
false/true.

• std::future/ std::async

Future/Async based programming inside of vtk should be handled on a case by case basis. In general the use
cases for this kind of execution model is best applied at the vtkExecutive / vtkPipeline level, or at the File IO
level.

In these cases the recommendation is to extending or adding support classes so that these design patterns can be
utilized in the future.

• variadic templates

Variadic Templates are not allowed in VTK unless they are the only solution to the given problem.

C++11 Features that are not allowed

• std::regex

– Not supported by GCC 4.8 (can be used once GCC 4.9 is required)

• constexpr

– Not supported by VS2013

• unicode string literals (n2442)

– Not supported by VS2013

• universal character names in literals (n2170)

– Not supported by VS2013

• user-defined literals (n2765)

– Not supported by VS2013

• Extended sizeof (n2253)

– Not supported by VS2013

• Unrestricted Unions (n2544)

– Not supported by VS2013

• Noexcept (n3050)

– Not supported by VS2013

Parts of this coding style are enforced by git commit hooks that are put in place when the developer runs the Setup-
ForDevelopment script, other parts are enforced by smoke tests that run as part of VTK’s regression test suite. Most of
these guidelines are not automatically enforced. VTK’s commit hook enforced style checks Section list the style checks
that are in place.

386 Chapter 11. Developer’s Guide

http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/async
http://en.cppreference.com/w/cpp/language/parameter_pack
http://en.cppreference.com/w/cpp/regex
http://en.cppreference.com/w/cpp/language/constexpr
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://en.cppreference.com/w/cpp/language/string_literal
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://en.cppreference.com/w/cpp/language/character_literal
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2170.html
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://en.cppreference.com/w/cpp/language/user_literal
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2253.html
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://en.cppreference.com/w/cpp/language/union
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf
https://msdn.microsoft.com/en-us/library/hh567368.aspx
http://en.cppreference.com/w/cpp/language/noexcept
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
https://msdn.microsoft.com/en-us/library/hh567368.aspx

VTK

VTK’s commit hook enforced style checks

• Well formed commit message

Every commit message should consist of a one line summary optionally followed by a blank line and further
details. This is most easily approximated to the subject of an email, and the body in the form of paragraphs.

• Valid committer username and email address Every developer must have a valid name and email configured in
git.\

• ASCII filename check All file names must contain only ASCII characters.

• No tabs

• No trailing whitespace

• No empty line at end of file

• Proper file access mode

Files must be committed with sensible access modes.

• One megabyte maximum file size

• No submodules

The VTK project does not allow submodules. For required third party dependencies, the recommended scheme
is to use git’s subtree merge strategy to reproducibly import code and thereby simplify eventual integration of
upstream changes.

Additionally, new developers should be aware that the regression test machines have fairly strict compiler warnings
enabled and usually have VTK_DEBUG_LEAKS configured on to catch leaks of VTK objects. Developers should
be in the habit of doing the same in their own environments so as to avoid pushing code that the dashboards will
immediately object to. With GCC, it is easiest to do so by turning on VTK_EXTRA_COMPILER_WARNINGS.

11.10 About this documentation

This website is hosted on readthedocs.io. It is generated using Sphinx together with the MyST parser. The Python API
is extracted using autodoc2 extension while cmake API uses moderncmake-domain. The complete configuration along
with custom helpers for auto-generating some of the content can be found here.

11.11 Quick Start Guide

This is a quick start guide so that you can start contributing to VTK easily. To understand the process more deeply, you
can jump to the workflow section.

11.10. About this documentation 387

https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://sphinx-autodoc2.readthedocs.io
https://pypi.org/project/sphinxcontrib-moderncmakedomain
https://gitlab.kitware.com/vtk/vtk/-/tree/master/Documentation/docs

VTK

11.11.1 Initial Setup

Before you begin, perform your initial setup using the following steps:

1. Register GitLab Access to create an account and select a user name.

2. Fork VTK into your user’s namespace on GitLab.

3. Follow the download instructions to create a local clone of the main VTK repository:

$ git clone --recursive https://gitlab.kitware.com/vtk/vtk.git VTK

The main repository will be configured as your origin remote.

4. Run the developer setup script to prepare your VTK work tree and create Git command aliases used below:

$./Utilities/SetupForDevelopment.sh

This will prompt you for your GitLab username and configure a remote called gitlab to refer to your fork. It
will also setup a data directory for you. No need to do anything else.

11.11.2 Development

Create a local branch for your changes:

git checkout -b your_branch

Make the needed changes in VTK and use git locally to create logically separated commits. There is no strict require-
ments regarding git commit messages syntax but a good rule of thumb to follow is: General domain: reason for
change, General domain being a class, a module , a specific system like build or CI.

git commit -m "General domain: Short yet informative reason for the change"

Build VTK following the guide and fix any build warnings or issues that arise and seems related to your changes.

Add/Improve tests in order to ensure your changes are tested. Take a look in the Testing directory of the module you
are making changes in to see how the tests are currently built and try to follow the same paradigms. Run your test
locally from your build directory and check that they pass:

cmake . && cmake --build .
ctest -VV -R yourTest

11.11.3 Upload

Push your changes to the GitLab fork that you created in the initial setup stage:

git push gitlab

388 Chapter 11. Developer’s Guide

https://gitlab.kitware.com/users/sign_in
https://gitlab.kitware.com/vtk/vtk/-/forks/new
https://gitlab.kitware.com/vtk/vtk/Utilities/SetupForDevelopment.sh

VTK

11.11.4 Data

If your test uses new data or baselines, you will need to add it to your fork. For data, add the file names to the list in your
module yourModule/Testing/CMakeLists.txt and drop the files in Testing/Data/. For baselines, just drop the
file in yourModule/Testing/Data/Baselines and run the following commands from your build directory:

cmake . && cmake --build .

This will transform your files into .sha512 files. Check your test is passing by running from your build directory:

ctest -VV -R yourTest

If it passes, add these .sha512 files and commit them, then push with:

git gitlab-push

11.11.5 Create a Merge Request

Once you are happy with the state of your development on your fork, the next step is to create a merge request back into
the main VTK repository.

Open in a browser, select your branch in the list and create a Merge Request against master.

In the description, write an informative explanation of your added features or bugfix. If there is an associated issue,
link it with the #number in the description.

Tag some VTK maintainers in the description to ensure someone will see it, see here for the complete list.

11.11.6 Robot Checks

Once the MR is created, our GitLab robot will check multiple things and make automated suggestions. Please read them
and try to follow the instructions. The two standard suggestions are related to formatting errors and adding markdown
changelog.

To fix the formatting, just add a comment containing:

Do: reformat

Then, once the robot has fixed the formatting, fetch the changes locally (this will remove any local changes to your
branch)

git fetch gitlab
git reset --hard gitlab/your_branch

To fix the changelog warning, create, add, commit and push a markdown (.md) file in Documentation/release/dev
folder. In this file, write a small markdown paragraph describing the development. See other .md files in this folder for
examples. It may look like this:

Development title

A new feature that does this and that has been introduced.
This specific issue has been fixed in this particular way.

Suggestions and best practices on writing the changelog can be found in the Documentation/release/dev/
0-sample-topic.md file. This is an optional step but recommended to do for any new feature and user facing issues.

11.11. Quick Start Guide 389

https://gitlab.kitware.com/username/vtk/-/merge_requests/new

VTK

11.11.7 Reviews

VTK maintainers and developers will review your MR by leaving comments on it. Try to follow their instructions and
be patient. It can take a while to get a MR into mergeable form. This is a mandatory step, and it is absolutely normal
to get change requests.

Review comments can be resolved, please resolve a comment once you’ve taken it into account and pushed related
changes or once you’ve reached an agreement with the commenter that nothing should be changed.

Once a reviewer is happy with your changes, they will add a +X comment. You need at least one +2 or higher to consider
merging the MR. Two +1s do not equal a +2. If a reviewer leave a -1 comment, please discuss with them to understand
what is the issue and how it could be fixed.

Once you have pushed new changes, please tag reviewers again so that they can take a look. If you do not tag reviewers,
they may not know to revisit your changes. Do not hesitate to tag them and ask for help.

11.11.8 Continuous Integration

Before merging a MR, the VTK continuous integration (CI) needs to run and be green. For CI to be functional, please
read and follow this guide.

To run the CI:

• Click on the Pipelines Tab

• Click on the last pipeline status badge

• Press the Play all manual arrows on top of the Build and Test stages

Do not hesitate to tag a VTK developer for help if needed.

You then need to wait for CI to run, it can take a while, up to a full day.

A successful CI should be fully green. If that is so, then your MR is ready !

If not, you need to analyse the issues and fix them. Recover the failure information this way:

Click on the pipelines tab, then on the last status badge, then on the cdash-commit job. It will take you to the related
CDash report where you will find all information.

Everything in the CDash report should be green except the NotRun and Time column. Take a look into each issue and
fix them locally. If there are issues in the pipeline but nothing is visible in the CDash, please ask a maintainer for help
to figure out if anything should be done. You can always try to rerun the failed job by clicking on the arrow of the job
in the pipeline.

Once you have fixed some issues locally, commit and push them to gitlab, run the CI again and tag reviewers again for
follow-up reviews.

11.11.9 Merging

Once the MR has green CI and you have at least one +2, you can ask for a merge. Before that please make sure that:

• Your commit history is logical (or squashed into a single commit) and cleaned up with good commit messages

• You are rebased on a fairly recent version of master

If that is not the case, please rebase on master using the following commands:

390 Chapter 11. Developer’s Guide

https://discourse.vtk.org/t/the-ultimate-how-to-make-ci-work-with-my-fork-guide/7581

VTK

git fetch origin
git rebase -i origin/master
git push gitlab -f

The interactive rebase will let you squash commits, reorganize commits and edit commit messages.

After the force push, make sure to run CI again.

Once all is done, tag a VTK developer so that they can perform the merge command.

Congratulations ! You just contributed to VTK !

11.11. Quick Start Guide 391

VTK

392 Chapter 11. Developer’s Guide

CHAPTER

TWELVE

RESOURCES

For commercial or confidential consulting related to VTK or any of our other products and services, please contact
Kitware’s advanced support team for personalized assistance.

12.1 Links

Name Description

Book Descriptions of important visualization algorithms, including example im-
ages and code that utilizes VTK

book.vtk.org

Dis-
course

Community forum discourse.vtk.org

Git-
Lab

Merge requests and issues take place here gitlab.kitware.com/vtk/vtk

Exam-
ples

Examples, Tutorials, and guides for VTK in C++ and Python examples.vtk.org

Doxy-
gen

Documentation of VTK C++ classes updated daily vtk.org/doc/nightly/html

CDash Quality Dashboard open.cdash.org/index.php?project=VTK

12.2 Python

Name Description

PyPI Python Wheels pip install vtk
wheels.vtk.
org

See Additional Python
Wheels

pip install --extra-index-url https://wheels.vtk.
org vtk

393

https://www.kitware.com/contact/advanced-support/
http://book.vtk.org
http://discourse.vtk.org
http://gitlab.kitware.com/vtk/vtk
http://examples.vtk.org
http://vtk.org/doc/nightly/html
http://open.cdash.org/index.php?project=VTK

VTK

12.3 Docker

The VTK Docker Repositories are a set of ready-to-run Docker images aiming to support development and testing of
VTK-based projects.

Repository Description Dockerfile

kitware/
vtk

Images with built dependencies to support the continuous integration of VTK

kitware/
vtk-for-ci

Images with installation of VTK (in /opt/vtk/install) to support building & testing
your VTK-based projects. Learn more reading this blog.

kitware/
vtk-wasm

Static emscripten build of VTK to support building VTK-based WebAssembly applica-
tions. See Using WebAssembly

kitware/
vtkm

Images with built dependencies to support the continuous integration of VTK-m.

394 Chapter 12. Resources

https://hub.docker.com/search?q=kitware%2Fvtk
https://hub.docker.com/r/kitware/vtk
https://hub.docker.com/r/kitware/vtk
https://gitlab.kitware.com/vtk/vtk/-/tree/master/.gitlab/ci/docker
https://hub.docker.com/r/kitware/vtk-for-ci
https://hub.docker.com/r/kitware/vtk-for-ci
https://www.kitware.com/adding-ci-to-your-paraview-plugin-and-vtk-modules/
https://hub.docker.com/r/kitware/vtk-wasm
https://hub.docker.com/r/kitware/vtk-wasm
https://gitlab.kitware.com/vtk/vtk-wasm-docker
https://hub.docker.com/r/kitware/vtkm
https://hub.docker.com/r/kitware/vtkm
https://gitlab.kitware.com/vtk/vtk-m
https://gitlab.kitware.com/vtk/vtk-m/-/tree/master/.gitlab/ci/docker

CHAPTER

THIRTEEN

RELEASE DETAILS

13.1 9.3

Released on 2023-11-09.

13.1.1 9.3.0 Release Notes

Changes made since VTK 9.2.0 include the following.

Changes

Build

• Compile fixes for C++20 builds with gcc11.

• Apply /utf-8 option for MSVC builds for standardization.

• Headers vtkBlockSortHelper.h from VTK::RenderingVolume and vtkDIYKdTreeUtilities.h from
VTK::FiltersParallelDIY2 are now installed.

• The vtk-config.cmake CMake package no longer permits unknown components to be listed and will report
them as not found. This helps ensure the usability VTK::Component when VTK_Component_FOUND is set.

• The vtk_encode_string CMake API now supports the ABI_MANGLE_SYMBOL_BEGIN,
ABI_MANGLE_SYMBOL_END, and ABI_MANGLE_HEADER arguments to specify a mangling mechanism.
Previously (where mangling was supported), it was hard-coded to VTK’s own mangling decisions.

395

VTK

Charts

• Uniformize the vtkPlot API for color setters/getter, in order to fit the API of vtkPen and vtkBrush. Meth-
ods using floating point parameters (e.g. vtkPlot::SetColor(double r, double g, double b)) are now
suffixed with F to avoid confusion with equivalent functions using unsigned chars. The former ones are marked
as deprecated.

• vtkChartParallelCoordinates’s default selection behavior has been simplified. Multiple selection is no
longer supported in SELECTION_DEFAULT.

Copyright

• SPDX information have been added and replace all previous copyright declaration in all of VTK. See more
information on the process used.

Core

• OSPRay has been disabled for older x86_64 processors which do not support SSE4.1.

• Removed hidden private dependency of CommonCore on CommonDataModel.

• Nested parallelism has been disabled by default for all backends except TBB, which should improve
performance. Enabling nested parallelism is still possible when sub-task are coarse enough, using the
SetNestedParallelism method or a LocalScope.

• Improved vtkSMPTools STDThread backend. A common, global, thread pool is now shared between all SMP
calls, so they no longer create threads.

Data

• vtkPolyLine::Clip improved to generate polylines whenever possible.

• vtkCompositeDataSet::ShallowCopy now does an actual shallow copy up to array pointers.

• Fixed calculation of vtkPyramid centroid.

Filters

• VTK’s interruption method has been updated to use CheckAbort. CheckAbort will check the current filter’s
AbortExecute flag as well as any upstream filter’s AbortExecute flag. If any are set, the filter will out-
put empty data and tell downstream filters to abort as well. Currently, vtkContourGrid, vtkClipDataSet,
vtkShrinkFilter, and vtkRTAnalyticSource.

• vtkmContour’s ComputeScalars parameter has been fixed to behave like vtkContourFilter.

• vtkExtractCells has been relocated from Filters/Extraction to Filters/Core.

• vtkTemporalDataSetCache now deep copies data by default.

396 Chapter 13. Release Details

https://gitlab.kitware.com/vtk/vtk/-/commit/987d39ac31203df75281f0ab4be135dfc3c42d89
https://gitlab.kitware.com/vtk/vtk/-/commit/987d39ac31203df75281f0ab4be135dfc3c42d89

VTK

Geovis

• Moved vtkCompassWidget and vtkCompassRepresentation from Geovis/Core to Interaction/
Widgets.

Interaction

• vtkSelectPolyData now passes cell data attributes to the selected and unselected outputs.

• Output support fixed for vtkSelectPolyData when GenerateSelectionScalars is enabled.

I/O

• vtkPLYReader changed to use new vtkResourceStream IO.

– vtkPLY::get_ascii_item signature changed from void(const char*, int, int*, unsigned
int*, double*) to void(vtkResourceParser*, int, int*, unsigned int*, double*)

– vtkPLY::ply_read signature changed from PlyFile*(std::istream*, int*, char***) to
PlyFile*(vtkResourceStream*, int*, char***)

– vtkPLY::get_words signature changed from void(std::istream* is, std::vector<char*>*
words, char line_words[], char orig_line[]) to void(vtkResourceParser* is,
std::vector<char*>* words, char line_words[], char orig_line[])

• vtkPIOReader::GetTimeDataArray now returns nullptr when the index is out-of-range.

• CGNS fixed compilation with HDF5 1.12.

• vtkSTLReader fixed to not consume new lines erroneously.

Python

• OSMesa VTK wheels are now provided. These are available on VTK’s official channels (the VTK repository’s
Python index and vtk.org), but not PyPI because OSMesa conflicts with other OpenGL packages.

• The numpy adapter (util.numpy_support) converts numpy.int8 arrays to vtkSignedCharArray rather than
vtkCharArray, to ensure that signedness is preserved by the conversion.

13.1. 9.3 397

VTK

Rendering

• Fix wireframe render shading issues for some GPUs.

• VTK previously exported a lot of its shader strings from its libraries. Now only those that are available through
installed headers are available. These include:

– vtkTextureObjectVS from VTK::RenderingOpenGL2

– vtkCompositeZPassFS from VTK::RenderingParallel

• Volume label mapping improved to properly index upto 256 labels each with their own color, opacity and gradient
transfer functions.

System

• vtkExecutableRunner’s argument splitting system has been overhauled. There are now 2 modes to execute a
command using the ExecuteInSystemShell flag:

– When ExecuteInSystemShell is true (default), the class will execute the given command in the system
shell, leaving the actual argument split to the shell.

– When ExecuteInSystemShell is false, you will have to split the command and its arguments yourself
using the new AddArgument API.

Third Party

• VTK’s vendored zlib library has been updated to 1.2.13.

• VTK’s vendored fmt library has been updated to 9.1.0.

• VTK’s vendored ioss library has been updated to the 2022-10-14 release.

• VTK’s vendored libtiff library has been updated to 4.6.0. The new version fixes a number of CVEs.

• VTK’s vendored netcdf library has been updated to 4.9.2.

• VTK’s vendored mpi4py library has been updated to 3.1.4.

• VTK’s vendored expat library has been updated to 2.4.8.

• VTK’s vendored libxml2 library has been updated to 2.10.1.

• VTK’s vendored PDAL library has been updated to 2.1.

• Added fix for Proj compatibility with windows.h with the VTK STRICT definition.

398 Chapter 13. Release Details

VTK

New Features

ABI Namespace

• VTK is now wrapped in a customizable inline namespace (VTK_ABI_NAMESPACE). To wrap code in the ABI
namespace use VTK_ABI_NAMESPACE_BEGIN and VTK_ABI_NAMESPACE_END. This change means you can now
link different versions of VTK into the same runtime without generating conflicts between VTK symbols. Note:
this does not prevent conflicts with third-part symbol (including VTK-m).

• Where to put namespaces:

– Around classes, functions, variables, typedefs (optional).

– Inner most named namespaces, there is no need to use the ABI namespace inside of an anonymous names-
pace.

∗ ABI namespace should never be around a named namespace.

– Forward declarations of classes/functions/variables/typedefs require ABI namespace if their implementa-
tion/declarion was inside the ABI namespace.

• Where not to put namespace:

– Do not namespace around non-exported classes/functions/variables/typedefs (usually found in tests).

– Do not namespace around main functions.

– Python bindings cannot be namespaced.

– Most Utilities are not namespaced, including vtksys/vtkmeta/ksys.

– It doesn’t hurt anything, but it is not required to namespace symbols that are compiled into a driver (such
as Wrapping Tools).

• Some VTK modules have C interfaces that cannot be mangled:

– VTK::CommonCore (GetVTKVersion)

– VTK::IOXML (Provides a C API, vtkXMLWriterC_-)

– VTK::WrappingPythonCore (Python Wrapping cannot have mangling)

• Thirdpary Libraries and their VTK module wrappers do not have mangling:

– VTK::metaio

– VTK::xdmf2

– VTK::vpic

– All C libraries (ie. HDF5, netCDF, etc.)

• VTKm CUDA Accelerators do not get mangled:

– VTK::AcceleratorsVTKmCore

– VTK::AcceleratorsVTKmDataModel

– VTK::AcceleratorsVTKmFilters

13.1. 9.3 399

VTK

Build

• VTK_LOGGING_TIME_PRECISION can be used to change the precision of loguru timing output (when
VTK_ENABLE_LOGGING is ON).

• VTK_ZSPACE_USE_COMPAT_SDK can be used to control runtime search for zSpace Core Compatibility libraries.
Default is ON, disabling the search.

• VTK_GENERATE_SPDX can be used to generate SPDX files for each VTK module. Default is OFF. The generation
of SPDX files is considered experimental.

• Added VTK_USE_FUTURE_BOOL configure-time variable. The codebase contains many variables typed as int
that really should be bool. But changing them breaks backwards compatibility, and so a vtkTypeBool typedef
was introduced which is defined to either int or bool depending on the new VTK_USE_FUTURE_BOOL configure-
time variable. This allows for the piecemeal changing of many int variables to vtkTypeBool.

Charts

• vtkChartParallelCoordinates now has a chart legend which can be toggled with the SetShowLegend
method. This legend can be customized using the vtkChartLegend API.

• vtkPlotParallelCoordinates now has the option to set a preconfigured color array using
SetColorModeToDefault.

• Fixed bug where calling vtkPlotBar.GetLookupTable caused a segmentation fault when no data had been
plotted.

• You can now set an array name for the vtkPlotHistogram2D. This allows you to set an array that is not scalar,
ie. an array with a number of components greater than 1.

Core

• vtkMath::GetPointAlongLine can be used to compute a point along a line defined by two points and an
offset.

• vtkValueFromString is a new low-level function that converts a string to an integer, a floating-point value or
a boolean. vtkValueFromString is faster than standard library functions such as the std::strto* function
family.

• VTK now provides a way to obtain type names at compile time in the Common/Core/vtkTypeName.h header:

#include "vtkTypeName.h"

// ...
std::string typeName = vtk::TypeName<vtkImageData>();
std::cout << typeName << std::endl;

• The vtkStringToken class introduces a utility for hashing strings at either compile or run-time and using the
resulting integers as tokens. Additional utilities regarding compile-time hashing have also been added:

– vtkStringManager holds strings hashed at runtime. This makes it possible for the string-token class to
return the original string to you in some cases. Because the manager holds a map from string-hash to string,
only a single copy of the string is stored no matter how many copies of the token exist.

400 Chapter 13. Release Details

https://docs.vtk.org/en/latest/advanced/spdx_and_sbom.html

VTK

– Added new vtk::literals namespace for creating hashes and tokens at compile time.

∗ ""_hash - returns a 32-bit integer hash of the given string.

∗ ""_token - returns a vtkStringToken instance of the given string. Note that because the hash is
computed during compilation, you may not call the token’s Data()method to retrieve the string unless
it is inserted at run time by some other code.

– Since hashing is performed at build time, the following example is possible:

#include "vtkStringToken.h"
using namespace vtk::literals;
vtkStringToken t;
switch (t.GetId())
{
case "foo"_hash: foo(); break;
case "bar"_hash: bar(); break;
default: vtkErrorMacro("Unknown token " << t.Data()); break;

}

• VTK now provides a way to iterate over a class and all its ancestor types (as long as they
inherit vtkObjectBase and use the vtkTypeMacro() to define Superclass type-aliases). The
vtk::ParentClasses<T>::enumerate() function will invoke a functor you pass on T and each superclass of
T. This is used by a new vtk::Inheritance<T>() function that inserts the name of each class inherited by T
into a container you pass to it. See Common/Core/Testing/Cxx/TestInherits for example usage.

• vtkThreadedCallbackQueue can be used to run functions in the background on different
threads. Use the Push method to add functions to the queue. The Push method returns a
vtkSmartPointer<vtkThreadedCallbackQueue::vtkSharedFutureBase>, which lets users synchronize
tasks.

Data

• Added vtkImplicitArray template class that implements a read-only vtkGenericDataArray interface which
transforms an implicit function mapping integers to values into a practically zero cost vtkDataArray. This is
helpful in cases where one needs to attach data to data sets and memory efficiency is paramount.

– Additional backends have been added in the vtkImplicitArray framework:

∗ vtkAffineArray that gets constructed with a slope and intercept and then returns values linearly
depending on the queried index.

∗ vtkCompositeArray that takes an std::vector<vtkDataArray*> at construction and returns val-
ues as if the list has been concatenated into one array.

∗ vtkConstantArray that gets constructed with a given value and then returns that same value regard-
less of the index queried.

∗ vtkStdFunctionArray which uses a std::function<ValueType(int)> backend capable of cov-
ering almost any function one might want to use.

∗ vtkIndexedArray that takes an indexing array (either vtkIdList or vtkDataArray) and a base
vtkDataArray at construction and returns values indirected using the indexing array to give access
to a shuffled array without the memory cost.

– Read more about vtkImplicitArrays here.

13.1. 9.3 401

https://gitlab.kitware.com/vtk/vtk/-/blob/722365c58bbe829014a6272cf2f55364d68fb0b6/Documentation/release/dev/add-vtkImplicitArrays.md

VTK

• ProcessIds data array is now accessible directly from vtkDataSetAttributes just like any other data array
(e.g GlobalIds or Normals).

• Added vtkCellGrid. It exists to support finite element techniques using novel function spaces, which violate
vtkDataSet’s assumptions – especially discontinuous Galerkin (DG) elements.

• vtkPolyhedronUtilities added to support polyhedron decomposition into tetrahedra. Improves downstream
filter results (e.g. contours) on polyhedrons with concave faces.

• Added new vtkPolyhedron::TriangulateFaces method.

• Added new vtkStaticFaceHashLinksTemplate templated class that can be used to group faces of an un-
structured grid and eliminates duplicates.

• Added vtkHyperTreeGridGeometricLocatorwhich is a geometric locator for vtkHyperTreeGrid datasets.

• vtkHyperTreeGrid has a new type of cursor, called unlimited cur-
sors. vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor and
vtkHyperTreeGridNonOrientedUnlimitedGeometryCursor have been added.

• vtkDataSet::GetCellNumberOfFaces can be used to get the number of faces in a given cell.

• vtkBoundingBox::ComputeBounds added to compute the bounds for a set of points. This is used for the
GetCellBounds method in vtkUnstructuredGrid, vtkPolyData, and vtkExplicitStructuredGrid.

• Added vtkCompositeDataSet::CompositeShallowCopy which shallow copies up to dataset pointers only.

• Add new vtkNonLinearCell::StableClip method and vtkQuadraticTetra::StableClip implementa-
tion. The goal of this clip is to only decompose a cell if its actually clipped, otherwise keep the non-linear cell
in its entirety. Note: this clipping approach will lead to topological holes between decomposed cells and the
remaining non-linear cells.

• vtkPolyData::BuildCells has been multithreaded.

• Improved performance of vtkUnstructuredGrid’s IsCellBoundary/GetCellNeighbors methods.

• Improved stability of vtkCellLocator::FindClosestPointWithinRadius.

Documentation

• The VTK documentation has undergone a major update and consolidation to enhance its usefulness for develop-
ers. The /Documentation/docs directory now contains the contents and configuration for the Sphinx-based
website, published on the ReadTheDocs platform at https://docs.vtk.org. This consolidates all existing docu-
mentation for VTK, including the newly added list of supported data formats, API of all VTK public CMake
modules, the VTK formats specification (previously part of vtk-examples), and the general information about the
VTK project. Software process and conventions documentation has also been moved from docs.google.com to
the new website.

• In addition to the documentation website, two new resources have been introduced: the VTK book, which hosts
the markdown version of the VTK book at https://book.vtk.org and VTK examples at https://examples.vtk.org,
which contain many examples with redirects put in place to ensure the previous URL remains functional. Many
other updates to the documentation have also been made, including improved documentation structure, removal
of obsolete documents, and addition of imported third-party projects to the developer guide. VTK documentation
now follows a versioning system and is actively maintained alongside the code.

• Contributions and feedback are welcome for all three websites to ensure that the VTK documentation remains
up-to-date.

• Next steps

402 Chapter 13. Release Details

https://docs.vtk.org
http://docs.google.com
https://book.vtk.org
https://examples.vtk.org

VTK

– The next steps for the VTK documentation project include setting up a versioning system for docs, doxygen,
and the book. Work is also underway to include a description of each Modules (as well as a README.md
file) in docs.vtk.org. And there are plans to explore the possibility of using merge request previews for
the documentation so that contributors don’t have to compile it themselves.

– For examples.vtk.org, the plan is to consolidate examples from VTK and vtk-examples.

– Pages on the mediawiki site will be marked as deprecated, and a link to docs.vtk.org will be included.

– These efforts will help ensure that VTK documentation remains user-friendly and accessible to all devel-
opers.

Filters

• Added Filters/GeometryPreview module which include filters for creating a preview of the geomertry of a dataset.
Current GeometryPreview filters are:

– vtkPointSetToOctreeImageFilter, used to convert a vtkPointSet into an image with a number of
points per cell target and an unsigned char octree cell array.

– vtkOctreeImageToPointSetFilter, used to convert an image with an unsigned char octree cell ar-
ray to a vtkPointSet.

– vtkPointSetStreamer, used to stream points as buckets.

• vtkImageReslice now supports oriented images, and can reslice an image into a new orientation via the new
SetOutputDirection() method.

• vtkDistancePolyDataFilter can now output directions in conjunction with the (signed/unsigned) distances.
This is enabled using ComputeDirection (default:off).

• vtkVortexCore now outputs 2 extra arrays, vorticity and vorticity_magnitude.

• vtkQuadricDecimation has the following changes:

– Added new MapPointData property to which maps input point data to its decimated output.

– Added regularization mode. This is enabled by setting vtkQuadricDecimation::SetRegularize(true)
and vtkQuadricDecimation::SetRegularization(value) where value is the standard deviation
used in the Gaussian distribution.

• vtkHyperTreeGridGradient has added support for vector fields. The resulting gradient has 3 times the number
of components as the input field. Additionally, vorticity, divergence and Q-Criterion can now be computed.

• vtkHyperTreeGridContour now has 2 contour strategies in the 3D case: the former behavior called
USE_VOXELS, and the new USE_DECOMPOSED_POLYHEDRA which can produce better contour results when the
generated dual cells used for contouring appear to be concave. Note: USE_DECOMPOSED_POLYHEDRA is much
slower than the former strategy.

• vtkExtractCells has new flags PassThroughCellIds and OutputPointsPrecision.

• vtkProbeFilter has new flag SnapToCellWithClosestPoint which can be used with vtkPointSet inputs
to snap the probe points to the cell with the closest point.

• vtkPlaneCutter has new flags OutputPointsPrecision and MergePoints.

• vtkPCANormalEstimation has two new search modes used for the selection of neighbor points: KNN and
RADIUS.

• Various optimizations for vtkGeometryFilter:

13.1. 9.3 403

VTK

– Significant memory reduction (x5) with the introduction of vtkStaticFaceHashLinksTemplate.

– Significant speedup (x100) for vtkGeometryFilter’s conversion of vtkUnstructuredGrid to
vtkPolyData if the vtkUnstructuredGrid has only either vertices, or lines, or polys, or strips.

• Improved performance of vtkResampleToImage.

• Improved performance of vtkDistancePolyDataFilter.

• Improved performance of vtkFrustumSelector.

• Improved performance of vtkExtractSelection.

• Improved memory performance for vtkCellDataToPointData.

• Added more VTK-m accelerated filter overrides. If the VTK::AcceleratorsVTKmFilters is enabled and the
CMake option VTK_ENABLE_VTKM_OVERRIDES is ON, the following filters will be overridden:

– vtkGradientFilter -> vtkmGradient

– vtkTableBasedClipDataSet -> vtkmClip

– vtkCutter -> vtkmSlice

– vtkThreshold -> vtkmThreshold

– vtkCellDataToPointData -> vtkmAverageToPoints

– vtkPointDataToCellData -> vtkmAverageToCells

• The following filter components have been multithreaded:

– vtkRectilinearGrid::GetPoints

– vtkExtractCells

– vtkExtractSelection::ExtractSelectedCells

– vtkExtractSelection::ExtractSelectionPoints

– vtkExtractGeometry

– vtkPolyDataNormals

– vtkProbeFilter::ProbeEmptyPoints

– vtkTableBasedClipDataSet

– vtkThreshold

• New filter vtkHyperTreeGridPProbeFilter can be used to probe a vtkHyperTreeGrid using vtkDataSet.

• New filter vtkFieldDataToDataSetAttribute provides a way to efficiently pass FieldData single-value ar-
rays to other AttributeData. This is useful for composite data, where FieldData can be used to store a single
scalar, varying at block level only. Moving this scalar, for instance, to PointData, allows to use it in your pipeline.

• New filter vtkTensorPrincipalInvariants computes principal values and vectors from 2D and 3D symmet-
ric tensors.

• The new vtkYieldCriteria filter computes different yield criteria from given 2D or 3D symmetric tensors.
Available yield criteria currently include:

– Tresca criterion

– Von Mises criterion

• Added support for vtkHyperTreeGrid with vtkValueSelector, vtkLocationSelector and
vtkFrustumSelector. The selections generate can also now be extracted with the vtkExtractSelection
filter.

404 Chapter 13. Release Details

VTK

• Added HyperTreeGridToUnstructuredGrid boolean flag to vtkExtractSelection filter to control
whether to output an unstructured grid (when true) or a hyper try grid (when false, the default).

• Fix vtkHyperTreeGridAxisClip when insideout is true.

• The vtkHyperTreeGridGeometry filter now provides PassThroughCellIds (default false) to pass through
original cell IDs from the input vtkHyperTreeGrid to the output vtkPolyData.

• Added support for vtkHyperTreeGrid resampling with vtkResampleWithDataSet and
vtkPResampleWithDataSet filters.

• vtkPolyDataToUnstructuredGrid is a new multithreaded filter that converts
vtkPolyData to vtkUnstructuredGrid.

• Added vtkAttributeDataToTableFilter filter to VTK from ParaView. It serves to turn a data object into a
table by shallow copying its attributes into row data. This replaces vtkDataObjectToTable, which has been
deprecated.

• vtkBoundaryMeshQuality filter added to compute quality metrics for boundary meshes.

• vtkGenerateProcessIds filter added to generate process ids for both PointData and CellData, and store it via
ProcessIds attribute. This filter replaces vtkProcessIdScalars, which has been deprecated.

• Added PointDataWeighingStrategy option to vtkCleanUnstructuredGrid for choosing how to collapse
point data. Previously, when merging duplicate points, the point with the lowest index had its data transported
to the merged output point. With this new option, you can now choose between:

– vtkCleanUnstructuredGrid::FIRST_POINT (for backwards compatibility): where the point with the
lowest index in the input gets the ownership of the merged point.

– vtkCleanUnstructuredGrid::AVERAGING: where the data on the merged output point is the number
average of the input points.

– vtkCleanUnstructuredGrid::SPATIAL_DENSITY: where the merged point data is averaged using a
partition of the volumes in the cells attached to each point being merged.

• vtkTableFFT no longer adds or squeezes certain arrays, like those starting with vtk, when the input and the
output have a different size.

• vtkTableFFT now supports complex valued FFTs.

• Added hemispherical capping support along with texture coordinates for vtkCylinderSource to replace the
vtkCapsuleSource which has now been deprecated.

• vtkClipClosedSurface now provides the ability to clip on the reverse side of the clipping planes and also
provides the new triangulated geometry created by clipping as a second output.

I/O

• VTK now supports URI parsing, resolution and loading through the two new classes vtkURI and vtkURILoader.
URI support as been implemented to enable resource stream support in readers that need to access multiple
resources. For more information about URI usage and loading, please refer to the vtkURILoader documentation.

• vtkResourceStream added as customizable replacement for standard istreams. Added
vtkFileResourceStream and vtkMemoryResourceStream implementations.

• vtkResourceParser added as a high-performance formatted input parser. vtkResourceParser parses strings,
floats, integers and booleans from any vtkResourceStream. Most std::istream common features have
equivalent methods in vtkResourceParser, making migration mostly trivial.

13.1. 9.3 405

https://datatracker.ietf.org/doc/html/rfc3986

VTK

• Added vtkPLYReader, vtkGLTFReader and vtkOBJReader support for reading from vtkResourceStream.

• vtkMemoryResourceStream can now own a streamed buffer, meaning you can free the source buffer after
setting it. You can now set source buffer as a std::string, a std::vector or a vtkBuffer*.

• Added vtkNek5000Reader to support NEK5000 data format.

• Added vtkOpenVDBReader in the IOOpenVDB module read to .vdb files.

• Added vtkIOSSWriter writer for the Exodus file format implemented using the IOSS library. Input can be
vtkPartitionedDataSetCollection, vtkPartitionedDataSet or vtkDataSet. vtkIOSSWriter can be
executed in parallel.

• Added support for higher-order Lagrange cells with vtkIOSSReader.

• vtkIOSSReader now supports mixed-order, 12-node wedge elements.

• Added flag ReadAllFilesToDetermineStructure to vtkIOSSReader which toggles reading all files or only
reading the first file to determine mesh structure.

• Added vtkNetCDFUGRIDReader support for reading 2D meshes from NetCDF UGRID files.

• VTKHDF’s major version has been incremented to 2 due to the following additions:

– Added VTKHDF support for both static and transient vtkPolyData files. The metadata schematic for how
transient data is read is shown below (first image).

– Added VTKHDF support for transient ImageData and UnstructuredGrid data. The metadata schematic
for how transient data is read is shown below (second image).

– Specific documentation related to the evolution of the VTKHDF format can be found here.

• Added ANSYS Fluent CFF Reader (Common Fluid Format) into its own dedicated module VTK::IOFLUENTCFF,
which currently supports the new vtkFLUENTCFFReader. See further documentation here.

• Added vtkNumberToString::SetHighExponent and vtkNumberToString::SetLowExponent to control
the exponent range for scientific or fixed notation.

• Fixed reading fault on vector fields with vtkXMLHyperTreeGridReader.

• Added support for mixed cell unstructured grids in vtkConduitSource. See ValidateMeshTypeMixed and
ValidateMeshTypeMixed2D tests in IO/CatalystConduit/Testing/Cxx/TestConduitSource.cxx for
more details.

• vtkDataObjectToConduit now supports polygons, vtkPolyData and mixed shapes vtkUnstructuredGrid
topologies.

406 Chapter 13. Release Details

https://sandialabs.github.io/seacas-docs
https://kitware.github.io/vtk-examples/site/VTKFileFormats/
https://docs.vtk.org/en/latest/modules/vtk-modules/IO/FLUENTCFF/README.html

VTK

• Add vtkMPICommunicator support for MPI message lengths > MAX_INT, which can now occur in MPI 4.X
and later.

• Added vtkMPICommunicator::NoBlockSend method that allows for dynamic MPI types.

• Fixed bugs in vtkMPICommunicator::Test* and vtkMPICommunicator::Wait* that prevented them from
being called repeatedly.

• vtkIOSSReader can now merge entity blocks into a single block for the exodus format using the flag
MergeExodusEntityBlocks which is off by default. This is useful e.g. for cases where the entity blocks
just represent different cell types but they actually describe the same block.

• Incorrect vtkEnSightWriter output has been fixed for VTK_POLYGON, VTK_WEDGE, VTK_QUADRATIC_WEDGE,
VTK_QUADRATIC_EDGE or VTK_CONVEX_POINT_SET cell types. Support for VTK_POLYHEDRON has also been
added.

• Added flag WriteNodeIDs to vtkEnSightWriter, which toggles writing node and element IDs to the EnSight
data. This makes the output geometry file significantly smaller.

• Added property SizeAverageCellToPoint to vtkOpenFOAMReader that allows the user to weigh the cell point
averaging operation by cell size.

13.1. 9.3 407

VTK

Interaction

• Add support for removing intermediate layers with vtkExpandMarkedElements. Added boolean flags
RemoveSeed and RemoveIntermediateLayers. Using these flags will remove their respective layers, keep-
ing only the final expansion layer. This functionality has been extended for use in vtkSelectionSource and
vtkSelector.

• vtkAppendSelection SetColorArray, SetInputColor and GetInputColor methods added to associate
colors to selections which are used to generate a color array.

• vtkCameras can now be oriented with the vtkCamera3DWidget and its representation
vtkCamera3DRepresentation. The representation allows you to move the camera position, target po-
sition, to rotate the view up and to update its view angle. See example:

• Added vtk3DCursorWidget and vtk3DCursorRepresentation to track mouse in a scene. The 3D cursor
follows the mouse and is placed on the surface of the actor’s scene. Note: this behavior does not currently
support volumes.

• Added SetForce3DArcPlacement API to vtkAngleRepresentation2D which allows users to force correct
the 3D placement of arcs that may be misalligned.

• Moved vtkCompassWidget and vtkCompassRepresentation from Geovis/Core to Interaction/
Widgets. Previously these classes were in a non-working state, but have been fixed with the following changes:

– vtkSliderRepresentation and subclasses: Fixes were applied to correctly calculate the local coordinate
for the slider position. They also now honor their Visibility parameter.

– In vtkCompassWidget you can now adjust the update TimerDuration, TiltSpeed and DistanceSpeed
when clicking on the slider end caps.

408 Chapter 13. Release Details

VTK

• Added standardized color setters (SetForegroundColor, SetHandleColor and SetInteractionColor)
to several widgets used by ParaView. These widgets include vtkBoxRepresentation,
vtkCurveRepresentation, vtkLineRepresentation, vtkSphereRepresentation,
vtkImplicitCylinderRepresentation, vtkImplicitPlaneRepresentation,
vtkDisplaySizedImplicitPlaneRepresentation and vtkPointHandleRepresentation3D. De-
scription of added methods: The intended use of these colors is as follows:

Color Description
HandleColor Widget handles that are available to interact with via click+drag.
InteractionColor Widget handles the user is interacting with (via a click+drag) or hovering over.
ForegroundColor Widget elements meant to contrast with the background and which are not interactive.

• Added vtkOrientationWidget and its representation vtkOrientationRepresentation which are used to
rotate any actor. The appearance of widget controls are customizable through the representation. See examples:

Math

• Add GetOctaveFrequencyRange computation to vtkFFT which gets lower/upper frequencies of octaves. Pa-
rameters include octaveSubdivision, from which you can choose one-third, half, or full octave frequency
ranges (default is full) as well as baseTwo which toggles between base 2 and base 10 power (default is base 2).

Module System

• Added vtk_module_wrap_python(HEADERS_DESTINATION) argument. This argument adds a header into the
install tree that initializes the builtin module table for statically built Python modules. This header had not been
installed previously.

Python

• Added ModernizePythonImports.py script that parse Python scripts and replaces “import vtk” with module
specific imports for performance.

• vtkDataObject’s now support pickling by the Python pickle module.

– To use this new feature in python, you must first run:

import vtkmodules.util.pickle_support

– Once you have imported the module the pickling of data objects is straightforward:

from vtkmodules.vtkFiltersSources import vtkSphereSource
import vtkmodules.util.pickle_support
import pickle

(continues on next page)

13.1. 9.3 409

https://docs.python.org/3/library/pickle.html

VTK

(continued from previous page)

sphereSrc = vtkSphereSource()
sphereSrc.Update()

pickled = pickle.dumps(sphereSrc.GetOutput())
unpickled = pickle.loads(pickled)

print(unpickled)

• Python 3.12 wheels are now provided for the following platforms:

– Linux x86_64

– Linux x86_64 (with OSMesa)

– macOS x86_64

– macOS arm64

– Windows x86_64

– Windows x86_64 (with OSMesa)

Qt

• Added minimal Qt/VTK example application MinimalQtVTKApp.

• QML integration support has been upgraded to allow a vtkRenderWindow per QQuick item.

• Added custom cursor methods to QVTKOpenGLStereoWidget and QVTKOpenGLNativeWidget that get/set the
cursor shape.

Rendering

• Added VTK_USE_WIN32_OPENGL option to disable Win32 API in VTK::RenderingOpenGL2 on Windows. This
enables OSMesa support on Windows.

• Improved performance of vtkTupleInterpolator.

• Added new module providing zSpace support to VTK, implementing render window, interactor style, camera,
etc. Supports both the “Core zSpace API” (legacy) and the “Core Compatibility zSpace API” (latest).

• vtkAxisActor2D labels now use UseFontSizeFromProperty, which was formerly used exclusively by the
title.

• vtkImageResliceMapper now fully supports oriented images, in the same manner as vtkImageSliceMapper.
This allows the display of arbitrary oblique slices of oriented images, including those where the orientation matrix
has a negative determinant.

• Improved performance and consistency of vtkRenderWindowInteractor::ProcessEvents across all plat-
forms.

• vtkCompositePolyDataMapper can now color separate blocks with different scalar arrays. To use this func-
tionality, turn on ScalarVisibility and select a ScalarMode and/or a ColorMode.

• Improved performance of vtkContext2D for rendering large numbers of points.

410 Chapter 13. Release Details

VTK

• vtkCompositePolyDataMapper can now use separate lookup tables and interpolation modes for different
blocks in a composite dataset. You can override lookup table and other related attributes like scalar interpo-
lation and scalar ranges. Refer to vtkMapper documentation. Here’s a summary:

– ScalarVisibility: True/False

– UseLookupTableScalarRange: When true, the mapper shall import the range from the lookup table.

– InterpolateScalarsBeforeMapping: Applies when mesh is colored using point scalars. This flag
decides whether point colors are sampled using texture maps instead of interpolating colors on the GPU
after scalars are mapped to colors.

– ColorMode: Specifies whether to map scalars to colors or directly use the scalars as RGB(A) values.

– ScalarRange: Specifies a range of scalars for color mapping.

– LookupTable: Specifies a lookup table.

• vtkCompositePolyDataMapper in VTK::RenderingCore has been improved to efficiently render large datasets.
It now performs as well as vtkCompositePolyDataMapper2 in the VTK::RenderingOpenGL2 module, which
has now been deprecated. This refactor has significantly impacted the following VTK modules:

– vtkCompositePolyDataMapper now has an API similar to vtkCompositePolyDataMapper2.

– vtkCompositeSurfaceLICMapper derives vtkCompositePolyDataMapper instead of
vtkCompositePolyDataMapper2.

– The OSPRay module uses vtkCompositePolyDataMapper instead of
vtkCompositePolyDataMapper2.

– vtkVtkJSSceneGraphSerializer uses vtkCompositePolyDataMapper instead of
vtkCompositePolyDataMapper2.

• Added new vtkOpenGLES30PolyDataMapper supports polydata and composite dataset rendering with
OpenGL ES 3.0. If VTK was configured with VTK_OPENGL_USE_GLES=ON, this mapper is an override for
vtkPolyDataMapper.

• Fixed vtkSurfaceLICMapper crash when rendering lines as tubes or points as spheres.

• vtkTextureObject can now be used to create texture buffers on all OpenGL implementations that support 2D
textures.

• Fixed vtkCamera CAVE bugs for head tracking and volume rendering.

• Fixed compositing artifacts when volume rendering in parallel with the OSPRay raycaster. This fix adds a new
VolumeSamplingRate parameter to vtkOSPRayRendererNode.

• vtkPolarAxesActor has a number of new features.

– Radial/polar axes and arc ticks are now customizable. SetRequestedNumberOfRadialAxes,
SetRequestedDeltaAngleRadialAxes, SetArcTickMatchesRadialAxes,
SetRequestedNumberOfPolarAxes, SetRequestedDeltaAnglePolarAxes,
SetArcTickMatchesPolarAxes, SetDeltaAngleMajor, and SetDeltaAngleMinor are all new
methods.

– Tick size is now computed as a ratio of maximum radius by default. You can specify a value for this ratio
using SetTickRatioRadiusSize, default is 0.02.

– You can now change polar arcs resolution per degree. See SetPolarArcResolutionPerDegree, default
is 0.2.

– Text offsets are now customizable with SetPolarTitleOffset, SetRadialTitleOffset,
SetPolarLabelOffset and SetPolarExponentOffset.

13.1. 9.3 411

VTK

• vtkMultiVolume now supports RGBA volume inputs in a similar way to the existing single-input volume
rendering. When turning off the IndependentComponent flag of the vtkVolumeProperty and providing 4-
components to the mapper values are interpreted as RGBA.

• Added new gradient background modes. You can select from various gradient background modes with
vtkViewport::SetGradientMode. The following modes are available:

– VTK_GRADIENT_VERTICAL Background color is used at the bottom, Background2 color is used at the top.

– VTK_GRADIENT_HORIZONTAL Background color on the left, Background2 color on the right.

– VTK_GRADIENT_RADIAL_VIEWPORT_FARTHEST_SIDEBackground color in the center, Background2 color
on and beyond the circle ellipse edge. Circle/Ellipse touches all sides of the square/rectangle viewport.

– VTK_GRADIENT_RADIAL_VIEWPORT_FARTHEST_CORNER Background color in the center, Background2
color on and beyond the circle/ ellipse edge. Circle/Ellipse touches all corners of the square/rectangle
viewport. See gradient background examples:

412 Chapter 13. Release Details

VTK

Third Party

• fast_float added as a vendored package. It is available using the VTK::fast_float module.

VTK-m

• VTK-m submodule has been updated to the latest release, VTK-m 2.0.0. Being a major update, it significantly
breaks compatibility with the API provided by VTK-m 1.X. Thus, many changes were needed in VTK to make
it compatible with VTK-m 2.0.0.

– All VTK-m cmake targets are now prefixed with vtkm_. Exceptions have been made for vtkm::cuda and
vtkm::kokkos_hip, for compatibility with external VTK-m imports.

– VTK-m VTK module is now called vtk::vtkvtkm as opposed to vtk::vtkm.

– vtkmlib functions that translate VTK to VTK-m data structures now respect coordinates system changes.
Coordinates systems are now represented as a field inside the VTK-m dataset rather than a special/unique
component.

• The Fides library has been updated upstream to ensure compatibility with VTK-m 2.0.0. This update in upstream
has been brought to VTK to enable using VTK-m 2.0.0 and Fides through VTK.

Deprecated and Removed Features

Legacy

The following APIs were deprecated in 9.1 or earlier and are now removed:

• Python 2 support has been removed.

• Threading types (use C++ std classes instead):

– vtkSimpleConditionVariable (std::condition_variable)

– vtkConditionVariable (std::condition_variable)

– vtkMutexType

– vtkSimpleMutexLock (std::mutex)

– vtkMutexLock (std::lock_guard)

– vtkCritSecType

– vtkSimpleCriticalSection (std::mutex)

• The EvaluateLocationProjectedNode method has been removed on the following classes; use
EvaluateLocation instead:

– vtkBezierCurve

– vtkBezierHexahedron

13.1. 9.3 413

VTK

– vtkBezierQuadrilateral

– vtkBezierTetra

– vtkBezierTriangle

– vtkBezierWedge

• vtkBezierInterpolation::flattenSimplex has been renamed to ::FlattenSimplex

• vtkBezierInterpolation::unflattenSimplex has been renamed to ::UnFlattenSimplex

• vtkBezierInterpolation::deCasteljauSimplex has been renamed to ::DeCasteljauSimplex

• vtkBezierInterpolation::deCasteljauSimplexDeriv has been renamed to
::DeCasteljauSimplexDeriv

• vtkHigherOrderHexahedron::getEdgeCell has been renamed to ::GetEdgeCell

• vtkHigherOrderHexahedron::getFaceCell has been renamed to ::GetFaceCell

• vtkHigherOrderHexahedron::getInterp has been renamed to ::GetInterpolation

• vtkHigherOrderQuadrilateral::getEdgeCell has been renamed to ::GetEdgeCell

• vtkHigherOrderTetra::getEdgeCell has been renamed to ::GetEdgeCell

• vtkHigherOrderTetra::getFaceCell has been renamed to ::GetFaceCell

• vtkHigherOrderTriangle::eta has been renamed to ::Eta

• vtkHigherOrderTriangle::deta has been renamed to ::Deta

• vtkHigherOrderTriangle::getEdgeCell has been renamed to ::GetEdgeCell

• vtkHigherOrderQuadrilateral::getBdyQuad has been renamed to ::GetBoundaryQuad

• vtkHigherOrderQuadrilateral::getBdyTri has been renamed to ::GetBoundaryTri

• vtkHigherOrderQuadrilateral::getEdgeCell has been renamed to ::GetEdgeCell

• vtkHigherOrderQuadrilateral::getInterp has been renamed to ::GetInterpolation

• vtkIncrementalOctreeNode::InsertPoint without numberOfNodes is removed for the variant with it

• vtkLine::Intersection3D has been replaced by vtkLine::Intersection

• vtkPointData::NullPoint has been replaced by vtkFieldData::NullData

• vtkSelectionNode::INDEXED_VERTICES has been removed

• vtkReaderExecutive has been removed

• vtkThreadMessager has been removed; use C++ std threading support instead

• vtkPassThroughFilter has been replaced by vtkPassThrough

• vtkXMLPPartitionedDataSetWriter has been replaced by vtkXMLPartitionedDataSetWriter

• vtkBlueObeliskData::GetWriteMutex has been replaced by ::LockWriteMutex and
::UnlockWriteMutex

• vtkThreshold::ThresholdByLower has been replaced by ::SetLowerThreshold or
::SetThresholdFunction

• vtkThreshold::ThresholdByUpper has been replaced by ::SetUpperThreshold or
::SetThresholdFunction

• vtkThreshold::ThresholdBetween has been replaced by ::SetLowerThreshold and
::SetUpperThreshold or ::SetThresholdFunction

414 Chapter 13. Release Details

VTK

• vtkMultiBlockFromTimeSeriesFilter has been replaced by vtkGroupTimeStepsFilter

• vtkDataSetGhostGenerator has been replaced by vtkGhostCellsGenerator

• vtkDataSetSurfaceFilter methods ::GetUseStrips, ::SetUseStrips, ::UseStripsOn, and
::UseStripsOff have been removed

• vtkStructuredGridGhostDataGenerator has been replaced by vtkGhostCellsGenerator

• vtkUniformGridGhostDataGenerator has been replaced by vtkGhostCellsGenerator

• vtkUnstructuredGridGhostCellsGenerator has been replaced by vtkGhostCellsGenerator

• vtkPDataSetGhostGenerator has been replaced by vtkGhostCellsGenerator

• vtkPStructuredGridGhostDataGenerator has been replaced by vtkGhostCellsGenerator

• vtkPUniformGridGhostDataGenerator has been replaced by vtkGhostCellsGenerator

• vtkPUnstructuredGridGhostCellsGenerator has been replaced by vtkGhostCellsGenerator

• vtkOpenGLRenderer::HaveApplePrimitiveIdBug has been removed as no supported macOS release has
the issue anymore

• vtkOpenGLRenderWindow has removed the following methods:

– ::GetBackLeftBuffer

– ::GetBackRightBuffer

– ::GetFrontLeftBuffer

– ::GetFrontRightBuffer

– ::GetBackBuffer

– ::GetFrontBuffer

• vtkOpenGLRenderWindow::GetOffScreenFramebuffer has been replaced by ::GetRenderFramebuffer

• vtkDataEncoder::PushAndTakeReference has been replaced by ::Push

• vtkGenericOpenGLRenderWindow::IsDrawable is removed

• vtkIOSRenderWindow::IsDrawable is removed

• vtkCocoaRenderWindow::IsDrawable is removed

• vtkRenderWindow::IsDrawable is removed

• vtkDIYUtilities::GetDataSets is replaced by vtkCompositeDataSet::GetDataSets

• vtkCurveRepresentation::*DirectionalLine* methods have been renamed to ::*Directional*

• vtkSimpleImageFilterExample has been removed

• vtkExodusIIReaderPrivate::PrintData has been renamed to ::PrintSelf

• vtkEnSightReader::ReplaceWildcards has been replaced by vtkGenericEnSightReader::ReplaceWildcardsHelper

• vtkQtSQLDatabase::*Port has been renamed to ::*DbPort to avoid Windows SDK macro collisions

• The vtkDataSetSurfaceFilter::GetInterpolatedPointId overload without weights has been replaced
by the one with it

13.1. 9.3 415

VTK

Charts

• vtkPlot color setter/getter methods with floating point parameters are now suffixed with F. The former methods
without the suffix have been deprecated. For example:

– vtkPlot::SetColor(double r, double g, double b) has been moved to
vtkPlot::SetColorF(double r, double g, double b).

Core

• The vtkStdString implicit conversion to const char* is deprecated. Instead, call .c_str() explicitly on
the instance.

• vtkVariant::ToX and related string parsing no longer supports [-]infinity as a valid float conversion. Only
[-]inf is now supported.

Data

• Deprecated vtkCompositeDataSet::RecursiveShallowCopy, use vtkCompositeDataSet::ShallowCopy
instead.

• vtkUnstructuredGrid::GetCellLinks has been deprecated, vtkUnstructuredGrid::GetLinks instead.

• vtkAbstractCellLinks::BuildLinks(vtkDataSet*) has been deprecated, use
vtkAbstractCellLinks::BuildLinks() instead.

Filters

• vtkDataObjectToTable is deprecated in favor of vtkAttributeDataToTableFilter, which has the same
functionality.

• vtkProcessIdScalars is deprecated in favor of vtkGenerateProcessIds. The following is a migration
example:

– Deprecated vtkProcessIdScalars code:

vtkNew<vtkProcessIdScalars> processIdsGenerator;
processIdsGenerator->SetInputConnection(someData->GetOutputPort());
processIdsGenerator->SetScalarModeToCellData();
processIdsGenerator->Update();

vtkDataSet* pidGeneratorOutput = processIdsGenerator->GetOutput();
vtkIntArray* pidArray = vtkIntArray::SafeDownCast(pidGeneratorOutput->
→˓GetCellData()->GetArray("ProcessId"));

– New vtkGenerateProcessIds code:

416 Chapter 13. Release Details

VTK

vtkNew<vtkGenerateProcessIds> processIdsGenerator;
processIdsGenerator->SetInputConnection(someData->GetOutputPort());
processIdsGenerator->GeneratePointDataOff();
processIdsGenerator->GenerateCellDataOn();
processIdsGenerator->Update();

vtkDataSet* pidGeneratorOutput = processIdsGenerator->GetOutput();
vtkIdTypeArray* pidArray = vtkIdTypeArray::SafeDownCast(pidGeneratorOutput->
→˓GetCellData()->GetProcessIds());

• vtkCapsuleSource is deprecated in favor of vtkCylinderSource::SetCapping(true) and
vtkCylinderSource::SetCapsuleCap(true), which has the same functionality.

I/O

• vtkOpenFOAMReader support for polyhedral decomposition, SetDecomposePolyhedra, has been deprecated.

• vtkNumberToString::operator() has been deprecated in favor of vtkNumberToString::Convert.

Python

• The VTK wheels no longer provide the VTK::PythonInterpreter module as it is unnecessary in such situa-
tions.

Rendering

• vtkXOpenGLRenderWindow::SetSizeNoXResize() has been deprecated due to structural RenderingUI
changes in VTK 9.0.

• vtkOutputWindowCleanup has been deprecated as it is no longer used.

• vtkCompositePolyDataMapper2 has been deprecated in favor of vtkCompositePolyDataMapper following
the latter’s performance improvements.

Other Changes

13.2 9.2

Released on 2022-09-27.

13.2. 9.2 417

VTK

13.2.1 9.2.0 Release Notes

Changes made since VTK 9.1.0 include the following.

Changes

Build

• The VTK_USE_MPI and VTK_USE_TK options are more lenient and will not force any modules in the MPI or Tk
group, respectively, to be built. Instead, affected modules may be disabled if they are unwanted.

• VTK’s packages now hint OpenVR locations (for the build tree or VTK_RELOCATABLE_INSTALL=OFF installa-
tions).

• Installation destinations for Python modules is now fixed under MinGW.

• Compile fixes for older compilers, mainly GCC 4.8.

Core

• vtkVector’s += and -= operators now return a vtkVector& as expected. Previously they returned uninitialized
vtkVector instances which is of little use to anyone.

• vtkSetGet.h macros which create setters now have *Override variants to use the override keyword instead
of repeating virtual.

• vtkObject instances may now be assigned a name used in reporting. It is not copied by ShallowCopy or
DeepCopy copies.

• vtkAbstractArray::CreateArray now prefers creating sized integer arrays rather than arrays of basic C
types. This is intended to help readers get the correct size instead of having to remember whether long is 32 or
64 bits on the given platform.

Data

• The vtkArrayListTemplate helper class for vtkDataSetAttributes incorrectly held a vtkDataArray*.
This meant that filters using the class could not support other arrays such as vtkStringArray. Now, it holds
a vtkAbstractArray* to support these types. Users may adapt by using vtkArrayDownCast to obtain a
vtkDataArray* if needed.

418 Chapter 13. Release Details

VTK

Filters

• vtkArrayCalculator, vtkmodules.numpy_interface.dataset_adapter, and
vtkProgrammableFilter support for vtkHyperTreeGrid has been improved.

• vtkUnstructuredGridQuadricDecimation::NO_ERROR has been renamed to ::NON_ERROR to avoid con-
flicts with Microsoft Windows SDK headers.

• vtkImprintFilter::ABSOLUTE has been renamed to ::ABSOLUTE_TOLERANCE to avoid conflicts with Mi-
crosoft Windows SDK headers.

• vtkMeshQuality and vtkCellTypes now use a enum class QualityMeasureTypes instead of #define
symbols for metrics.

• vtkCheckerboardSplatter no longer has nested parallelism.

• vtkmProbe filters now return probed fields as point data rather than cell data.

• vtkDescriptiveStatistics’s Kurtosis formula had a mistake which is now corrected.

• vtkDescriptiveStatistics previously supported toggling kurtosis, skewness, and variance over sample or
population individually. Now, sample or population can be selected using the SampleEstimate boolean (on by
default). This simplifies interactions with the filter and avoids confusion by mixing and matching. The previous
APIs still exist, but do not do anything.

• vtkPlaneCutter now frees the sphere trees if the input changes and can handle vtkUniformGridAMR inputs.

• vtkPlaneCutter now uses vtkAppendPolyData internally to merge internal results. This avoids complex
vtkMultiBlockDataSet inputs from creating complicated sets of vtkMultiPieceDataSet. Inputs and out-
puts are now transformed as follows:

– vtkMultiBlockDataSet input becomes vtkMultiBlockDataSet

– vtkUniformGridAMR input becomes vtkPartitionedDataSetCollection (previously
vtkMultiBlockDataSet)

– vtkPartitionedDataSetCollection input becomes vtkPartitionedDataSetCollection

– vtkPartitionedDataSet input becomes vtkPartitionedDataSet

– vtkDataSet input becomes vtkPolyData (previously vtkPartitionedDataSet)

• vtkCellTreeLocator has moved from VTK::FiltersGeneral to VTK::CommonDataModel

• vtkArrayCalculator no longer calls Modified() on any value setting because it causes multi-threaded con-
tention.

• The vtkArrayRename filter may be used to rename data arrays within a data set.

• vtkGeometryFilter no longer supports the vtkUnstructuredGrid::FastMode using the Degree flag.

• vtkTemporalDataSetCache no longer crashes when a nonexistent timestep is requested.

• vtkTableFFT no longer prefixes output array names with “FFT_” like it was in 9.1 and just keep the same name
as the input like it was doing before 9.1. A new API has been added to keep 9.1 behavior when needed.

• vtkContourTriangulator polygon bounds checking now factors in the tolerance.

• vtkImageDifference calculations have been fixed. Note that this may affect testing results.

• vtkLagrangianParticleTracker caching invalidation logic fixed.

13.2. 9.2 419

VTK

Interaction

• vtkFrustumSelection has been optimized.

• Selection extraction on vtkUniformGridAMR has been fixed.

I/O

• The vtkIOSSReader now provides DisplacementMagnitude to scale point displacement.

• The vtkIOSSReader now turns off the LOWER_CASE_VARIABLE_NAMES IOSS property.

• vtkIOSSReader now reads side sets correctly by avoiding a false positive hit in its internal cache.

• FFmpeg 5.0 is now supported.

• vtkXdmfReader no longer caches internal XdmfGrid instances to avoid wasting memory. See #19633.

• vtkJSONSceneExporter no longer overwrites existing files.

• vtkGLTFExporter now exports the correct camera transformation matrix. Imported scenes may use
vtkGLTFImporter::SetCamera(0) prior to Update() to use the original camera location.

• vtkPLYWriter may now write the point normals of input meshes, if present.

• vtkPIOReader now requires dump files to begin with the problem name. This avoids using an unrelated file for
partially written dumps.

• vtkNetCDFCAMReader now properly extracts level data.

Rendering

• vtkProp3D actors may now be added using different coordinate frames: WORLD (the default), PHYSICAL
(in VR, the physical room’s coordinates, in meters), and DEVICE (relative to the device). When using
PHYSICAL or DEVICE, a renderer must be provided via the new SetCoordinateSystemRenderer() and
SetCoordinateSystemDevice() methods. Such props should typically use UseBoundsOff() to ignore their
bounds when resetting the camera.

• Unstable volume rendering configurations are detected.

• Volume rendering now supports more than 6 lights.

• vtkXOpenGLRenderWindow and vtkXRenderWindowInteractor now properly disconnects from the display
when it is not owned.

• Add a missing GIL lock in vtkMatplotlibMathTextUtilities.

• Avoid a hard-coded translation when resetting the camera in VR.

420 Chapter 13. Release Details

VTK

Python

• SDKs for each weekly wheels are now available on vtk.org. Releases will also have them available.

• vtkmodules.qt now supports PyQt6.

• Python 3.10 is now supported by vtkpython.

• Python 3.10 wheels are now supported.

• VTK’s wrapped classes may now be interposed by using the class’ override decorator:

from vtkmodules.vtkCommonCore import vtkPoints

@vtkPoints.override
class foo(vtkPoints):
pass

o = vtkPoints() # o is actually an instance of foo

• Note that Python subclasses still cannot override C++ virtual functions, cannot alter the C++ class hierarchy, is
global, and is ignored when the class uses vtkObjectFactory to provide a subclass from its ::New() method.

• .pyi files for autocompletion and hinting in editors are now available in VTK builds and wheels. Note that
Windows wheels older than 3.8 do not provide .pyi files for platform-specific reasons.

• Starting with 9.2.3, Python 3.11 is supported and newly-deprecated APIs are avoided.

• Starting with 9.2.3, Matplotlib 3.6 is now supported.

• Starting with 9.2.3, vtk[web] is required to get web dependencies with the wheels.

Web

• Fix a memory leak in vtkWebApplication.

• The render window serializers were updated to better map VTK options to VTK.js options. This includes font
coloring for scalar bars and color transfer function discretization.

• vtkDataSetSurfaceFilter is used in place of vtkGeometryFilter

• The generic mapper serializer now uses vtkDataSetSurfaceFilter to always extract a surface from the input
dataset.

• Python print statements were changed to DEBUG logging statements.

13.2. 9.2 421

VTK

Third Party

• VTK’s vendored HDF5 library has been updated to 1.13.1.

• VTK’s vendored verdict library has been updated.

• VTK’s vendored freetype library has been updated to 2.12.0.

• VTK’s vendored mpi4py’s Cython updated to support Python 3.11.

• Avoidance of deprecated APIs in new FFmpeg releases.

• VTK’s vendored libproj better supports cross-compilation.

Infrastructure

• Modules may now specify license files for the module in their vtk.module file. It will automatically be installed.

New Features

Animation

• Animations may now be played in reverse using vtkAnimationCue’s direction to
vtkAnimationCue::PlayDirection::BACKWARD

Build

• When VTK::AcceleratorsVTKmFilters is enabled, the VTK_ENABLE_VTKM_OVERRIDES option may be
turned on to provide factory overrides for other VTK filters. Note that for these overrides to be used, the relevant
VTKm modules must be linked (for C++) or imported (for Python) to be effective.

Core

• vtkMath::Convolve1D can be used to compute the convolution of two 1D signals using full, same, or valid
boundary conditions.

• vtkReservoirSampler may be used to perform reservoir sampling. It is intended for selecting random fixed-
size subsets of integer sequences (e.g., array indices or element IDs).

422 Chapter 13. Release Details

VTK

Charts

• The parallel coordinates chart now supports multiple selections on the same axis. This includes addition, sub-
traction, and toggle actions.

Filters

• The vtkGenerateTimeSteps filter may be used to add timesteps to shallow-copied data within a pipeline.

• The vtkHyperTreeGridGradient filter may be used to compute a gradient over a scalar field. The edges of
the dual is used, so all neighbors are considered, but coarse cells are ignored.

• The vtkExtractParticlesOverTime filter may extract particles over time that pass through a given volumetric
dataset.

• vtkMultiObjectMassProperties now also computes the centroids of each object. Centroids are calculated
using tetrahedron centroids and uniform density.

• vtkJoinTables may perform a SQL-style JOIN operation on two vtkTable objects. The columns to keep
depend on the mode: intersection (keep columns common to both tables), union (keeps columns present in
either table), and left and right (keeping the keys present in the respective input table).

• vtkComputeQuantiles has been split out of vtkComputeQuartiles as a new superclass. It supports arbitrary
numbers of buckets.

• vtkMeshQuality and vtkCellQuality have:

– been multithreaded

– improved documentation

– no longer supports the AspectBeta tetrahedron metric

– improved pyramid cell metrics:

∗ EquiangleSkew

∗ Jacobian

∗ ScaledJacobian

∗ Shape

∗ Volume

– improved wedge cell metrics:

∗ Condition

∗ Distortion

∗ EdgeRatio

∗ EquiangleSkew

∗ Jacobian

∗ MaxAspectFrobenius

∗ MaxStretch

∗ MeanAspectFrobenius

∗ ScaledJacobian

13.2. 9.2 423

VTK

∗ Shape

∗ Volume

– new triangle cell metrics:

∗ EquiangleSkew

∗ NormalizedInradius

– new quadrilateral cell metrics:

∗ EquiangleSkew

– new tetrahedron cell metrics:

∗ EquiangleSkew

∗ EquivolumeSkew

∗ MeanRatio

∗ NormalizedInradius

∗ SquishIndex

– new hexahedron cell metrics:

∗ EquiangleSkew

∗ NodalJacobianRatio

• The new vtkLinearTransformCellLocator is a cell locator adaptor which can calculate a transformation
matrix from a base dataset to another dataset. This matrix is then used to perform cell locator operations. The
UseAllPoints() method may be used to use either all dataset points (if the transformation might not be linear)
or, at most, 100 sample points sampled uniformly from the dataset’s point array.

• vtkCellLocator, vtkStaticCellLocator, vtkCellTreeLocator, vtkModifiedBSPTree, and
vtkLinearTransformCellLocator each have numerous improvements:

– support for ShallowCopy()

– caching cell bounds has been multithreaded

– InsideCellBounds checks are now cached

– new IntersectWithLine methods sorted by a parametric t; this also provides FindCellsAlongLine
for each locator

– the tolerance parameter may be used to check cell bound intersections

– The UseExistingSearchStructure parameter may be used to not rebuild locators when component data
changes, but the geometry stays the same; use ForceBuildLocator to rebuild as needed in this case

• vtkCellTreeLocator supports 64bit IDs.

• vtkCellTreeLocator::IntersectWithLine() and vtkModifiedBSPTree::IntersectWithLine() are
now thread-safe.

• vtkCellLocator is now fully thread-safe.

• The vtkAlignImageDataSetFilter has been added which can align image datasets to share a single global
origin and offset extents in each component image accordingly. All images must use the same spacing.

• The new vtkLengthDistribution filter may be used to estimate the range of geometric length scales preset
in a vtkDataSet.

424 Chapter 13. Release Details

VTK

• vtkImageMathematics can now perform operations on more than two images. Rather than connecting a second
image to port 1, all connections are made to port 0 instead. This unifies behavior with other repeatable image
filters such as vtkImageAppend.

• VTKm’s vtkmContour filter may be used as a factory override for vtkContourFilter.

• VTKm filter factory overrides may be toggled using vtkmFilterOverrides::SetEnabled().

• The vtkExtractHistogram filter has been moved from ParaView into VTK.

• vtkPointDataToCellData now handles categorical data using multiple threads.

• vtkSuperquadricSource now creates pieces using multiple threads.

• Particle traces now support vtkDataObjectTree objects to define seed points rather than only vtkDataSet
objects.

• vtkStreamTracer now uses SMP when multiprocessing is not in use.

• vtkStreamTracer performance and quality have been improved.

• vtkFindCellStrategy::FindClosestPointWithinRadius() has been added.

• vtkCompositeInterpolatedVelocityField::SnapPointOnCell() has been refactored from the
vtkInterpolatedVelocityField and vtkCellLocatorInterpolatedVelocityField subclasses.

• vtkParticleTracerBase is now multithreaded (with one MPI rank or more than 100 particles).

• vtkParticleTracerBase can now use either use a cell locator (the default) or point locator for interpolation.

• vtkParticleTracerBase supports different levels of mesh changes over time:

– DIFFERENT: the mesh changes on every timestep.

– SAME: the mesh is the same on every timestep.

– LINEAR_TRANSFORMATION: the mesh is a linear transformation of the prior timesteps (partially applies to
point locators as only cell links are preserved).

– SAME_TOPOLOGY: the mesh data changes, but its topology is the same every timestep (only applies to point
locators).

• vtkTemporalInterpolatedVelocityField can now use the FindCellStrategy because it now preserves
higher numerical accuracy internally.

• vtkGeometryFilter is now multi-threaded over more data types including:

– vtkUnstructuredGrid

– vtkUnstructuredGridBase

– vtkImageData (3D)

– vtkRectilinearGrid

– vtkStructuredGrid

• vtkGeometryFilter can now handle ghost and blank cells and points.

• vtkGeometryFilter can now remove ghost interfaces using the RemoveGhostInterfaces flag (default on).

• The vtkFiniteElementFieldDistributor filter can now visualize Discontinuous Galerkin (DG) finite ele-
ment fields of type H(Grad), H(Curl), and H(Div).

– Note that all cells must be of the same type and the field data must contain a vtkStringArray describing
the DG fields, basis types, and reference cells.

13.2. 9.2 425

VTK

Interaction

• vtkDisplaySizedImplicitPlaneWidget is now provided. Compared to vtkImplicitPlaneWidget2:

– the outline is not drawn by default

– the intersection edges of the outline and the plane may be drawn

– the normal arrow and plane size are relative to the viewport

∗ their sizes may be bounded by the widget bounds

– the origin may be moved freely rather than constrained to the bounding box

– the handle sizes are larger

– the plane is represented as a disc

– the only option for the perimeter is to be tubed or not

– the perimeter may be selected and resized to change the disc radius

– the actors are highlighted only when hovered

∗ except the plane surface which is highlighted when any actor is hovered over

– a new plane origin may be picked using P or p

∗ the ctrl modifier will snap to the closest point on an object or the camera plane focal point otherwise

– a new plane normal may be picked using N or n

∗ the ctrl modifier will snap to the closest normal on an object or the camera plane normal otherwise

– picking tolerance is relative to the viewport size

• vtkResliceImageViewer may now apply a factor when scrolling.

• vtkResliceCursorWidgetLineRepresentation supports alt+leftclick to translate along a single axis.

• vtkVRInteractorStyle now supports the Grounded movement style. The existing movement style is called
Flying. Grounded movement is constrained to an xy plane in four directions on one joystick. The other joystick
changes elevation.

• vtkSelection now supports the xor boolean operator.

• vtkSelectionSource now supports multiple selection nodes.

• vtkSelectionSource may now define the field option using either FieldType or ElementType.

• vtkSelectionSource now defines the ProcessId of the selection.

• vtkAppendSelection can now append multiple selections through an expression using selection input names.

• vtkConvertSelection may now convert BLOCK and BLOCK_SELECTORS nodes to INDICES.

426 Chapter 13. Release Details

VTK

I/O

• vtkFidesReader reader can now use the Inline engine for in-situ processing.

• vtkCatalystConduit may be used to adapt Conduit datasets via the Catalyst library’s conduit interactions.
This module requires an external catalyst library to be provided. This module includes:

– vtkConduitSource: a source filter which generates a vtkPartionedDataSet or
vtkPartitionedDataSetCollection from a Conduit node (it may also generate
vtkMultiBlockDataSet if needed for historical reasons).

– vtkDataObjectToConduit to convert any vtkDataObject into a Conduit node

– a Catalyst implementation

• The vtkHDFReader filter now supports overlapping AMR datasets. The specification can be found in the VTK
File Formats documentation.

• vtkCGNSReader now support reading cell- or face-centered data arrays for meshes with 3D cells. Note
that connectivity must be defined using NGON_n in face-based meshes. Data arrays are then defined with
a GridLocation_t of either CellCenter or FaceCenter. The behavior may be selected by setting
vtkCGNSReader::DataLocation to vtkCGNSReader::CELL_DATA (the default and previous behavior) or
vtkCGNSReader::FACE_DATA.

• vtkPIOReader can now read restart block and even/odd dumps.

• vtkPIOReader will now add the xdt, ydt, zdt, and rho derived variables and calculate them if they are not
already present in the restart file.

• vtkIOSSReader now caches time values internally to avoid filesystem contention on HPC systems.

• The new vtkIOSSWriter can write Exodus files using the IOSS library. For now, only element blocks, node
sets, and side sets are supported.

Qt

• QVTKTableModelAdapter may be used to provide a QAbstractItemModel model as a vtkTable to use in a
pipeline.

Rendering

• Basic OpenXR support is supported for virtual reality rendering.

• The vtkHyperTreeGridMapper mapper may be used to render only visible parts of a vtkHyperTreeGrid in
2D.

• Rendering point sets may now use OSPRay’s “Particle Volume” when using vtkPointGaussianMapper’s ray
tracing backend.

• vtkColorTransferFunction::AddRGBPoints may now be called with points and colors in batches for much
better performance.

• The WindowLocation API has moved from vtkTextRepresentation to vtkBorderRepresentation so
that it can be used by more classes.

13.2. 9.2 427

https://llnl-conduit.readthedocs.io/en/latest/index.html
https://gitlab.kitware.com/paraview/catalyst
https://catalyst-in-situ.readthedocs.io/en/latest/introduction.html#relationship-with-conduit
https://kitware.github.io/vtk-examples/site/VTKFileFormats/#hdf-file-formats
https://kitware.github.io/vtk-examples/site/VTKFileFormats/#hdf-file-formats

VTK

• Volumetric shadows is now supported which allows for a volumetric model to cast shadows on itself. Requires
volumetric shading to be enabled. An illumination reach parameter controls how accurate the shadows will be,
0 meaning only local shadows and 1 for shadows across the entire volume.

• Interactive rendering of most widgets are now supported with OSPRay.

428 Chapter 13. Release Details

VTK

Widgets

• The vtkCoordinateFrameWidget controls 3 orthogonal right-handed planes. Axes are rendered proportionally
to the viewport size (and is configurable). Interaction may pick a basis point and choose alignment with a surface
normal or another point. See this Discourse thread for discussion.

• vtkHardwarePicker may be used to pick a point and normal by intersection with a mesh cell or nearest mesh
point.

13.2. 9.2 429

https://discourse.vtk.org/t/vtkcoordinateframewidget/7379

VTK

Testing

• The vtkHyperTreeGridPreConfiguredSource may be used to generate different vtkHyperTreeGrid
datasets for testing purposes instead of hand-crafting them.

Wrapping

• Wrapping tools now support Unicode command line arguments.

• vtkSmartPointer<T> parameters and return values are now supported in wrapped Python APIs.
std::vector<vtkSmartPointer<T>> is also supported by appearing as a tuple in Python and conversion
from any sequence when converting to C++.

430 Chapter 13. Release Details

VTK

Module System

• vtk_module_sources is now provided as a wrapper around target_sources for VTK module targets.

• vtk_module_add_module now supports a NOWRAP_TEMPLATE_CLASSES keyword for template classes which
should not be wrapped.

Deprecated and Removed Features

Legacy

The following APIs were deprecated in 9.0 or earlier and are now removed:

• vtkPlot::GetNearestPoint(const vtkVector2f&, const vtkVector2f&, vtkVector2f*)

• vtkPlot::LegacyRecursionFlag (used to help subclasses implement the replacement for the prior method)

• The following APIs have been replaced by vtkOutputWindow::SetDisplayMode():

– vtkOutputWindow::SetUseStdErrorForAllMessages()

– vtkOutputWindow::GetUseStdErrorForAllMessages()

– vtkOutputWindow::UseStdErrorForAllMessagesOn()

– vtkOutputWindow::UseStdErrorForAllMessagesOff()

– vtkWin32OutputWindow::SetSendToStdErr()

– vtkWin32OutputWindow::GetSendToStdErr()

– vtkWin32OutputWindow::SendToStdErrOn()

– vtkWin32OutputWindow::SendToStdErrOff()

• vtkArrayDispatcher, vtkDispatcher, vtkDoubleDispatcher have been replaced by vtkArrayDispatch

• Fetching edge and face points via int rather than vtkIdType:

– vtkConvexPointSet::GetEdgePoints(int, int*&)

– vtkConvexPointSet::GetFacePoints(int, int*&)

– vtkHexagonalPrism::GetEdgePoints(int, int*&)

– vtkHexagonalPrism::GetFacePoints(int, int*&)

– vtkHexahedron::GetEdgePoints(int, int*&)

– vtkHexahedron::GetFacePoints(int, int*&)

– vtkPentagonalPrism::GetEdgePoints(int, int*&)

– vtkPentagonalPrism::GetFacePoints(int, int*&)

– vtkPolyhedron::GetEdgePoints(int, int*&)

– vtkPolyhedron::GetFacePoints(int, int*&)

– vtkPyramid::GetEdgePoints(int, int*&)

13.2. 9.2 431

VTK

– vtkPyramid::GetFacePoints(int, int*&)

– vtkTetra::GetEdgePoints(int, int*&)

– vtkTetra::GetFacePoints(int, int*&)

– vtkVoxel::GetEdgePoints(int, int*&)

– vtkVoxel::GetFacePoints(int, int*&)

– vtkWedge::GetEdgePoints(int, int*&)

– vtkWedge::GetFacePoints(int, int*&)

• Querying point cells with an unsigned short count of cells:

– vtkPolyData::GetPointCells(vtkIdType, unsigned short&, vtkIdType*&)

– vtkUnstructuredGrid::GetPointCells(vtkIdType, unsigned short&, vtkIdType*&)

• vtkAlgorithm::SetProgress() has been replaced by vtkAlgorithm::UpdateProgress()

• The following APIs have been replaced by vtkResourceFileLocator::SetLogVerbosity():

– vtkResourceFileLocator::SetPrintDebugInformation()

– vtkResourceFileLocator::GetPrintDebugInformation()

– vtkResourceFileLocator::PrintDebugInformationOn()

– vtkResourceFileLocator::PrintDebugInformationOff()

• vtkIdFilter::SetIdsArrayName() has been replaced by vtkIdFilter::SetPointIdsArrayName() and
vtkIdFilter::SetCellIdsArrayName()

• vtkExtractTemporalFieldData has been replaced by vtkExtractExodusGlobalTemporalVariables

• vtkTemporalStreamTracer and vtkPTemporalStreamTracer have been replaced by
vtkParticleTracerBase, vtkParticleTracer, vtkParticlePathFilter, or vtkStreaklineFilter

• vtkHyperTreeGridSource::GetMaximumLevel() and vtkHyperTreeGridSource::SetMaximumLevel()
have been replaced by vtkHyperTreeGridSource::GetMaxDepth() and
vtkHyperTreeGridSource::SetMaxDepth()

• QVTKOpenGLNativeWidget, QVTKOpenGLStereoWidget, QVTKOpenGLWindow methods have been removed:

– ::SetRenderWindow() is now ::setRenderWindow()

– ::GetRenderWindow() is now ::renderWindow()

– ::GetInteractor() and GetInteractorAdaptor() have been removed

– ::setQVTKCursor() is now QWidget::setCursor()

– ::setDefaultQVTKCursor() is now QWidget::setDefaultCursor()

• QVTKOpenGLWidget is replaced by QVTKOpenGLStereoWidget

• vtkJSONDataSetWriter::{Get,Set}FileName() is now vtkJSONDataSetWriter::{Get,
Set}ArchiveName()

• vtkLineRepresentation::SetRestrictFlag() has been removed

• The following vtkRenderWindow methods have been removed:

– GetIsPicking()

– SetIsPicking()

– IsPickingOn()

432 Chapter 13. Release Details

VTK

– IsPickingOff()

• The following APIs have been replaced by vtkShaderProperty methods of the same names:

– vtkOpenGLPolyDataMapper::AddShaderReplacement()

– vtkOpenGLPolyDataMapper::ClearShaderReplacement()

– vtkOpenGLPolyDataMapper::ClearAllShaderReplacements()

– vtkOpenGLPolyDataMapper::ClearAllShaderReplacements()

– vtkOpenGLPolyDataMapper::SetVertexShaderCode()

– vtkOpenGLPolyDataMapper::GetVertexShaderCode()

– vtkOpenGLPolyDataMapper::SetFragmentShaderCode()

– vtkOpenGLPolyDataMapper::GetFragmentShaderCode()

– vtkOpenGLPolyDataMapper::SetGeometryShaderCode()

– vtkOpenGLPolyDataMapper::GetGeometryShaderCode()

• The following APIs have been removed (they supported the legacy shader replacements):

– vtkOpenGLPolyDataMapper::GetLegacyShaderProperty()

– vtkOpenGLPolyDataMapper::LegacyShaderProperty

• The following APIs have been removed since only FLOATING_POINT mode is now supported:

– vtkValuePass::SetRenderingMode()

– vtkValuePass::GetRenderingMode()

– vtkValuePass::SetInputArrayToProcess()

– vtkValuePass::SetInputComponentToProcess()

– vtkValuePass::SetScalarRange()

– vtkValuePass::IsFloatingPointModeSupported()

– vtkValuePass::ColorToValue()

• vtkPythonInterpreter::GetPythonVerboseFlag() has been replaced by
vtkPythonInterpreter::GetLogVerbosity()

• vtkUnicodeString and vtkUnicodeStringArray have been removed. The vtkString and
vtkStringArray classes are now fully UTF-8 aware. UTF-16 conversion is no longer possible through
VTK APIs.

• vtkVariant support for __int64 and unsigned __int64 has been removed. They have returned false for
years.

13.2. 9.2 433

VTK

Core

• vtkCellTypes no longer uses LocationArray. It was used for vtkUnstructuredGrid but is now stored with
the class instead. As of this deprecation, all supported APIs are now only static methods.

• vtkUnstructuredGrid::GetCellTypes is deprecated. Instead, vtkUnstructuredGrid::GetDistinctCellTypesArray
should be used to access the set of cell types present in the grid.

• vtkHyperTreeGrid::GetNumberOfVertices() is now vtkHyperTreeGrid::GetNumberOfCells() to
align with VTK’s usage of the terminology.

• Classes may now opt into the garbage collection mechanism by overriding the UsesGarbageCollector()
method to return true instead of via the Register() and UnRegister() methods.

• vtkCriticalSection is deprecated. vtkCriticalSection was intended to be deprecated in VTK 9.1.0, but
a warning was never added to it. VTK now has the warning present as it was originally intended.

Filters

• vtkChemistryConfigure.h has been deprecated. It previously only provided information to VTK’s test suite
which is now routed internally instead. There is no replacement and any usage can simply be removed.

• vtkMFCConfigure.h has been deprecated. It used to provide information used during the module’s build that is
now passed through command line flags instead. There is no replacement and any usage can simply be removed.

• vtkMeshQuality’s mechanism to run the filter in legacy mode is deprecated. In particular the
CompatibilityMode and Volume members are no longer necessary with the new mode and should not be
used anymore.

• vtkMeshQuality method renames:

– SetQuadQualityMeasureToMaxEdgeRatios to SetQuadQualityMeasureToMaxEdgeRatio

– SetHexQualityMeasureToMaxEdgeRatios to SetHexQualityMeasureToMaxEdgeRatio

– QuadMaxEdgeRatios to QuadMaxEdgeRatio

– TetShapeandSize to TetShapeAndSize

• vtkDescriptiveStatistics::UnbiasedVariance, vtkDescriptiveStatistics::G1Skewness,
and vtkDescriptiveStatistics::G2Kurtosis are now deprecated in favor of a single
vtkDescriptiveStatistics::SampleEstimate instead.

• vtkCellLocator, vtkStaticCellLocator, vtkCellTreeLocator, vtkModifiedBSPTree, and
vtkLinearTransformCellLocator all have deprecated their LazyEvaluation flag due to thread-safety
issues. BuildLocatorIfNeeded is also deprecated for those that supported it.

• vtkStaticCellLocator:UseDiagonalLengthTolerance() has been deprecated because it no longer uses
Tolerance.

• vtkParticleTracerBase::StaticMesh is deprecated in preference to
vtkParticleTracerBase::SetMeshOverTime (an enumeration rather than a boolean).

• vtkCachingInterpolatedVelocityField, vtkCellLocatorInterpolatedVelocityField, and
vtkInterpolatedVelocityField filters have been deprecated. Instead, use:

– vtkCellLocatorInterpolatedVelocityField becomes vtkCompositeInterpolatedVelocityField
with vtkCellLocatorStrategy.

434 Chapter 13. Release Details

VTK

– vtkInterpolatedVelocityField becomes vtkCompositeInterpolatedVelocityField with
vtkClosestPointStrategy.

– vtkCachingInterpolatedVelocityField becomes vtkCompositeInterpolatedVelocityField
with the appropriate strategy.

Interaction

• vtkExtractSelectedThresholds, vtkExtractSelectedPolyDataIds, vtkExtractSelectedLocations,
vtkExtractSelectedIds, and vtkExtractSelectedBlock can now be replaced by
vtkExtractSelection.

• vtkHierarchicalBoxDataIterator is now deprecated in favor of vtkUniformGridAMRDataIterator.

Rendering

• vtkOSPRayRendererNode::VOLUME_ANISOTROPY, vtkOSPRayRendererNode::GetVolumeAnisotropy(),
and vtkOSPRayRendererNode::SetVolumeAnistropy() are deprecated in favor
ofvtkVolumeProperty::SetScatteringAnisotropy() and vtkVolumeProperty::GetScatteringAnisotropy().

Other Changes

13.3 9.1

Released on 2021-11-04.

13.3.1 9.1.0 Release Notes

Changes made since VTK 9.0.0 include the following.

Changes

13.3. 9.1 435

VTK

Charts

• vtkChartXYZ now applies matrix transformations in the right order (see issue 17542)

Data

• The node numbering for VTK_LAGRANGE_HEXAHEDRON has been corrected to match the numbering of
VTK_QUADRATIC_HEXAHEDRON when the Lagrange cell is quadratic. Readers can internally convert data to the
new numbering with XML file version 2.2 and legacy file version 5.1. The (0, 1) edge is swapped with the
(1, 1) edge:

quadratic VTK_QUADRATIC_HEXAHEDRON
VTK_LAGRANGE_HEXAHEDRON VTK_LAGRANGE_HEXAHEDRON

before VTK 9.1 VTK 9.1 and later

+_____+_____+ +_____+_____+
|\ :\ |\ :\
| + : + | + : +
| \ 19 + \ | \ 18 + \

18 + +-----+-----+ 19 + +-----+-----+
| | : | | | : |
|__ | _+____: | |__ | _+____: |
\ + \ + \ + \ +
+ | + | + | + |
\ | \| \ | \|
+_____+_____+ +_____+_____+

• vtkPolyData::ComputeBounds() used to ignore points that do not belong to any cell which was not consistent
with other vtkPointSet subclasses. See [ParaView issue #20354][paraview-issue20354]. The previous behav-
ior is available through vtkPolyData::ComputeCellsBounds() and vtkPolyData::GetCellsBounds()
(usually for rendering purposes).

Filters

• The VTK::FlowPaths and VTK::ParallelFlowPaths filters now use a vtkSignedCharArray rather than a
vtkCharArray since the latter is ambiguous as to whether it is signed or unsigned. This affects the protected
API available to subclasses and the usage of the output’s ParticleSourceId point data array.

• vtkStaticCellLocator::FindCellsAlongLine() now uses a tolerance for intersections with boxes.

• The tolerance used in vtkStaticCellLocator is now retrieved from the locator’s tolerance rather than rely-
ing on the size of the dataset. Previous behavior may be restored using the UseDiagonalLengthTolerance
property.

• vtkTubeFilter now increases the radius of tubes linearly with respect to the norm of the input vector when the
radius is selected to vary by the vector’s norm.

• vtkArrayCalculator has been updated to use C++ containers rather than raw pointers.

• vtkArrayCalculator no longer supports the old dot syntax by default and the dot() function must be used
instead.

436 Chapter 13. Release Details

https://gitlab.kitware.com/vtk/vtk/-/issues/17542

VTK

• vtkArrayCalculator can now use exprtk to parse expressions (the new default). This brings in functionality,
but cannot define functions that return vectors.

• vtkArrayCalculator’s input variable names must now be sanitized or quoted.

I/O

• There is a new VTK::IOChemistry module which contains chemistry-related readers. Moved classes:

– vtkCMLMoleculeReader: from VTK::DomainsChemistry

– vtkGaussianCubeReader: from VTK::IOGeometry

– vtkGaussianCubeReader2: from VTK::IOGeometry

– vtkMoleculeReaderBase: from VTK::IOGeometry

– vtkPDBReader: from VTK::IOGeometry

– vtkVASPAnimationReader: from VTK::DomainsChemistry

– vtkVASPTessellationReader: from VTK::DomainsChemistry

– vtkXYZMolReader: from VTK::IOGeometry

– vtkXYZMolReader2: from VTK::IOGeometry

• vtkOpenFOAMReader no longer supports the include compatibility keyword (deprecated in 2008).

• vtkOpenFOAMReader no longer treats uniformFixedValue as special. Proper support requires logic that would
require VTK to use OpenFOAM libraries.

• vtkOpenFOAMReader no longer supports OpenFOAM 1.3 cloud naming (deprecated in 2007).

Rendering

• vtkVolumeMapper and its subclasses now accept vtkDataSet input, but ignore any type that is not a
vtkImageData or vtkRectilinearGrid (or their subclasses). Derived classes may need to SafeDownCast if
the input is assumed to be vtkImageData.

• OpenGL framebuffers are now handled using a RenderFramebuffer that is internally man-
aged rather than destinations such as BackLeft and Front. If SwapBuffers is on, then the
RenderFramebuffer will be blitted to a DisplayFramebuffer (twice for stereo rendering). The
vtkOpenGLRenderWindow::BlitToRenderFramebuffer may be used to blit the current read framebuffer to
the render framebuffer to initialize color and depth data. The vtkOpenGLRenderWindow::FrameBlitMode
property may be set to control the following behavior:

– BlitToHardware: blit to hardware buffers (such as BACK_LEFT)

– BlitToCurrent: blit to the bound draw framebuffer

– NoBlit: blitting will be handled externally

• vtkTexture’s API now more closely matches OpenGL’s API. Instead of Repeat and EdgeClamp properties,
Wrap is provided using values such as ClampToEdge, Repeat, MirroredRepeat, and ClampToBorder. A
border color may be selected when using ClampToBorder.

13.3. 9.1 437

https://github.com/ArashPartow/exprtk

VTK

Java

• The byte, short, long, and float types may now be exposed in the wrapped Java APIs. The Java API now
uses types as close as possible to the C++ types used in the wrapped API.

Python

• VTK now defaults to Python 3.x rather than Python 2.

• The VTK::WebPython module no longer supports Python 2.

• Python 2.6, 3.2, and 3.3 are no longer supported. Python 3.6 or higher is recommended.

• VTK’s web support now requires wslink>=1.0.0. This slims down the dependency tree by dropping Twisted
in favor of asyncio and aiohttp.

• VTK’s wheels are now built via CI (rather than by hand). Wheels are available for:

– Python versions 3.6, 3.7, 3.8, and 3.9

– Platforms manylinux2014, macos10.10, and windows

– Python 3.9 also supports macos11.0 arm64

– Official wheels do not use any external dependencies, but see build.md for instructions on building custom
wheels.

• VTK object repr() now shows the address of the underlying C++ vtkObjectBase and the Python object itself:

– <vtkmodules.vtkCommonCore.vtkFloatArray(0xbd306710) at 0x69252b820>.

• VTK objects which are not derived from vtkObjectBase now have a repr() that shows the construction
method (though this is dependent on how the backing type serializes itself, so it may not be 100% accurate;
please file issues for types which look “odd”):

– vtkmodules.vtkCommonCore.vtkVariant("hello")

– vtkmodules.vtkCommonDataModel.vtkVector3f([1.0, 2.0, 3.0])

Rendering

• vtkTextProperty::LineSpacing now defaults to 1.0 rather than 1.1.

Infrastructure

• VTK’s deprecation mechanism now marks specific APIs as deprecated so that compilers may warn about its
usage. Clients still requiring older APIs can suppress warnings by defining VTK_DEPRECATION_LEVEL to
VTK_VERSION_CHECK(x, y, z) to suppress warnings about APIs deprecated after x.y.z.

438 Chapter 13. Release Details

../dev/build.md

VTK

New Features

Algorithms

• vtkFFT is now available to perform discrete Fourier transformations.

Core

• The vtkGaussianRandomSequence::GetNextScaledValue(), vtkMinimalStandardRandomSequence::GetNextRangeValue(),
and vtkRandomSequence::GetNextValue() APIs have been added to avoid the ->Next(), ->GetValue()
ping-ponging.

• vtkVariant::ToString() and vtkVariant::ToUnicodeString() now support formatting and precision
arguments when processing numerical values or arrays.

Charts

• vtkChartMatrix may now share x and/or y axes between charts using the Link(c1, c2) and Unlink(c1,
c2) methods. Labels for the axes may be set using the LabelOuter(leftBottom, rightTop) method.

• vtkChartMatrix now supports nested vtkChartMatrix items.

• vtkChartMatrix::Paint and vtkChartMatrix::GetChartIndex methods have been refactored to use an
iterator-based API.

• vtkChartXYZ now resizes dynamically with the scene by managing its margins). Manual calls to SetGeometry
is no longer necessary.

• vtkChartXYZ now supports removing plots.

• vtkChartXYZ can now turn off its clipping planes to avoid disappearing plots when zooming in.

• vtkChartXYZ can now zoom the axes along with the data.

• vtkChartXYZ now supports axes labels.

• vtkChartXYZ now uses vtkTextProperty for its text rendering.

Data

• vtkDataObjectTypes::TypeIdIsA may be used to determine if a type is the same as or a specialization of
another type.

• vtkDataObjectTypes::GetCommonBaseTypeIdmay be used to find the first common base class of two types.

• vtkPartitionedDataSetCollection and vtkDataAssembly has been introduced to represent
hierarchical datasets rather than vtkMultiBlockDataSet and vtkMultiPieceDataSet. The
new vtkConvertToPartitionedDataSetCollection filter can be used to convert any dataset

13.3. 9.1 439

VTK

into a vtkPartitionedDataSetCollection with vtkDataAssembly representing any hierar-
chical organization within a vtkMultiBlockDataSet. Converting back may be performed with
vtkPConvertToMultiBlockDataSet or vtkConvertToMultiBlockDataSet.

• vtkUnstructuredGrid::GetCell is now thread-safe.

Documentation

• VTK’s Doxygen documentation now cross-references pages with the vtk-examples website to examples using the
class. Images for the classes are now embedded into the class documentation as well.

440 Chapter 13. Release Details

https://kitware.github.io/vtk-examples/site/

VTK

Geometry

• The vtkCell API now includes support for the 19-node-pyramid named vtkTriQuadraticPyramid.
Along with the addition of this API, several filters, readers and tests have been updated to incorporate
vtkTriQuadraticPyramid:

– Filters:

∗ vtkCellValidator

∗ vtkUnstructuredGridGeometryFilter

∗ vtkReflectionFilter

∗ vtkBoxClipDataset

∗ vtkCellTypeSource

– Readers:

∗ vtkIossReader

Filters

• vtk3DLinearGridPlaneCutter has been updated to also handle cell data. Each triangle of the output
dataset contains the attributes of the cell it originated from. Using this class should be faster than using the
vtkUnstructuredGridCutter or the vtkDataSetCutter and should avoid some small projection error. The
vtkCutter has also been updated to benefit from these changes.

• vtkMergeVectorComponents has been added to the VTK::FiltersGeneral module which supports
vtkDataSet objects and may be used to combine three arrays of components into a new output array. This
filter supports multithreading via vtkSMPTools.

• vtkArrowSource now has an option to be placed and oriented around its center which makes placing it after
scaling and rotation much easier.

• vtkDataSetSurfaceFilter can now extract surfaces from all structured data sets including vtkImageData,
vtkStructuredGrid, and vtkRectilinearGrid when they have blanked cells marked using a ghost array.

• vtkDataSetSurfaceFilter has a “fast mode” which only considers the outer-most surface without considering
external faces within the outer shell which is intended for rendering purposes.

• vtkExtractExodusGlobalTemporalVariables now supports field data arrays.

• vtkExtractEdges now supports a UseAllPoints to use a non-Locator-based strategy to skip selecting only
the points which are used and instead assumes that all points will be present in the output.

• The vtkGhostCellsGenerator filter is now available to generate ghost cells. It uses DIY for
MPI communication internally and can handle any vtkMultiBlockDataSet, vtkPartitionedDataSet,
and vtkPartitionedDataSetCollection that is filled with the supported input dataset types in-
cluding vtkImageData, vtkRectilinearGrid, vtkStructuredGrid, vtkUnstructuredGrid, and
vtkPolyData. Ghost cells are only exchanged with elements of the same type and are treated as
the “closest” supported common ancestor class. Note that vtkHyperTreeGrid is not supported and
vtkHyperTreeGridGhostCellsGenerator should be used for it instead.

• vtkGroupDataSetsFilter may be used to combine input datasets into a vtkMultiBlockDataSet,
vtkPartitionedDataSet, or vtkPartitionedDataSetCollection. Each input is added as an individual
block and may be named using SetInputName.

13.3. 9.1 441

VTK

• vtkGroupTimeStepsFilter may be used to turn temporal data into a single vtkMultiBlockDataSet
or vtkPartitionedDataSetCollection with all of the temporal data. The output type is
vtkPartitionedDataSetCollection unless the input is vtkMultiBlockDataSet in which case an-
other vtkMultiBlockDataSet is output.

• vtkVortexCore’s output points now include interpolated variables of the input points.

• vtkVortexCore is now fully multithreaded using vtkSMPTools.

• vtkMergeTimeFilter may be used to synchronize multiple input temporal datasets. The output is a
vtkMultiBlockDataSet with one block per input element. The output timestep may be either a union or
intersection of the input timestep lists (which may be de-duplicated with either absolute or relative tolerances).

• vtkResizingWindowToImageFilter may be used as an alternative to vtkWindowToImageFilter to
create screenshots of any size and aspect ratio using the SetSize(width, height) method regardless
of the window size. Note that offscreen buffers are used and therefore memory usage is higher than
vtkWindowToImageFilter. Memory usage may be limited using the SetSizeLimit(width, height)
method (defaulting to (4000, 4000)). For images larger than the limit the filter will fallback to
vtkWindowToImageFilter in order to save memory.

• vtkExtractVectorComponents can now work multithreaded using vtkSMPTools.

• vtkPartitionedDataSetCollectionSource is now available to programmatically produce a
vtkPartitionedDataSetCollection.

• vtkThresholdPoints::InputArrayComponent has been added to enable selection of a single component
within the active data array. If a value larger than the number of components is used, the magnitude of each array
tuple will be used.

• vtkTubeBender is now provided in order to generate better paths for tubes in vtkTubeFilter. This is partic-
ularly visible when generating tubes around acute angles.

• vtkArrayCalculator now supports multithreading via vtkSMPTools.

• vtkVectorFieldTopology may be used to compute the topological skeleton of a 2D or 3D vector field given
as a set of critical points and separatrices. Separatrices are lines in 2D and surfaces in 3D (computed via
vtkStreamSurface).

• vtkTableFFT now offers a frequency column in the output table.

• vtkTableFFT can now compute the FFT per block and then average these results.

• vtkTableFFT can now apply a windowing function before computing the FFT.

• vtkMergeCells can now merge points using double precision tolerances.

• vtkTemporalPathLineFilter can now manage backwards times using its SetBackwardTime()
method. When using backwards time, each vtkDataObject::DATA_TIME_STEP() from subsequent
::RequestData() method calls will decrease.

• vtkPlaneCutter used to always generate a vtkMultiBlockDataSet regardless of input type. Now
vtkPlaneCutter decides what the output type will be based on the input type.

– If input type is vtkUniformGridAMR or vtkMultiBlockDataSet, the output type will be
vtkMultiBlockDataSet.

– If input type is vtkPartitionedDataSetCollection, the output type will be
vtkPartitionedDataSetCollection.

– If input type is vtkDataSet or vtkPartitionedDataSet, the output type will be
vtkPartitionedDataSet.

• The RemapPointIds functor of vtkRemoveUnusedPoints has now been multithreaded properly. (#18222)

442 Chapter 13. Release Details

VTK

Imaging

• The vtkImageProbeFilter works like vtkProbeFilter, but is designed for image data. It uses
vtkImageInterpolator rather than cell and point interpolations. The filter supports SMP acceleration.

I/O

• VTK can now read ADIOS2 files or data streams using Fides. This can be provided as a JSON file containing
the data model or Fides can generate its own data model automatically (see Fides documentation for details).
Fides converts the ADIOS2 data to a VTK-m dataset and the vtkFidesReader creates partitioned datasets that
contain either native VTK datasets or VTK VTK-m datasets. Time and time streaming is supported. Note that
the interface for time streaming is different and requires calling PrepareNextStep() and Update() for each
new step.

• The vtkCONVERGECFDReader has been added to read CONVERGE CFD (version 3.1) files containing meshes,
surfaces, and parcels as well as support for time series data. Each stream is considered its own block. Cell
and point data arrays may be selected using the CellArrayStatus and ParcelArrayStatus APIs. Note that
parallel support is not yet available.

• vtkEnSightGoldBinaryReader now supports reading undefined and partial variables from per-node and per-
element files.

• VTK’s EnSight Gold support can now read asymmetric tensors. This is not supported in EnSight6 files yet.

• The vtkIossReader has been added which supports reading CGNS and Exodus databases and files. The out-
put is provided as a vtkPartitionedDataSetCollection with vtkDataAssembly representing the logical
structure. Note that not all CGNS files are supported; only the subset supported by the backing IOSS library.
Eventually, the vtkExodusIIReader will be deprecated in preference for this reader.

• The vtkMP4Writer writer may be used to write H.264-encoded MP4 files on Windows using the Microsoft
Media Foundation API. The Rate property is available to set the framerate and the BitRate property may be
used to set the quality of the output.

• vtkOMFReader may be used to read Open Mining Format files. The output is a
vtkPartitionedDataSetCollection with each vtkPartitionedDataSet is one OMF element (point set,
line set, surface, or volume).

• vtkOpenVDBWriter may be used to write OpenVDB files. MPI is supported by writing separate files for each
rank. Temporal data is also written to a separate file for each timestep.

• vtkTGAReader may be used to read TGA images.

• vtkPDBReader now supports reading PDB files with multiple models.

• vtkPDBReader now generates an array containing the model each atom belongs to.

• vtkVelodyneReader may be used to read Velodyne AMR files.

13.3. 9.1 443

https://gitlab.kitware.com/vtk/fides
https://sandialabs.github.io/seacas-docs
https://omf.readthedocs.io/en/stable/index.html
https://www.openvdb.org

VTK

• vtkNrrdReader can now read gzip-encoded compressed NRRD files.

• vtkOpenFOAMReader now supports reading internal dimensioned fields.

• vtkOpenFOAMReader now supports string expansion syntaxes from OpenFOAM v1806 (#include, <case>,
<constant>, <system>).

• vtkOpenFOAMReader now handles mixed-precision workflows much more robustly.

• vtkOpenFOAMReader now handles multi-region cases without a default region.

• vtkOpenFOAMReader now respects the inGroups boundary entry for selection of multiple patches by group.

• vtkOpenFOAMReader now properly handles empty zones and has basic support for face zones.

• vtkOpenFOAMReader respects point patch value fields suing the correct visitation order.

• vtkOpenFOAMReader no longer has hard-coded limits on polyhedral size.

• vtkOpenFOAMReader now preserves uncollated Lagrangian information.

• vtkOpenFOAMReader now avoids naming ambiguities for Lagrangian and region names using a /regionName/
prefix for non-default regions.

444 Chapter 13. Release Details

VTK

Interaction

• A new 3D camera orientation widget. The widget’s representation is synchronized with the camera of the owning
renderer. The widget may be used to select an axis or using its handles.

• vtkSelectionNode now supports BLOCK_SELECTORS to select whole blocks from a compos-
ite dataset using a selector expression for hierarchy or an associated vtkDataAssembly for
vtkPartitionedDataSetCollections.

• Interactive 2D widgets have been added (ported from ParaView). The vtkEqualizerFilter and
vtkEqualizerContextItem are now available using this feature.

– Source data:

– After applying the filter:

• VTK’s OpenVR’s input model has been updated to be action-based and supports binding customization within
the OpenVR user interface. This includes controller labeling and user configuration.

13.3. 9.1 445

VTK

• vtkEventData now understands an “Any” device so that handlers can look for all events and do filtering inter-
nally. See merge request 7557 for an example of how to update custom 3D event handling.

• vtkResliceCursorWidget now refreshes when scrolling.

• Frustum selection of lines and polylines now only considers the line itself, not their containing area (i.e., they
were treated as polygons during selection).

• Selections of vtkDataAssembly may be limited to a subset of blocks using a collection of xpath selectors for
the dataset.

• vtkChartXYZ can now be controlled using the arrow keys for rotation.

• vtkScalarBarActor now supports custom tick locations via vtkScalarBarActor::SetCustomLabels()
and vtkScalarBarActor::SetUseCustomLabels().

Java

• Java 1.7 is now required (bumped from 1.6).

• The wrapped Java API now handles strings more efficiently by handling encoding in the Java wrappers directly.
No APIs are affected.

Python

• vtkPythonInterpreter::SetRedirectOutput can be used to disable Python output to vtkOutputWindow.

• VTK now offers two CMake options for deployments that can help to handle Python 3.8’s DLL loading policy
changes on Windows. This allows import vtkmodules to handle PATH manipulations to ensure VTK can be
loaded rather than relying on vtkpython to do this work.

– VTK_UNIFIED_INSTALL_TREE: This option can be set to indicate that VTK will share an install tree with its
dependencies. This allows VTK to avoid doing extra work that doesn’t need to be done in such a situation.
This is ignored if VTK_RELOCATABLE_INSTALL is given (there’s no difference there as VTK assumes that
how VTK is used in such a case is handled by other means).

– VTK_DLL_PATHS: A list of paths to give to Python to use when loading DLL libraries.

• Python wrappers will now generate deprecation warnings when the underlying VTK API is deprecated. Since
Python silences DeprecationWarning by default, the warnings must be allowed via:

import warnings
warnings.filterwarnings("default", category=DeprecationWarning)

• With Python 3.6 and newer, VTK APIs marked with attributes that indicate that paths are expected will now
support pathlike objects.

• Wrapped Python APIs now contain docstrings with type hints as described in PEP 484. This will help with IDE
tab completion and hinting.

• VTK’s vtkmodules package and vtk module now provide __version__ attributes.

• The vtkmodules.web.render_window_serializer module may be used to additionally serialize
vtkPolyData, vtkImageData, and mergeToPolyData optionally using the requested_fields=['*'] ar-
gument.

446 Chapter 13. Release Details

https://gitlab.kitware.com/vtk/vtk/-/merge_requests/7557#e8d22b8c27ce72ddec1110556087c6bd8d15fbec
https://www.python.org/dev/peps/pep-0484/

VTK

Qt

• VTK now supports Qt6 using the VTK_QT_VERSION variable. This may be set to Auto in which case the first of
Qt6 or Qt5 found will be used.

• The VTK::GUISupportQtQuick module has been added which supports the necessary integration classes as
well as the QML module infrastructure required to import VTK into a QtQuick application.

Rendering

• The vtkOutlineGlowRenderPass renders a scene as a glowing outline. Combined with layered renderers this
creates a very visible highlight without altering the highlighted object.

• VisRTX and OptiX now offer trace-level debugging information to determine why they may not be available.

• vtkMultiBlockUnstructuredGridVolumeMapper has been added to volume render the entirety of a multi-
block unstructured grid without merging them.

• The physical-based render shader now supports anisotropic materials. This may be modified using the
Anisotropy and AnisotropyRotation properties. Support for these values from a texture is also available.

• vtkBlockItem may now resize itself based on the label specified. Additionally, options for the brush, pen, and
text, padding, margins are available.

• Multi-volume ray-casting now supports shading.

• vtkMatplotlibMathTextUtilities now supports multi-line (using \n) and multi-column (using | separa-
tors) text. vtkTextProperty now has a CellOffset property to control the spaces between columns (in pixels).

• The GPU-based ray-casting volume mapper now supports rendering non-uniform rectilinear grids. Volume
streaming via block partitioning is not yet supported.

13.3. 9.1 447

VTK

• vtkOpenGLMovieSphere may be used to display spherical movies using OpenGL. Both regular 360° video and
stereo 360° video is supported where stereo streams are split into left and right eye rendering passes. The video
is sent to the graphics card as YUV textures which are decoded to RGB in the associated shaders.

• VTK’s VisRTX support is now compatible with OSPRay 2.0.

• The OpenGL vtkPolyData mappers now provide a way to handle jitter introduced by rendering with single-
precision vertex coordinates far from the origin. The PauseShiftScale parameter may be used to suspend
updates during user interactions.

• vtkResliceCursorRepresentation::BoundPlane() is now offered to show the entire resliced image when
rotating.

• vtkOpenGLPolyDataMapper now supports a vtkSelection object to display selected ids or values di-
rectly from the mapper itself. Selections are rendered in a second pass as a wireframe using the
vtkProperty::SelectionColor color.

• The GPU-based ray-casting volume mapper now supports direct volume rendering with the blanking of cells and
points defined by individual ghost arrays.

– Uniform grid with blanking:

• Image data with ghost cells and points:

448 Chapter 13. Release Details

VTK

• Volume rendering may now use independent scalar arrays for the x and y dimensions of 2D transfer functions.

Web

• render_window_serializer.py now supports serialization of a vtkRenderWindow that contains
vtkVolume, vtkVolumeProperty, or vtkVolumeMapper.

SMP

• vtkSMPTools::For() can now be used on iterators and ranges. This can be especially useful for containers
that are not indexed such as std::map and std::set.

• vtkSMPTools::LocalScope may be used to call a vtkSMPTools method with a specific configuration within
a scope. The configuration structure takes a maximum thread number and/or a backend.

• vtkSMPTools now has an STDThreads backend which uses C++’s std::thread.

• vtkSMPTools::Transform and vtkSMPTools::Fillmay be used as replacements for std::transform and
std::fill.

• Multiple backends may now be compiled into VTK at build time rather than a separate build per back-
end. The default may be selected using the VTK_SMP_IMPLEMENTATION_TYPE CMake variable or the
VTK_SMP_BACKEND_IN_USE environment variable at runtime. Enabling a backend is controlled by the
VTK_SMP_ENABLE_<backend> CMake variable at build time.

• The VTK_SMP_MAX_THREADS environment variable is now available to limit the number of threads any SMP task
will use.

• vtkSMPTools now supports nested parallelism using the NestedParallelism property (defaults to false)
and the IsParallelScope query to detect such scoping.

13.3. 9.1 449

VTK

Wrapping

• Wrapped classes no longer require a vtk prefix.

• Hierarchy files are used exclusively for type checking.

• The wrapping tools now keep an internal cache of which header files exist where on the system to avoid repeated
lookups when resolving #include search paths.

Module System

• The vtk_module_add_module(NOWRAP_HEADERS) argument may be used to list public and installed headers
which should not be exposed for wrapping purposes.

• The vtk_module_add_module(NOWRAP_CLASSES) argument may be used to list class names for which the
headers are treated as NOWRAP_HEADERS arguments.

• The vtk_module_add_module(HEADER_DIRECTORIES) argument may be used to indicate that the relative
path of headers from the current source or binary directory should be preserved upon installation.

• The vtk_module_install_headers(USE_RELATIVE_PATHS) argument may be used to indicate that the rel-
ative path of headers from the current source or binary directory should be preserved upon installation.

• The vtk_module_build, vtk_module_wrap_python, and vtk_module_wrap_java APIs now support a
UTILITY_TARGET argument. The target named using this argument will be privately linked into every library
created under these APIs. This may be used to provide compile or link options to every target. Note that the
target given must be installed, but it may be installed with the same export set given to any of these APIs.

• The module system now supports target-specific components using the
vtk_module_build(TARGET_SPECIFIC_COMPONENTS) argument.

Infrastructure

• VTK plans to hold to a new minor (or major) release every six months with releases in or around April and
October each year.

• VTK now uses GitLab-CI for testing.

• OSPRay support now detects Apple’s Rosetta translation environment and refuses to run due to the environment
not supporting instructions used within OSPRay.

• vtkGetEnumMacro and vtkSetEnumMacro are now available to work with enum class properties.

• VTK now requires CMake 3.12 to build and to consume. This is mainly due to the usage of SHELL: syntax to
properly support some MPI use cases.

• vtkSOADataArrayTemplate compilation should use less memory now that its template instantiations are split
into separate TU compilations.

• The VTK_TARGET_SPECIFIC_COMPONENTS option may be specified to provide target-specific installation com-
ponents.

450 Chapter 13. Release Details

VTK

Third Party

• An external ioss library may now be provided to VTK’s build.

• An external pegtl library may now be provided to VTK’s build.

• exprtk is now included in VTK (an external copy is supported).

• fmt is now included in VTK (an external copy is supported, though VTK requires patches which have been
merged upstream but not yet released).

• VTK’s embedded third party packages have been updated:

– cli11 2.0.0

– eigen 3.3.9

– exodusII 2021-05-12

– expat 2.4.1

– freetype 2.11.0

– glew 2.2.0

– hdf5 1.12.1

– jpeg 2.1.0

– libxml2 2.9.12

– lz4 1.9.3

– lzma 5.2.5

– mpi4py 3.0.3

– netcdf 4.8.0

– ogg 1.3.5

– pugixml 1.11.4

– sqlite 3.36.0

– tiff 4.3.0

Deprecated and Removed Features

Legacy

Some APIs had been deprecated for a long time. The following APIs are now removed.

• vtkDataArrayTemplate (deprecated since Dec 2015)

• vtkObjectBase::PrintRevisions and vtkObjectBase::CollectRevisions (deprecated since 2012)

• VTK___INT64 and VTK_UNSIGNED___INT64 (deprecated since Mar 2017)

• vtkArrayCalculator::SetAttributeMode* and VTK_ATTRIBUTE_MODE_* macros (deprecated in Jun
2017)

13.3. 9.1 451

https://github.com/fmtlib/fmt/pull/2432

VTK

• vtkContourGrid::ComputeGradients (deprecated in Dec 2018)

• vtkSMPContourGridManyPieces, vtkSMPTransform, vtkThreadedSynchronizedTemplates3D, and
vtkThreadedSynchronizedTemplatesCutter3D (deprecated in Sep 2017)

• vtkAbstractImageInterpolator::GetWholeExtent (deprecated in Mar 2016)

• vtkImageStencilData::InsertLine (an overload) (deprecated in Nov 2014)

• The RemoveBlockVisibilites method from vtkCompositeDataDisplayAttributes,
vtkCompositeDataDisplayAttributesLegacy, and vtkCompositePolyDataMapper2 (deprecated
in Jul 2017)

• vtkOpenVRPropPicker (deprecated in Apr 2018)

Core

• vtkLegacy.h and VTK_LEGACY_REMOVE are now deprecated and vtkDeprecation.h and its mechanisms
should be used instead.

• Building with kits is no longer supported with static builds. Since the goal of a kit build is to reduce the number of
runtime libraries needed at startup, a static kit build does not make much sense. Additionally, some dependency
setups could not be resolved in such a build (as witnessed by ParaView) and a proper fix is not easy, so disabling
the support makes more sense at this time.

• The vtkToolkits.h header provided preprocessor definitions indicating some features within VTK’s build.
However, these were inaccurate in single-configure builds since the information was not available when the
header was configured.

– VTK_USE_VIDEO_FOR_WINDOWS: now available in vtkIOMovieConfigure.h

– VTK_USE_VFW_CAPTURE: now available in vtkIOVideoConfigure.h as
VTK_USE_VIDEO_FOR_WINDOWS_CAPTURE, but the old name is given for compatibility.

• vtkUnicodeString and vtkUnicodeStringArray are now deprecated since VTK, since 8.2, has assumed
UTF-8 for all string APIs. As such, vtkUnicodeString and vtkUnicodeStringArray did not provide any
additional information. Users which used them to convert UTF-8 to UCS-2 for Windows API usages should
instead use VTK::vtksys’s SystemTools APIs for converting such strings.

• vtkAtomic is removed in favor of std::atomic. As such, vtkAtomic.h and vtkAtomicTypeConcepts.h
are no longer provided.

• Threading-related classes are now deprecated in favor of C++11 standard library mechanisms.

– vtkConditionVariable: std::condition_variable_any

– vtkCriticalSection: std::mutex

– vtkMutexLock: std::mutex

– vtkSimpleConditionVariable: std::condition_variable_any

– vtkSimpleCriticalSection: std::mutex

– vtkSimpleMutexLock: std::mutex

– vtkThreadMessanger: std::mutex and std::condition_variable_any

• vtkSetGet.h no longer includes <math.h>.

• vtkVariant.hmethods Is__Int64 and IsUnsigned__Int64were marked deprecated, though they have been
unconditionally returning false since 2015.

452 Chapter 13. Release Details

VTK

Filters

• vtkDataSetSurfaceFilter no longer supports generation of triangle strips. The vtkStripper filter may be
used to generate them if needed.

• vtkConfigure.h is now deprecated and split into more focused headers. The headers which now contain the
information:

– vtkBuild.h: VTK_BUILD_SHARED_LIBS

– vtkCompiler.h: Compiler detection and compatibility macros.

– vtkDebug.h: VTK_DEBUG_LEAKS and VTK_WARN_ON_DISPATCH_FAILURE

– vtkDebugRangeIterators.h: VTK_DEBUG_RANGE_ITERATORS and
VTK_ALWAYS_OPTIMIZE_ARRAY_ITERATORS

– vtkEndian.h: VTK_WORDS_BIGENDIAN

– vtkFeatures.h: VTK_ALL_NEW_OBJECT_FACTORY and VTK_USE_MEMKIND

– vtkLegacy.h: VTK_LEGACY_REMOVE, VTK_LEGACY_SILENT, and VTK_LEGACY

– vtkOptions.h: VTK_USE_64BIT_IDS and VTK_USE_64BIT_TIMESTAMPS

– vtkPlatform.h: VTK_REQUIRE_LARGE_FILE_SUPPORT and VTK_MAXPATH

– vtkSMP.h: VTK_SMP_${backend} and VTK_SMP_BACKEND

– vtkThreads.h: VTK_USE_PTHREADS, VTK_USE_WIN32_THREADS, VTK_MAX_THREADS

∗ Also includes VTK_THREAD_RETURN_VALUE and VTK_THREAD_RETURN_TYPE, but
vtkMultiThreader.h is guaranteed to provide this.

• Old ghost cell filters are deprecated in favor of vtkGhostCellsGenerator.

– vtkUnstructuredGridGhostCellsGenerator

– vtkPUnstructuredGridGhostDataGenerator

– vtkStructuredGridGhostDataGenerator

– vtkPStructuredGridGhostDataGenerator

– vtkUniformGridGhostDataGenerator

– vtkPUniformGridGhostDataGenerator

• vtkThreshold’s ThresholdByLower(), ThresholdByUpper(), and ThresholdBetween() methods
are deprecated in favor of vtkThreshold::LowerThreshold, vtkThreshold::UpperThreshold, and
vtkThreshold::ThresholdFunction properties.

13.3. 9.1 453

VTK

Python

• Python 2 support, which reached its end-of-life in January 2020 is deprecated.

Soft deprecations

Some groundwork has been laid down to deprecate existing classes with new features in this release, but have not been
formally deprecated yet. Users are encouraged to use the new APIs to help ensure that the transition when they are
deprecated is smoother.

• vtkMultiBlockDataGroupFilter usage should be replaced by vtkGroupDataSetsFilter.

• vtkMultiBlockFromTimeSeriesFilter usage should be replaced by vtkGroupDataSetsFilter.

• vtkExodusIIReader usage should be replaced by vtkIossReader.

• The random number APIs from vtkMath should be moved to vtkGaussianRandomSequence or
vtkMinimalStandardRandomSequence as needed.

Other Changes

13.4 9.0

Released on 2020-05-01.

13.4.1 9.0.0

See Discourse for release notes.

13.4.2 9.0.2

VTK 9.0.2 collects fixes to 9.0.1 which have been made since its release. Of particular interest are the fixes to macOS
rendering, support for the macOS arm64 platform, and updates for API changes in external libraries.

13.4.3 New classes

• Added a vtkImageProbeFilter which works like vtkProbeFilter, but for vtkImageData

454 Chapter 13. Release Details

https://discourse.vtk.org/t/vtk-9-0-0/3205

VTK

13.4.4 New support

• enum class setters and getters are now supported via vtk{Get,Set}EnumMacro

13.4.5 Fixes

• The QVTKRenderWidget.h is now installed.

• vtk3DLinearGridPlaneCutter guards against nullptr points and cells

• The composite date mapper now iterates over data blocks properly

• vtkStringArray::Resize takes tuple elements into account

• vtkArrowSource now supports scalong and rotation around the origin or the arrow’s center point

• The VTK::DomainsChemistryOpenGL2, VTK::RenderingContextOpenGL2, and
VTK::RenderingOpenGL2 modules are added to the Rendering group to avoid missing implementations of
rendering components

• vtkCutter enables point merging when requested through a vtkPointLocator which merges points

• vtkAxesActor bounds calculations improved to avoid assumptions about range values

• vtkWindowLevelLookupTable out-of-range colors are now initialized properly

• vtkImageReslice::RequestInformation is refactored handle common image information passing

• vtkImageReslice creates a new interpolator in ::GetInterpolator; this new interpolator now uses the same
interpolation mode as vtkImageReslice itself

macOS

• macOS wheels are now built and uploaded by VTK’s CI

• Fixes for macOS OpenGL state tracking (related to GL_SCISSOR)

• Multisampling on macOS with Intel graphics turned off for volume rendering

• OpenGL state tracking on macOS with layers is improved (rather than using the wrong context between layers)

• OSPRay is disabled when running under macOS Rosetta

Third Party

• HDF5 has been updated to address errors on newer Xcode compilers

• HDF5 macOS universal2 compilation fixes

• VTK::mpi now disables C++ bindings for SGI MPT as well

• Usage of numpy.character is removed (deprecated in NumPy 1.19)

• Avoidance of APIs deprecated in Python 3.9

• Compilation with newer libfreetype resolved (FT_CALLBACK_DEF usage removed)

13.4. 9.0 455

VTK

13.4.6 9.0.3

A minor patchset on top of 9.0.2 to fix problems with the new release process’ configuration when building the wheels.

Wheels

• Disable VTK_DEBUG_LEAKS in wheel builds

• Remove long-deprecated API usage in the Python bindings

13.5 8.2

Released on 2019-01-30.

Release notes for version 8.2 can be found at https://www.kitware.com/vtk-8-2-0.

13.6 8.1

Released on 2017-12-22.

Release notes for version 8.1 can be found at https://www.kitware.com/vtk-8-1-0.

13.7 8.0

Released on 2017-06-26.

Release notes for version 8.0 can be found at https://www.kitware.com/vtk-8-0-0.

13.8 7.1

Released on 2016-11-14.

Release notes for version 7.1 can be found at https://www.kitware.com/vtk-7-1-0.

13.9 7.0

Released on 2016-02-16.

Release notes for version 7.0 can be found at https://www.kitware.com/vtk-7-0-0.

456 Chapter 13. Release Details

https://www.kitware.com/vtk-8-2-0
https://www.kitware.com/vtk-8-1-0
https://www.kitware.com/vtk-8-0-0
https://www.kitware.com/vtk-7-1-0
https://www.kitware.com/vtk-7-0-0

VTK

13.10 6.3

Released on 2015-08-31.

Release notes for version 6.3 can be found at https://www.kitware.com/vtk-6-3-0.

13.11 6.2

Released on 2015-03-03.

Release notes for version 6.2 can be found at https://www.kitware.com/vtk-6-2-0.

13.12 6.1

Released on 2014-01-22.

Release notes for version 6.1 can be found at https://www.kitware.com/vtk-6-1-0.

13.13 6.0

Released on 2013-06-21.

Release notes for version 6.0 can be found at https://www.kitware.com/vtk-6-0-0.

13.14 5.10

Released on 2012-05-14.

Release notes for version 5.10 can be found at https://www.kitware.com/vtk-5-10-now-available.

13.15 5.8

Released on 2011-08-29.

Release notes for version 5.8 can be found at https://www.kitware.com/vtk-5-8-0.

13.16 5.6

Released on 2010-05-28.

Release notes for version 5.6 can be found at https://itk.org/Wiki/VTK_5.6_Release_Planning.

13.10. 6.3 457

https://www.kitware.com/vtk-6-3-0
https://www.kitware.com/vtk-6-2-0
https://www.kitware.com/vtk-6-1-0
https://www.kitware.com/vtk-6-0-0
https://www.kitware.com/vtk-5-10-now-available
https://www.kitware.com/vtk-5-8-0
https://itk.org/Wiki/VTK_5.6_Release_Planning

VTK

13.17 5.4

Released on 2009-03-20.

Release notes for version 5.4 can be found at https://www.kitware.com/vtk-5-4-released.

13.18 5.2

Released on 2008-08-27.

Release notes for version 5.2 can be found at https://www.kitware.com/vtk-5-2-released.

13.19 5.0

Released on 2005-12-15.

Release notes for version 5.0 can be found at https://www.kitware.com/vtk-5-0-released.

458 Chapter 13. Release Details

https://www.kitware.com/vtk-5-4-released
https://www.kitware.com/vtk-5-2-released
https://www.kitware.com/vtk-5-0-released

PYTHON MODULE INDEX

v
vtkmodules, 59
vtkmodules.generate_pyi, 161
vtkmodules.gtk, 138
vtkmodules.gtk.GtkGLExtVTKRenderWindow, 141
vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor,

144
vtkmodules.gtk.GtkVTKRenderWindow, 138
vtkmodules.gtk.GtkVTKRenderWindowInteractor,

145
vtkmodules.numpy_interface, 113
vtkmodules.numpy_interface.algorithms, 127
vtkmodules.numpy_interface.dataset_adapter,

117
vtkmodules.numpy_interface.internal_algorithms,

113
vtkmodules.qt, 102
vtkmodules.qt.QVTKRenderWindowInteractor, 102
vtkmodules.test, 147
vtkmodules.test.BlackBox, 148
vtkmodules.test.ErrorObserver, 153
vtkmodules.test.rtImageTest, 153
vtkmodules.test.Testing, 148
vtkmodules.tk, 154
vtkmodules.tk.vtkLoadPythonTkWidgets, 159
vtkmodules.tk.vtkTkImageViewerWidget, 160
vtkmodules.tk.vtkTkPhotoImage, 158
vtkmodules.tk.vtkTkRenderWidget, 154
vtkmodules.tk.vtkTkRenderWindowInteractor,

157
vtkmodules.util, 59
vtkmodules.util.colors, 60
vtkmodules.util.data_model, 85
vtkmodules.util.execution_model, 83
vtkmodules.util.keys, 80
vtkmodules.util.misc, 91
vtkmodules.util.numpy_support, 89
vtkmodules.util.pickle_support, 74
vtkmodules.util.vtkAlgorithm, 80
vtkmodules.util.vtkConstants, 92
vtkmodules.util.vtkImageExportToArray, 59
vtkmodules.util.vtkImageImportFromArray, 78

vtkmodules.util.vtkMethodParser, 77
vtkmodules.util.vtkVariant, 75
vtkmodules.wx, 106
vtkmodules.wx.wxVTKRenderWindow, 107
vtkmodules.wx.wxVTKRenderWindowInteractor,

110

459

VTK

460 Python Module Index

INDEX

Symbols
_CURSOR_MAP (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
attribute), 105

_CursorChangedEvent() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

_GetController() (in module vtkmod-
ules.test.rtImageTest), 154

_GetCtrlShift() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

_GetCtrlShift() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

_GetCtrlShift() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

_GetKeyCharAndKeySym() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

_GrabFocus() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

_GrabFocus() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

_INTERACT (in module vtkmodules.test.Testing), 150
_NO_IMAGE (in module vtkmodules.test.Testing), 150
_OnButtonDown() (vtkmod-

ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

_OnButtonUp() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

_OnEnterWindow() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

_OnLeaveWindow() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

_OnSize() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow

method), 108
_VERBOSE (in module vtkmodules.test.Testing), 150
_VTK_FLOAT_MAX (in module vtkmod-

ules.util.vtkConstants), 95
_VTK_INT_MAX (in module vtkmodules.util.vtkConstants),

95
__all__ (in module vtkmodules), 165
__all__ (in module vtkmodules.gtk), 147
__all__ (in module vtkmodules.numpy_interface), 138
__all__ (in module vtkmodules.qt), 106
__all__ (in module vtkmodules.test), 154
__all__ (in module vtkmodules.tk), 161
__all__ (in module vtkmodules.util), 102
__all__ (in module vtkmodules.util.execution_model),

83
__all__ (in module vtkmodules.wx), 113
__array_finalize__() (vtkmod-

ules.numpy_interface.dataset_adapter.VTKArray
method), 120

__array_wrap__() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKArray
method), 120

__call__() (vtkmodules.test.ErrorObserver.vtkErrorObserver
method), 153

__call__() (vtkmodules.util.execution_model.Pipeline
method), 85

__call__() (vtkmodules.util.execution_model.select_ports
method), 84

__determine_arraynames() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSetAttributes
method), 122

__determine_arraynames() (vtkmod-
ules.util.data_model.CompositeDataSetAttributes
method), 88

__getattr__() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 144

__getattr__() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

__getattr__() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataIterator

461

VTK

method), 123
__getattr__() (vtkmod-

ules.numpy_interface.dataset_adapter.VTKArray
method), 120

__getattr__() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKObjectWrapper
method), 119

__getattr__() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

__getattr__() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

__getattr__() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 155

__getattr__() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 157

__getattr__() (vtkmod-
ules.util.data_model.CompositeDataIterator
method), 89

__getattr__() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

__getitem__() (vtkmodules.generate_pyi.Graph
method), 163

__getitem__() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSetAttributes
method), 122

__getitem__() (vtkmod-
ules.numpy_interface.dataset_adapter.DataSetAttributes
method), 122

__getitem__() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

__getitem__() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKNoneArray
method), 120

__getitem__() (vtkmod-
ules.util.data_model.CompositeDataSetAttributes
method), 88

__getitem__() (vtkmod-
ules.util.data_model.FieldDataBase method),
86

__init_from_composite() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

__iter__() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator
method), 123

__iter__() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

__iter__() (vtkmodules.util.data_model.CompositeDataIterator
method), 89

__iter__() (vtkmodules.util.data_model.CompositeDataSetAttributes
method), 88

__iter__() (vtkmodules.util.data_model.CompositeDataSetAttributesIterator
method), 87

__iter__() (vtkmodules.util.data_model.CompositeDataSetBase
method), 89

__lt__() (vtkmodules.util.vtkVariant.vtkVariantStrictWeakOrderKey
method), 77

__new__() (vtkmodules.numpy_interface.dataset_adapter.VTKArray
method), 120

__new__() (vtkmodules.numpy_interface.dataset_adapter.VTKArrayMetaClass
method), 119

__new__() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArrayMetaClass
method), 120

__new__() (vtkmodules.numpy_interface.dataset_adapter.VTKNoneArrayMetaClass
method), 120

__next__() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator
method), 123

__next__() (vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator
method), 123

__next__() (vtkmodules.util.data_model.CompositeDataIterator
method), 89

__next__() (vtkmodules.util.data_model.CompositeDataSetAttributesIterator
method), 87

__rrshift__() (vtkmod-
ules.util.execution_model.Pipeline method),
85

__rrshift__() (vtkmod-
ules.util.execution_model.select_ports
method), 84

__rshift__() (vtkmod-
ules.util.execution_model.Pipeline method),
85

__rshift__() (vtkmod-
ules.util.execution_model.select_ports
method), 84

__setitem__() (vtkmodules.generate_pyi.Graph
method), 163

__setitem__() (vtkmod-
ules.util.data_model.CompositeDataSetAttributes
method), 88

__setitem__() (vtkmod-
ules.util.data_model.FieldDataBase method),
86

__sizeDict (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray
attribute), 60

__sizeDict (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray
attribute), 79

__str__() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

__typeDict (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray
attribute), 60

__typeDict (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray
attribute), 79

462 Index

VTK

__version__ (in module vtkmodules), 165
__vtkTypeNameDict (in module vtkmod-

ules.util.vtkConstants), 101
_apply_func2() (in module vtkmod-

ules.numpy_interface.algorithms), 130
_array_count() (in module vtkmod-

ules.numpy_interface.algorithms), 133
_blackbox (vtkmodules.test.Testing.vtkTest attribute),

151
_call() (in module vtkmodules.util.execution_model),

83
_cell_derivatives() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
114

_cell_quality() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
114

_check() (vtkmodules.test.ErrorObserver.vtkErrorObserver
method), 153

_clean_up_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

_connect() (vtkmodules.util.execution_model.Pipeline
method), 85

_determine_type() (vtkmod-
ules.util.execution_model.Pipeline method),
85

_getPixelRatio() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
static method), 105

_getTempImagePath() (in module vtkmod-
ules.test.Testing), 152

_get_event_pos() (in module vtkmod-
ules.qt.QVTKRenderWindowInteractor),
104

_get_str_obj() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

_global_func() (in module vtkmod-
ules.numpy_interface.algorithms), 130

_global_per_block() (in module vtkmod-
ules.numpy_interface.algorithms), 131

_handleFailedImage() (in module vtkmod-
ules.test.Testing), 152

_initialize_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

_keysyms (in module vtkmod-
ules.qt.QVTKRenderWindowInteractor),
106

_keysyms_for_ascii (in module vtkmod-
ules.qt.QVTKRenderWindowInteractor),
106

_load_vtkmodules_static() (in module vtkmodules),

165
_local_array_count() (in module vtkmod-

ules.numpy_interface.algorithms), 133
_lookup_mpi_type() (in module vtkmod-

ules.numpy_interface.algorithms), 130
_make_dfunc() (in module vtkmod-

ules.numpy_interface.algorithms), 130
_make_dsfunc() (in module vtkmod-

ules.numpy_interface.algorithms), 130
_make_dsfunc2() (in module vtkmod-

ules.numpy_interface.algorithms), 130
_make_tensor_array_contiguous() (in module

vtkmodules.numpy_interface.dataset_adapter),
119

_make_ufunc() (in module vtkmod-
ules.numpy_interface.algorithms), 130

_matrix_math_filter() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
114

_metaclass() (in module vtkmod-
ules.numpy_interface.dataset_adapter), 119

_numeric_op() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKArray
method), 120

_numeric_op() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

_op() (vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray
method), 120

_printCDashImageError() (in module vtkmod-
ules.test.Testing), 152

_printCDashImageNotFoundError() (in module vtk-
modules.test.Testing), 152

_printCDashImageSuccess() (in module vtkmod-
ules.test.Testing), 152

_reduce_dims() (in module vtkmod-
ules.numpy_interface.algorithms), 130

_reverse_numeric_op() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKArray
method), 120

_reverse_numeric_op() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

_setEventInformation() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

_testBoolean() (vtkmodules.test.Testing.vtkTest
method), 151

_testGetSet() (vtkmodules.test.Testing.vtkTest
method), 151

_testParse() (vtkmodules.test.Testing.vtkTest method),
151

_useCapture (in module vtkmod-
ules.wx.wxVTKRenderWindow), 107

Index 463

VTK

_useCapture (in module vtkmod-
ules.wx.wxVTKRenderWindowInteractor),
111

_variant_check_map (in module vtkmod-
ules.util.vtkVariant), 76

_variant_method_map (in module vtkmod-
ules.util.vtkVariant), 76

_variant_type_map (in module vtkmod-
ules.util.vtkVariant), 76

_vtk_json_bool
command, 215

_vtk_json_string_list
command, 215

_vtk_module_add_file_set
command, 199

_vtk_module_add_header_tests
command, 201

_vtk_module_apply_properties
command, 201

_vtk_module_check_destinations
command, 193

_vtk_module_debug
command, 183, 183

_vtk_module_default_library_name
command, 197

_vtk_module_depfile_args
command, 198

_vtk_module_export_properties
command, 194

_vtk_module_generate_spdx
command, 205

_vtk_module_get_module_property
command, 193

_vtk_module_graphviz_module_node
command, 216

_vtk_module_install
command, 201

_vtk_module_mark_third_party
command, 204

_vtk_module_optional_dependency_exists
command, 183

_vtk_module_parse_kit_args
command, 186

_vtk_module_parse_module_args
command, 185, 186

_vtk_module_real_target
command, 189, 189

_vtk_module_real_target_kit
command, 189, 189

_vtk_module_set_module_property
command, 193

_vtk_module_split_module_name
command, 183

_vtk_module_standard_includes

command, 197
_vtk_module_target_function

command, 190
_vtk_module_verify_enable_value

command, 186
_vtk_module_wrap_java_library

command, 214
_vtk_module_wrap_java_sources

command, 214
_vtk_module_wrap_python_library

command, 210
_vtk_module_wrap_python_sources

command, 210
_vtk_module_write_import_prefix

command, 193
_vtk_module_write_wrap_hierarchy

command, 199
_vtk_private_kit_link_target

command, 191
_vtk_test_parse_args

command, 207
_vtk_test_set_options

command, 207
_windows_dll_path() (in module vtkmodules), 165

A
abs (in module vtkmodules.numpy_interface.algorithms),

135
abs() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
114

add (in module vtkmodules.numpy_interface.algorithms),
137

add_indent() (in module vtkmodules.generate_pyi),
164

AddInputConnection() (vtkmod-
ules.util.execution_model.select_ports
method), 84

ALGORITHM (vtkmodules.util.execution_model.Pipeline
attribute), 85

alice_blue (in module vtkmodules.util.colors), 72
alizarin_crimson (in module vtkmodules.util.colors),

66
all() (in module vtkmod-

ules.numpy_interface.algorithms), 133
all() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
114

annotation_text() (in module vtkmod-
ules.generate_pyi), 164

antique_white (in module vtkmodules.util.colors), 64
append() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes

method), 122

464 Index

VTK

append() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes
method), 122

append() (vtkmodules.util.data_model.vtkPartitionedDataSet
method), 89

apply_dfunc() (in module vtkmod-
ules.numpy_interface.algorithms), 130

apply_ufunc() (in module vtkmod-
ules.numpy_interface.algorithms), 130

aquamarine (in module vtkmodules.util.colors), 72
aquamarine_medium (in module vtkmodules.util.colors),

72
arccos (in module vtkmod-

ules.numpy_interface.algorithms), 135
arccosh (in module vtkmod-

ules.numpy_interface.algorithms), 135
arcsin (in module vtkmod-

ules.numpy_interface.algorithms), 135
arcsinh (in module vtkmod-

ules.numpy_interface.algorithms), 135
arctan (in module vtkmod-

ules.numpy_interface.algorithms), 135
arctan2 (in module vtkmod-

ules.numpy_interface.algorithms), 135
arctanh (in module vtkmod-

ules.numpy_interface.algorithms), 135
area (in module vtkmod-

ules.numpy_interface.algorithms), 135
area() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
114

ArrayAssociation (class in vtkmod-
ules.numpy_interface.dataset_adapter), 118

Arrays (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray
attribute), 121

aspect (in module vtkmod-
ules.numpy_interface.algorithms), 135

aspect() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
114

aspect_gamma (in module vtkmod-
ules.numpy_interface.algorithms), 135

aspect_gamma() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

assertImageMatch() (vtkmodules.test.Testing.vtkTest
method), 151

astype() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

astype() (vtkmodules.numpy_interface.dataset_adapter.VTKNoneArray
method), 120

AtomData (vtkmodules.numpy_interface.dataset_adapter.Molecule
attribute), 127

aureoline_yellow (in module vtkmodules.util.colors),
69

azure (in module vtkmodules.util.colors), 64

B
banana (in module vtkmodules.util.colors), 69
baseClass (in module vtkmod-

ules.wx.wxVTKRenderWindow), 107
baseClass (in module vtkmod-

ules.wx.wxVTKRenderWindowInteractor),
111

beige (in module vtkmodules.util.colors), 68
BindEvents() (vtkmod-

ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 157

BindEvents() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

BindTkImageViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

BindTkRenderWidget() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 155

bisque (in module vtkmodules.util.colors), 64
bitwise_or() (in module vtkmod-

ules.numpy_interface.algorithms), 130
black (in module vtkmodules.util.colors), 66
blanched_almond (in module vtkmodules.util.colors),

64
blue (in module vtkmodules.util.colors), 72
blue_light (in module vtkmodules.util.colors), 72
blue_medium (in module vtkmodules.util.colors), 72
blue_violet (in module vtkmodules.util.colors), 73
BondData (vtkmodules.numpy_interface.dataset_adapter.Molecule

attribute), 127
brick (in module vtkmodules.util.colors), 66
brown (in module vtkmodules.util.colors), 68
brown_madder (in module vtkmodules.util.colors), 68
brown_ochre (in module vtkmodules.util.colors), 68
build_graph() (in module vtkmodules.generate_pyi),

164
burlywood (in module vtkmodules.util.colors), 68
burnt_sienna (in module vtkmodules.util.colors), 68
burnt_umber (in module vtkmodules.util.colors), 68

C
cadet (in module vtkmodules.util.colors), 72
cadmium_lemon (in module vtkmodules.util.colors), 69
cadmium_orange (in module vtkmodules.util.colors), 69
cadmium_red_deep (in module vtkmodules.util.colors),

66
cadmium_red_light (in module vtkmodules.util.colors),

69
cadmium_yellow (in module vtkmodules.util.colors), 70

Index 465

VTK

cadmium_yellow_light (in module vtkmod-
ules.util.colors), 70

calldata_type() (in module vtkmodules.util.misc), 92
carrot (in module vtkmodules.util.colors), 69
ceil (in module vtkmod-

ules.numpy_interface.algorithms), 134
CELL (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

attribute), 118
cell_data (vtkmodules.util.data_model.CompositeDataSetBase

property), 89
cell_data (vtkmodules.util.data_model.DataSet prop-

erty), 88
CellData (class in vtkmodules.util.data_model), 87
CellData (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet

attribute), 125
CellData (vtkmodules.numpy_interface.dataset_adapter.DataSet

attribute), 125
CellData (vtkmodules.numpy_interface.dataset_adapter.HyperTreeGrid

attribute), 124
CellLocations (vtkmod-

ules.numpy_interface.dataset_adapter.UnstructuredGrid
attribute), 126

Cells (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid
attribute), 126

cells (vtkmodules.util.data_model.vtkUnstructuredGrid
property), 88

CellTypes (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid
attribute), 126

cerulean (in module vtkmodules.util.colors), 72
chartreuse (in module vtkmodules.util.colors), 70
check_error() (vtkmod-

ules.test.ErrorObserver.vtkErrorObserver
method), 153

check_warning() (vtkmod-
ules.test.ErrorObserver.vtkErrorObserver
method), 153

chocolate (in module vtkmodules.util.colors), 68
chrome_oxide_green (in module vtkmod-

ules.util.colors), 70
cinnabar_green (in module vtkmodules.util.colors), 70
class_pyi() (in module vtkmodules.generate_pyi), 164
clean_get_methods() (vtkmod-

ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

clean_get_set() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

clean_state_methods() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

clean_up_methods() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

closeEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

CMAKE_BINARY_DIR
variable, 215

cobalt (in module vtkmodules.util.colors), 72
cobalt_green (in module vtkmodules.util.colors), 70
cobalt_violet_deep (in module vtkmod-

ules.util.colors), 73
cold_grey (in module vtkmodules.util.colors), 66
command

_vtk_json_bool, 215
_vtk_json_string_list, 215
_vtk_module_add_file_set, 199
_vtk_module_add_header_tests, 201
_vtk_module_apply_properties, 201
_vtk_module_check_destinations, 193
_vtk_module_debug, 183, 183
_vtk_module_default_library_name, 197
_vtk_module_depfile_args, 198
_vtk_module_export_properties, 194
_vtk_module_generate_spdx, 205
_vtk_module_get_module_property, 193
_vtk_module_graphviz_module_node, 216
_vtk_module_install, 201
_vtk_module_mark_third_party, 204
_vtk_module_optional_dependency_exists,

183
_vtk_module_parse_kit_args, 186
_vtk_module_parse_module_args, 185, 186
_vtk_module_real_target, 189, 189
_vtk_module_real_target_kit, 189, 189
_vtk_module_set_module_property, 193
_vtk_module_split_module_name, 183
_vtk_module_standard_includes, 197
_vtk_module_target_function, 190
_vtk_module_verify_enable_value, 186
_vtk_module_wrap_java_library, 214
_vtk_module_wrap_java_sources, 214
_vtk_module_wrap_python_library, 210
_vtk_module_wrap_python_sources, 210
_vtk_module_write_import_prefix, 193
_vtk_module_write_wrap_hierarchy, 199
_vtk_private_kit_link_target, 191
_vtk_test_parse_args, 207
_vtk_test_set_options, 207
vtk_add_test_cxx, 208, 364
vtk_add_test_mangling, 210
vtk_add_test_module_javascript_node, 209
vtk_add_test_mpi, 208, 364
vtk_add_test_python, 209, 364
vtk_add_test_python_mpi, 209
vtk_module_add_executable, 173, 174, 201
vtk_module_add_module, 173, 174, 198, 199, 201,

213

466 Index

VTK

vtk_module_add_python_module, 213
vtk_module_add_python_package, 212, 213
vtk_module_autoinit, 10, 177, 198, 198
vtk_module_build, 168, 171–176, 179, 181, 194,

199, 201, 202, 261
vtk_module_build call, 197, 201
vtk_module_compile_features, 175, 189, 191
vtk_module_compile_options, 175, 189, 191
vtk_module_definitions, 175, 189, 190
vtk_module_depend, 175, 189, 190
vtk_module_export_find_packages, 176, 203
vtk_module_find_kits, 177, 183, 261
vtk_module_find_modules, 168, 183, 261
vtk_module_find_package, 176, 179, 202, 202,

204
vtk_module_get_property, 175, 189, 190, 193
vtk_module_graphviz, 216
vtk_module_include, 175, 189, 190
vtk_module_install_headers, 174
vtk_module_json, 215
vtk_module_link, 175, 189, 191
vtk_module_link_options, 175, 189, 191
vtk_module_python_default_destination,

178, 210
vtk_module_scan, 168, 170, 171, 177, 186, 186,

261
vtk_module_set_properties, 175, 189, 189
vtk_module_set_property, 175, 189, 189
vtk_module_sources, 190
vtk_module_test_data, 206
vtk_module_test_executable, 206
vtk_module_third_party, 179, 203, 203
vtk_module_third_party_external, 179, 203,

204
vtk_module_third_party_internal, 179, 203,

204
vtk_module_wrap_java, 178, 214, 214
vtk_module_wrap_python, 178, 211
vtk_module_wrap_python function, 211
vtk_test_cxx_executable, 209
vtk_test_mpi_executable, 209

compareImage() (in module vtkmodules.test.Testing),
152

compareImageWithSavedImage() (in module vtkmod-
ules.test.Testing), 152

CompositeDataIterator (class in vtkmod-
ules.numpy_interface.dataset_adapter), 122

CompositeDataIterator (class in vtkmod-
ules.util.data_model), 88

CompositeDataSet (class in vtkmod-
ules.numpy_interface.dataset_adapter), 124

CompositeDataSetAttributes (class in vtkmod-
ules.numpy_interface.dataset_adapter), 122

CompositeDataSetAttributes (class in vtkmod-
ules.util.data_model), 87

CompositeDataSetAttributesIterator (class in vtk-
modules.util.data_model), 87

CompositeDataSetBase (class in vtkmod-
ules.util.data_model), 89

condition (in module vtkmod-
ules.numpy_interface.algorithms), 135

condition() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

ConfigureEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

ConnectSignals() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

ConnectSignals() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 144

ConnectSignals() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

ConnectSignals() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

convert_to_unstructured_grid() (vtkmod-
ules.util.data_model.DataSet method), 88

ConvertIntToUnsignedShortOff() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

ConvertIntToUnsignedShortOn() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

ConvertUnsignedShortToIntOff() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

ConvertUnsignedShortToIntOn() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

coral (in module vtkmodules.util.colors), 67
coral_light (in module vtkmodules.util.colors), 67
cornflower (in module vtkmodules.util.colors), 72
cornsilk (in module vtkmodules.util.colors), 64
cos (in module vtkmodules.numpy_interface.algorithms),

134
cosh (in module vtkmod-

ules.numpy_interface.algorithms), 135
count_per_block() (in module vtkmod-

ules.numpy_interface.algorithms), 132
create_vtk_array() (in module vtkmod-

ules.util.numpy_support), 90
Created() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase

method), 142

Index 467

VTK

CreateTimer() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 144

CreateTimer() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

CreateTimer() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

CreateTimer() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 157

CreateTimer() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

cross (in module vtkmod-
ules.numpy_interface.algorithms), 136

cross() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

curl (in module vtkmod-
ules.numpy_interface.algorithms), 136

curl() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

CursorChangedEvent() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

CursorChangedEvent() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

cyan (in module vtkmodules.util.colors), 72
cyan_white (in module vtkmodules.util.colors), 72

D
dark_orange (in module vtkmodules.util.colors), 69
DATA (vtkmodules.util.execution_model.Pipeline at-

tribute), 85
DataObject (class in vtkmod-

ules.numpy_interface.dataset_adapter), 123
DataSet (class in vtkmod-

ules.numpy_interface.dataset_adapter), 125
DataSet (class in vtkmodules.util.data_model), 88
DataSet (vtkmodules.numpy_interface.dataset_adapter.VTKArray

property), 120
DataSetAttributes (class in vtkmod-

ules.numpy_interface.dataset_adapter), 121
DataSetAttributes (class in vtkmod-

ules.util.data_model), 87
DataSetAttributesBase (class in vtkmod-

ules.util.data_model), 87
DEBUG (in module vtkmodules.util.vtkMethodParser), 77
debug() (in module vtkmodules.util.vtkMethodParser),

77

deep_ochre (in module vtkmodules.util.colors), 68
deep_pink (in module vtkmodules.util.colors), 67
DestroyTimer() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 144

DestroyTimer() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

DestroyTimer() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

DestroyTimer() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

DestroyTimer() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

det (in module vtkmodules.numpy_interface.algorithms),
136

det() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

determinant (in module vtkmod-
ules.numpy_interface.algorithms), 136

determinant() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

diagonal (in module vtkmod-
ules.numpy_interface.algorithms), 136

diagonal() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

dim_grey (in module vtkmodules.util.colors), 66
divergence (in module vtkmod-

ules.numpy_interface.algorithms), 136
divergence() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

divide (in module vtkmod-
ules.numpy_interface.algorithms), 137

dl (vtkmodules.test.Testing.vtkTest attribute), 151
dodger_blue (in module vtkmodules.util.colors), 72
dot (in module vtkmodules.numpy_interface.algorithms),

136
dot() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

E
EdgeData (vtkmodules.numpy_interface.dataset_adapter.Graph

attribute), 127
eggshell (in module vtkmodules.util.colors), 64
eigenvalue (in module vtkmod-

ules.numpy_interface.algorithms), 136

468 Index

VTK

eigenvalue() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

eigenvector (in module vtkmod-
ules.numpy_interface.algorithms), 136

eigenvector() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

emerald_green (in module vtkmodules.util.colors), 70
EndMotion() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

EndMotion() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

EndMotion() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

EndQueryInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

EndWindowLevelInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

english_red (in module vtkmodules.util.colors), 67
Enter() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget

method), 156
enterEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

EnterEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

EnterTkViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

error_message (vtkmod-
ules.test.ErrorObserver.vtkErrorObserver
property), 153

EventTimer (class in vtkmod-
ules.wx.wxVTKRenderWindowInteractor),
111

exp (in module vtkmodules.numpy_interface.algorithms),
134

expand_dims (in module vtkmod-
ules.numpy_interface.algorithms), 135

Expose() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

ExposeEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

ExposeTkImageViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

F
FIELD (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

attribute), 118
field_data (vtkmodules.util.data_model.CompositeDataSetBase

property), 89
FieldData (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet

attribute), 125
FieldData (vtkmodules.numpy_interface.dataset_adapter.DataObject

attribute), 123
FieldDataBase (class in vtkmodules.util.data_model),

86
FillInputPortInformation() (vtkmod-

ules.util.vtkAlgorithm.VTKAlgorithm method),
81

FillInputPortInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

FillInputPortInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm
method), 82

FillOutputPortInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

FillOutputPortInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

FillOutputPortInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm
method), 82

Finalize() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

firebrick (in module vtkmodules.util.colors), 67
fix_annotations() (in module vtkmod-

ules.generate_pyi), 164
flatnonzero (in module vtkmod-

ules.numpy_interface.algorithms), 135
flesh (in module vtkmodules.util.colors), 68
flesh_ochre (in module vtkmodules.util.colors), 68
floor (in module vtkmod-

ules.numpy_interface.algorithms), 134
floral_white (in module vtkmodules.util.colors), 65
forest_green (in module vtkmodules.util.colors), 70

G
gainsboro (in module vtkmodules.util.colors), 65
geranium_lake (in module vtkmodules.util.colors), 67
get_array() (vtkmod-

ules.util.data_model.CompositeDataSetAttributes
method), 88

get_array() (vtkmod-
ules.util.data_model.FieldDataBase method),
86

get_attributes() (vtkmod-
ules.util.data_model.CompositeDataSetBase

Index 469

VTK

method), 89
get_constructors() (in module vtkmod-

ules.generate_pyi), 164
get_methods() (vtkmod-

ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

get_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

get_numpy_array_type() (in module vtkmod-
ules.util.numpy_support), 90

get_set_methods() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

get_set_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

get_signatures() (in module vtkmod-
ules.generate_pyi), 164

get_vtk_array_type() (in module vtkmod-
ules.util.numpy_support), 90

get_vtk_to_numpy_typemap() (in module vtkmod-
ules.util.numpy_support), 90

getAbsImagePath() (in module vtkmod-
ules.test.Testing), 152

GetArray() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes
method), 122

GetArray() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes
method), 122

GetArray() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetArray() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetArrays() (vtkmod-
ules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

GetAtomData() (vtkmod-
ules.numpy_interface.dataset_adapter.Molecule
method), 127

GetAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

GetAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.DataObject
method), 123

GetBondData() (vtkmod-
ules.numpy_interface.dataset_adapter.Molecule
method), 127

GetCellData() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 125

GetCellData() (vtkmod-
ules.numpy_interface.dataset_adapter.DataSet
method), 125

GetCellData() (vtkmod-
ules.numpy_interface.dataset_adapter.HyperTreeGrid
method), 124

GetCellLocations() (vtkmod-
ules.numpy_interface.dataset_adapter.UnstructuredGrid
method), 126

GetCells() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid
method), 126

GetCellTypes() (vtkmod-
ules.numpy_interface.dataset_adapter.UnstructuredGrid
method), 126

GetConvertIntToUnsignedShort() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetConvertUnsignedShortToInt() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetCurrentCamera() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

GetCurrentRenderer() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

GetCurrentRenderer() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

GetCurrentRenderer() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

GetCurrentRenderer() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

GetDataExtent() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetDataExtent() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetDataOrigin() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetDataOrigin() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetDataSpacing() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetDataSpacing() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetDesiredUpdateRate() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

GetDesiredUpdateRate() (vtkmod-

470 Index

VTK

ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

GetDesiredUpdateRate() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

GetDesiredUpdateRate() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

GetDisplayId() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

GetEdgeData() (vtkmod-
ules.numpy_interface.dataset_adapter.Graph
method), 127

GetFieldData() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 125

GetFieldData() (vtkmod-
ules.numpy_interface.dataset_adapter.DataObject
method), 123

GetImageViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

GetInput() (vtkmodules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

GetInputData() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

GetInputData() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

GetInputPortInformation() (vtkmod-
ules.util.execution_model.select_ports
method), 84

GetNumberOfCells() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

GetNumberOfElements() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

GetNumberOfPoints() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

GetOutput() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetOutputData() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

GetOutputData() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

GetOutputPort() (vtkmod-
ules.util.execution_model.select_ports

method), 84
GetOutputPort() (vtkmod-

ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

GetPicker() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

GetPicker() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

GetPicker() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

GetPicker() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

GetPicker() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

GetPointData() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

GetPointData() (vtkmod-
ules.numpy_interface.dataset_adapter.DataSet
method), 125

GetPoints() (vtkmod-
ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 125

GetPoints() (vtkmod-
ules.numpy_interface.dataset_adapter.PointSet
method), 126

GetPolygons() (vtkmod-
ules.numpy_interface.dataset_adapter.PolyData
method), 126

GetRenderer() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

GetRenderer() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

GetRenderWindow() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

GetRenderWindow() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

GetRenderWindow() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

GetRenderWindow() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

GetRenderWindow() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor

Index 471

VTK

method), 106
GetRenderWindow() (vtkmod-

ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

GetRenderWindow() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

GetRenderWindow() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

GetRenderWindow() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

GetRowData() (vtkmod-
ules.numpy_interface.dataset_adapter.Table
method), 124

GetSize() (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray
method), 121

GetStillUpdateRate() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

GetStillUpdateRate() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

GetStillUpdateRate() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

GetStillUpdateRate() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

GetVertexData() (vtkmod-
ules.numpy_interface.dataset_adapter.Graph
method), 127

GetZoomFactor() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

GetZoomFactor() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

GetZoomFactor() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 155

GetZoomFactor() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

ghost_white (in module vtkmodules.util.colors), 65
gold (in module vtkmodules.util.colors), 70
gold_ochre (in module vtkmodules.util.colors), 68
goldenrod (in module vtkmodules.util.colors), 70
goldenrod_dark (in module vtkmodules.util.colors), 70
goldenrod_light (in module vtkmodules.util.colors),

70
goldenrod_pale (in module vtkmodules.util.colors), 70
gradient (in module vtkmod-

ules.numpy_interface.algorithms), 136
gradient() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

Graph (class in vtkmodules.generate_pyi), 163
Graph (class in vtkmod-

ules.numpy_interface.dataset_adapter), 126
green (in module vtkmodules.util.colors), 70
green_dark (in module vtkmodules.util.colors), 71
green_pale (in module vtkmodules.util.colors), 71
green_yellow (in module vtkmodules.util.colors), 71
greenish_umber (in module vtkmodules.util.colors), 68
grey (in module vtkmodules.util.colors), 66
GtkGLExtVTKRenderWindow (class in vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow), 143
GtkGLExtVTKRenderWindowBase (class in vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow), 142
GtkGLExtVTKRenderWindowInteractor

(class in vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor),
144

GtkVTKRenderWindow (class in vtkmod-
ules.gtk.GtkVTKRenderWindow), 140

GtkVTKRenderWindowBase (class in vtkmod-
ules.gtk.GtkVTKRenderWindow), 139

GtkVTKRenderWindowInteractor (class in vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor),
146

H
handle_static() (in module vtkmodules.generate_pyi),

164
has_self (in module vtkmodules.generate_pyi), 164
HasAttributes() (vtkmod-

ules.numpy_interface.dataset_adapter.CompositeDataSet
method), 124

HasAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.DataObject
method), 123

HasAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.DataSet
method), 125

HasAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.HyperTreeGrid
method), 124

HasAttributes() (vtkmod-
ules.numpy_interface.dataset_adapter.Table
method), 124

HideCursor() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

HideCursor() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

472 Index

VTK

honeydew (in module vtkmodules.util.colors), 65
hot_pink (in module vtkmodules.util.colors), 67
HyperTreeGrid (class in vtkmod-

ules.numpy_interface.dataset_adapter), 124
hypot (in module vtkmod-

ules.numpy_interface.algorithms), 138

I
identifier (in module vtkmodules.generate_pyi), 164
in1d (in module vtkmod-

ules.numpy_interface.algorithms), 134
indent (in module vtkmodules.generate_pyi), 164
indian_red (in module vtkmodules.util.colors), 67
indigo (in module vtkmodules.util.colors), 72
Initialize() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

Initialize() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

Initialize() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

Initialize() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm
method), 82

initialize_methods() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 77

interact() (in module vtkmodules.test.Testing), 151
inv (in module vtkmodules.numpy_interface.algorithms),

136
inv() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

inverse (in module vtkmod-
ules.numpy_interface.algorithms), 136

inverse() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

isclass (in module vtkmodules.generate_pyi), 163
isenum() (in module vtkmodules.generate_pyi), 163
isInteractive() (in module vtkmodules.test.Testing),

152
ismethod (in module vtkmodules.generate_pyi), 163
isnamespace() (in module vtkmodules.generate_pyi),

163
isnan (in module vtkmod-

ules.numpy_interface.algorithms), 134
isvtkmethod() (in module vtkmodules.generate_pyi),

163
ivory (in module vtkmodules.util.colors), 65
ivory_black (in module vtkmodules.util.colors), 66

J
jacobian (in module vtkmod-

ules.numpy_interface.algorithms), 136
jacobian() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

K
keychar (in module vtkmodules.generate_pyi), 164
keyPressEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 106

KeyPressEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

keyReleaseEvent() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 106

KeyReleaseEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

keys() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes
method), 122

keys() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes
method), 122

keys() (vtkmodules.util.data_model.CompositeDataSetAttributes
method), 88

keys() (vtkmodules.util.data_model.FieldDataBase
method), 86

khaki (in module vtkmodules.util.colors), 68
khaki_dark (in module vtkmodules.util.colors), 68

L
lamp_black (in module vtkmodules.util.colors), 66
laplacian (in module vtkmod-

ules.numpy_interface.algorithms), 136
laplacian() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

lavender (in module vtkmodules.util.colors), 65
lavender_blush (in module vtkmodules.util.colors), 65
lawn_green (in module vtkmodules.util.colors), 71
Leave() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget

method), 156
leaveEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

LeaveEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

LeaveTkViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 160

Index 473

VTK

LeftButtonPressEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

LeftButtonReleaseEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

lemon_chiffon (in module vtkmodules.util.colors), 65
light_beige (in module vtkmodules.util.colors), 68
light_goldenrod (in module vtkmodules.util.colors),

70
light_grey (in module vtkmodules.util.colors), 66
light_salmon (in module vtkmodules.util.colors), 67
lime_green (in module vtkmodules.util.colors), 71
linen (in module vtkmodules.util.colors), 65
ln (in module vtkmodules.numpy_interface.algorithms),

136
ln() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
115

log (in module vtkmodules.numpy_interface.algorithms),
136

log() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

log10 (in module vtkmod-
ules.numpy_interface.algorithms), 136

log10() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

logical_not (in module vtkmod-
ules.numpy_interface.algorithms), 137

M
madder_lake_deep (in module vtkmodules.util.colors),

67
mag (in module vtkmodules.numpy_interface.algorithms),

136
mag() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

magenta (in module vtkmodules.util.colors), 74
main() (in module vtkmodules.generate_pyi), 165
main() (in module vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow), 143
main() (in module vtkmod-

ules.gtk.GtkGLExtVTKRenderWindowInteractor),
145

main() (in module vtkmod-
ules.gtk.GtkVTKRenderWindow), 141

main() (in module vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor),
147

main() (in module vtkmodules.test.rtImageTest), 154
main() (in module vtkmodules.test.Testing), 152

make_cell_mask_from_NaNs() (in module vtkmod-
ules.numpy_interface.algorithms), 130

make_mask_from_NaNs() (in module vtkmod-
ules.numpy_interface.algorithms), 131

make_point_mask_from_NaNs() (in module vtkmod-
ules.numpy_interface.algorithms), 130

make_vector() (in module vtkmod-
ules.numpy_interface.algorithms), 134

make_vector() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

MakeKey() (in module vtkmodules.util.keys), 80
manganese_blue (in module vtkmodules.util.colors), 73
maroon (in module vtkmodules.util.colors), 67
mars_orange (in module vtkmodules.util.colors), 69
mars_yellow (in module vtkmodules.util.colors), 69
matmul (in module vtkmod-

ules.numpy_interface.algorithms), 137
matmul() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

max() (in module vtkmod-
ules.numpy_interface.algorithms), 131

max() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
115

max_angle (in module vtkmod-
ules.numpy_interface.algorithms), 136

max_angle() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

max_per_block() (in module vtkmod-
ules.numpy_interface.algorithms), 132

mean() (in module vtkmod-
ules.numpy_interface.algorithms), 133

mean() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

mean_per_block() (in module vtkmod-
ules.numpy_interface.algorithms), 132

melon (in module vtkmodules.util.colors), 70
MiddleButtonPressEvent() (vtkmod-

ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

MiddleButtonReleaseEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

midnight_blue (in module vtkmodules.util.colors), 73
min() (in module vtkmod-

ules.numpy_interface.algorithms), 131
min() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

min_angle (in module vtkmod-

474 Index

VTK

ules.numpy_interface.algorithms), 137
min_angle() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

min_per_block() (in module vtkmod-
ules.numpy_interface.algorithms), 132

mint (in module vtkmodules.util.colors), 71
mint_cream (in module vtkmodules.util.colors), 65
misty_rose (in module vtkmodules.util.colors), 65
moccasin (in module vtkmodules.util.colors), 65
mod (in module vtkmodules.numpy_interface.algorithms),

137
modified() (vtkmodules.util.data_model.CompositeDataSetAttributes

method), 88
module

vtkmodules, 59
vtkmodules.generate_pyi, 161
vtkmodules.gtk, 138
vtkmodules.gtk.GtkGLExtVTKRenderWindow,

141
vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor,

144
vtkmodules.gtk.GtkVTKRenderWindow, 138
vtkmodules.gtk.GtkVTKRenderWindowInteractor,

145
vtkmodules.numpy_interface, 113
vtkmodules.numpy_interface.algorithms,

127
vtkmodules.numpy_interface.dataset_adapter,

117
vtkmodules.numpy_interface.internal_algorithms,

113
vtkmodules.qt, 102
vtkmodules.qt.QVTKRenderWindowInteractor,

102
vtkmodules.test, 147
vtkmodules.test.BlackBox, 148
vtkmodules.test.ErrorObserver, 153
vtkmodules.test.rtImageTest, 153
vtkmodules.test.Testing, 148
vtkmodules.tk, 154
vtkmodules.tk.vtkLoadPythonTkWidgets, 159
vtkmodules.tk.vtkTkImageViewerWidget, 160
vtkmodules.tk.vtkTkPhotoImage, 158
vtkmodules.tk.vtkTkRenderWidget, 154
vtkmodules.tk.vtkTkRenderWindowInteractor,

157
vtkmodules.util, 59
vtkmodules.util.colors, 60
vtkmodules.util.data_model, 85
vtkmodules.util.execution_model, 83
vtkmodules.util.keys, 80
vtkmodules.util.misc, 91
vtkmodules.util.numpy_support, 89

vtkmodules.util.pickle_support, 74
vtkmodules.util.vtkAlgorithm, 80
vtkmodules.util.vtkConstants, 92
vtkmodules.util.vtkImageExportToArray, 59
vtkmodules.util.vtkImageImportFromArray,

78
vtkmodules.util.vtkMethodParser, 77
vtkmodules.util.vtkVariant, 75
vtkmodules.wx, 106
vtkmodules.wx.wxVTKRenderWindow, 107
vtkmodules.wx.wxVTKRenderWindowInteractor,

110
module_pyi() (in module vtkmodules.generate_pyi),

164
Molecule (class in vtkmod-

ules.numpy_interface.dataset_adapter), 127
mouseMoveEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

MouseMoveEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

mousePressEvent() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

mouseReleaseEvent() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

MouseWheelBackwardEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

MouseWheelEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

MouseWheelForwardEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

MultiCompositeDataIterator (class in vtkmod-
ules.numpy_interface.dataset_adapter), 123

multiply (in module vtkmod-
ules.numpy_interface.algorithms), 137

N
namespace_pyi() (in module vtkmodules.generate_pyi),

164
naples_yellow_deep (in module vtkmod-

ules.util.colors), 70
navajo_white (in module vtkmodules.util.colors), 65
navy (in module vtkmodules.util.colors), 73
negative (in module vtkmod-

ules.numpy_interface.algorithms), 134
next() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataIterator

method), 123

Index 475

VTK

next() (vtkmodules.numpy_interface.dataset_adapter.MultiCompositeDataIterator
method), 123

next() (vtkmodules.util.data_model.CompositeDataIterator
method), 89

next() (vtkmodules.util.data_model.CompositeDataSetAttributesIterator
method), 87

Node (class in vtkmodules.generate_pyi), 163
NoneArray (in module vtkmod-

ules.numpy_interface.dataset_adapter), 120
nonzero (in module vtkmod-

ules.numpy_interface.algorithms), 135
norm (in module vtkmod-

ules.numpy_interface.algorithms), 137
norm() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

Notify() (vtkmodules.wx.wxVTKRenderWindowInteractor.EventTimer
method), 111

numpy_to_vtk() (in module vtkmod-
ules.util.numpy_support), 90

numpy_to_vtkIdTypeArray() (in module vtkmod-
ules.util.numpy_support), 91

numpyTovtkDataArray() (in module vtkmod-
ules.numpy_interface.dataset_adapter), 119

O
old_lace (in module vtkmodules.util.colors), 65
olive (in module vtkmodules.util.colors), 71
olive_drab (in module vtkmodules.util.colors), 71
olive_green_dark (in module vtkmodules.util.colors),

71
OnButtonDown() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

OnButtonDown() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnButtonDown() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnButtonDown() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

OnButtonDown() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

OnButtonDown() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnButtonDown() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnButtonDown() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor

method), 112
OnButtonUp() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

OnButtonUp() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnButtonUp() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnButtonUp() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

OnButtonUp() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 140

OnButtonUp() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnButtonUp() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnButtonUp() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnChar() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnConfigure() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnConfigure() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnConfigure() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

OnConfigure() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

OnDestroy() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnDestroy() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnDestroy() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

OnDestroy() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

OnEnter() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

OnEnter() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase

476 Index

VTK

method), 142
OnEnter() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor

method), 145
OnEnter() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow

method), 140
OnEnter() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase

method), 140
OnEnter() (vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor

method), 147
OnEnter() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor

method), 112
OnEnterWindow() (vtkmod-

ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnExpose() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnExpose() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnExpose() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

OnExpose() (vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

OnKeyDown() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnKeyDown() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnKeyPress() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

OnKeyPress() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnKeyPress() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnKeyPress() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

OnKeyPress() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 140

OnKeyPress() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnKeyRelease() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 143

OnKeyRelease() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnKeyRelease() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase

method), 140
OnKeyRelease() (vtkmod-

ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnKeyUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnKeyUp() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnKillFocus() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnLeave() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnLeave() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnLeave() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

OnLeave() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 140

OnLeave() (vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnLeave() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnLeaveWindow() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnLeftDown() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnLeftUp() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnMiddleDown() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnMiddleUp() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnMotion() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnMotion() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnMouseCaptureLost() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnMouseMove() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

OnMouseMove() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnMouseMove() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnMouseMove() (vtkmod-

Index 477

VTK

ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

OnMouseMove() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 140

OnMouseMove() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 147

OnMouseWheel() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnMove() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnPaint() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnPaint() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

OnRealize() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

OnRealize() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

OnRealize() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

OnRealize() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

OnRightDown() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnRightUp() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

OnSetFocus() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnSize() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

OnSize() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

orange (in module vtkmodules.util.colors), 69
orange_red (in module vtkmodules.util.colors), 69
orchid (in module vtkmodules.util.colors), 74
orchid_dark (in module vtkmodules.util.colors), 74
orchid_medium (in module vtkmodules.util.colors), 74
Output (class in vtkmodules.util.execution_model), 85
output (vtkmodules.util.execution_model.Output prop-

erty), 85

P
paintEngine() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor

method), 105
paintEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

Pan() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

Pan() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 141

Pan() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

Pan() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

papaya_whip (in module vtkmodules.util.colors), 65
parse_error() (in module vtkmodules.generate_pyi),

164
parse_methods() (vtkmod-

ules.util.vtkMethodParser.VtkDirMethodParser
method), 77

parse_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

parseCmdLine() (in module vtkmodules.test.Testing),
152

PassData() (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSetAttributes
method), 122

PassData() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes
method), 122

pathToData() (vtkmodules.test.Testing.vtkTest method),
151

pathToValidatedOutput() (vtkmod-
ules.test.Testing.vtkTest method), 151

peach_puff (in module vtkmodules.util.colors), 65
peacock (in module vtkmodules.util.colors), 73
permanent_green (in module vtkmodules.util.colors),

71
permanent_red_violet (in module vtkmod-

ules.util.colors), 74
peru (in module vtkmodules.util.colors), 68
PickActor() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

PickActor() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 141

PickActor() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

PickActor() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 110

pink (in module vtkmodules.util.colors), 67
pink_light (in module vtkmodules.util.colors), 67
Pipeline (class in vtkmodules.util.execution_model), 84
PIPELINE (vtkmodules.util.execution_model.Pipeline at-

478 Index

VTK

tribute), 85
plum (in module vtkmodules.util.colors), 74
POINT (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

attribute), 118
point_data (vtkmodules.util.data_model.CompositeDataSetBase

property), 89
point_data (vtkmodules.util.data_model.DataSet prop-

erty), 88
PointData (class in vtkmodules.util.data_model), 87
PointData (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet

attribute), 125
PointData (vtkmodules.numpy_interface.dataset_adapter.DataSet

attribute), 125
Points (vtkmodules.numpy_interface.dataset_adapter.CompositeDataSet

attribute), 125
Points (vtkmodules.numpy_interface.dataset_adapter.PointSet

attribute), 126
points (vtkmodules.util.data_model.CompositeDataSetBase

property), 89
points (vtkmodules.util.data_model.PointSet property),

88
PointSet (class in vtkmod-

ules.numpy_interface.dataset_adapter), 125
PointSet (class in vtkmodules.util.data_model), 88
PolyData (class in vtkmod-

ules.numpy_interface.dataset_adapter), 126
Polygons (vtkmodules.numpy_interface.dataset_adapter.PolyData

attribute), 126
polygons (vtkmodules.util.data_model.vtkPolyData

property), 88
powder_blue (in module vtkmodules.util.colors), 73
power (in module vtkmod-

ules.numpy_interface.algorithms), 137
prepareTestImage() (vtkmodules.test.Testing.vtkTest

method), 151
processCmdLine() (in module vtkmodules.test.Testing),

152
ProcessRequest() (vtkmod-

ules.util.vtkAlgorithm.VTKAlgorithm method),
81

ProcessRequest() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

ProcessRequest() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase.InternalAlgorithm
method), 82

purple (in module vtkmodules.util.colors), 74
purple_medium (in module vtkmodules.util.colors), 74
push_signature() (in module vtkmod-

ules.generate_pyi), 164
PutImageSlice() (vtkmod-

ules.tk.vtkTkPhotoImage.vtkTkPhotoImage
method), 159

PyQtImpl (in module vtkmodules.qt), 106

Q
QVTKRenderWidgetConeExample() (in module vtk-

modules.qt.QVTKRenderWindowInteractor),
106

QVTKRenderWindowInteractor (class in vtkmod-
ules.qt.QVTKRenderWindowInteractor), 104

QVTKRWIBase (in module vtkmodules.qt), 106
QVTKRWIBase (in module vtkmod-

ules.qt.QVTKRenderWindowInteractor),
104

R
raspberry (in module vtkmodules.util.colors), 67
raw_sienna (in module vtkmodules.util.colors), 68
raw_umber (in module vtkmodules.util.colors), 69
reciprocal (in module vtkmod-

ules.numpy_interface.algorithms), 134
red (in module vtkmodules.util.colors), 67
remainder (in module vtkmod-

ules.numpy_interface.algorithms), 137
Render() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow

method), 143
Render() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase

method), 142
Render() (vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor

method), 145
Render() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow

method), 140
Render() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase

method), 139
Render() (vtkmodules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor

method), 146
Render() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor

method), 106
Render() (vtkmodules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget

method), 160
Render() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget

method), 156
Render() (vtkmodules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor

method), 158
Render() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow

method), 109
Render() (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor

method), 112
RequestData() (vtkmod-

ules.util.vtkAlgorithm.VTKAlgorithm method),
81

RequestData() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 83

RequestDataObject() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

Index 479

VTK

RequestDataObject() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

RequestInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

RequestInformation() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 82

RequestUpdateExtent() (vtkmod-
ules.util.vtkAlgorithm.VTKAlgorithm method),
81

RequestUpdateExtent() (vtkmod-
ules.util.vtkAlgorithm.VTKPythonAlgorithmBase
method), 83

Reset() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

Reset() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 141

reset() (vtkmodules.test.ErrorObserver.vtkErrorObserver
method), 153

Reset() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

Reset() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

ResetTkImageViewer() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

reshape_append_ones() (in module vtkmod-
ules.numpy_interface.dataset_adapter), 118

resizeEvent() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

RightButtonPressEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

RightButtonReleaseEvent() (vtkmod-
ules.tk.vtkTkRenderWindowInteractor.vtkTkRenderWindowInteractor
method), 158

rint (in module vtkmod-
ules.numpy_interface.algorithms), 134

rose_madder (in module vtkmodules.util.colors), 67
rosy_brown (in module vtkmodules.util.colors), 68
Rotate() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow

method), 143
Rotate() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow

method), 140
Rotate() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget

method), 156
Rotate() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow

method), 109
ROW (vtkmodules.numpy_interface.dataset_adapter.ArrayAssociation

attribute), 118
RowData (vtkmodules.numpy_interface.dataset_adapter.Table

attribute), 124
royal_blue (in module vtkmodules.util.colors), 73

S
saddle_brown (in module vtkmodules.util.colors), 69
salmon (in module vtkmodules.util.colors), 67
sandy_brown (in module vtkmodules.util.colors), 69
sap_green (in module vtkmodules.util.colors), 71
saw_error (vtkmodules.test.ErrorObserver.vtkErrorObserver

property), 153
saw_warning (vtkmod-

ules.test.ErrorObserver.vtkErrorObserver
property), 153

sea_green (in module vtkmodules.util.colors), 71
sea_green_dark (in module vtkmodules.util.colors), 71
sea_green_light (in module vtkmodules.util.colors),

71
sea_green_medium (in module vtkmodules.util.colors),

71
seashell (in module vtkmodules.util.colors), 65
select_ports (class in vtkmod-

ules.util.execution_model), 83
sepia (in module vtkmodules.util.colors), 69
serialize_VTK_data_object() (in module vtkmod-

ules.util.pickle_support), 75
set_array() (vtkmod-

ules.util.data_model.CompositeDataSetAttributes
method), 88

set_array() (vtkmod-
ules.util.data_model.FieldDataBase method),
86

set_size_request() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 144

set_usize() (vtkmod-
ules.gtk.GtkVTKRenderWindowInteractor.GtkVTKRenderWindowInteractor
method), 146

SetArray() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

SetCells() (vtkmodules.numpy_interface.dataset_adapter.UnstructuredGrid
method), 126

SetConvertIntToUnsignedShort() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

SetConvertUnsignedShortToInt() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

SetDataExtent() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

SetDataOrigin() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

480 Index

VTK

SetDataSpacing() (vtkmod-
ules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

setDebug() (vtkmodules.test.BlackBox.Tester method),
148

SetDesiredUpdateRate() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

SetDesiredUpdateRate() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

SetDesiredUpdateRate() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 155

SetDesiredUpdateRate() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

SetInputConnection() (vtkmod-
ules.util.execution_model.select_ports
method), 84

SetInputConnection() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

SetInputData() (vtkmod-
ules.util.vtkImageExportToArray.vtkImageExportToArray
method), 60

SetPicker() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindowInteractor.GtkGLExtVTKRenderWindowInteractor
method), 145

SetPoints() (vtkmod-
ules.numpy_interface.dataset_adapter.PointSet
method), 126

SetRenderWhenDisabled() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 112

SetStillUpdateRate() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindowBase
method), 142

SetStillUpdateRate() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindowBase
method), 139

SetStillUpdateRate() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

SetStillUpdateRate() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 108

SetZoomFactor() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

SetZoomFactor() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

shape() (in module vtkmod-

ules.numpy_interface.algorithms), 133
shear (in module vtkmod-

ules.numpy_interface.algorithms), 137
shear() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

ShowCursor() (vtkmod-
ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

ShowCursor() (vtkmod-
ules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor
method), 111

sienna (in module vtkmodules.util.colors), 69
sin (in module vtkmodules.numpy_interface.algorithms),

134
sinh (in module vtkmod-

ules.numpy_interface.algorithms), 135
size (vtkmodules.numpy_interface.dataset_adapter.VTKCompositeDataArray

attribute), 121
sizeHint() (vtkmodules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor

method), 105
skew (in module vtkmod-

ules.numpy_interface.algorithms), 137
skew() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

skip() (in module vtkmodules.test.Testing), 150
sky_blue (in module vtkmodules.util.colors), 73
sky_blue_deep (in module vtkmodules.util.colors), 73
sky_blue_light (in module vtkmodules.util.colors), 73
slate_blue (in module vtkmodules.util.colors), 73
slate_blue_dark (in module vtkmodules.util.colors),

73
slate_blue_light (in module vtkmodules.util.colors),

73
slate_blue_medium (in module vtkmodules.util.colors),

73
slate_grey (in module vtkmodules.util.colors), 66
slate_grey_dark (in module vtkmodules.util.colors),

66
slate_grey_light (in module vtkmodules.util.colors),

66
snow (in module vtkmodules.util.colors), 65
sorted_graph() (in module vtkmodules.generate_pyi),

164
sorted_graph_helper() (in module vtkmod-

ules.generate_pyi), 164
spring_green (in module vtkmodules.util.colors), 71
spring_green_medium (in module vtkmod-

ules.util.colors), 71
sqrt (in module vtkmod-

ules.numpy_interface.algorithms), 134
square (in module vtkmod-

ules.numpy_interface.algorithms), 134

Index 481

VTK

StartMotion() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

StartMotion() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

StartMotion() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

StartQueryInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

StartWindowLevelInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

state_methods() (vtkmod-
ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

state_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

std() (in module vtkmod-
ules.numpy_interface.algorithms), 133

steel_blue (in module vtkmodules.util.colors), 73
steel_blue_light (in module vtkmodules.util.colors),

73
strain (in module vtkmod-

ules.numpy_interface.algorithms), 137
strain() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

string (in module vtkmodules.generate_pyi), 164
subtract (in module vtkmod-

ules.numpy_interface.algorithms), 137
sum() (in module vtkmod-

ules.numpy_interface.algorithms), 131
sum() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

sum_per_block() (in module vtkmod-
ules.numpy_interface.algorithms), 131

Surface() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

Surface() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 141

Surface() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

Surface() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 110

surface_normal (in module vtkmod-
ules.numpy_interface.algorithms), 137

surface_normal() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

T
Table (class in vtkmod-

ules.numpy_interface.dataset_adapter), 123
tan (in module vtkmodules.numpy_interface.algorithms),

134
tan (in module vtkmodules.util.colors), 69
tanh (in module vtkmod-

ules.numpy_interface.algorithms), 135
template (in module vtkmodules.generate_pyi), 163
terre_verte (in module vtkmodules.util.colors), 71
test() (in module vtkmodules.test.Testing), 152
test() (vtkmodules.test.BlackBox.Tester method), 148
testBoolean() (vtkmodules.test.BlackBox.Tester

method), 148
Tester (class in vtkmodules.test.BlackBox), 148
testGetSet() (vtkmodules.test.BlackBox.Tester

method), 148
testParse() (vtkmodules.test.BlackBox.Tester method),

148
thistle (in module vtkmodules.util.colors), 65
TimerEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 105

titanium_white (in module vtkmodules.util.colors), 66
toggle_methods() (vtkmod-

ules.util.vtkMethodParser.VtkDirMethodParser
method), 78

toggle_methods() (vtkmod-
ules.util.vtkMethodParser.VtkPrintMethodParser
method), 78

tomato (in module vtkmodules.util.colors), 67
topologically_sorted_items() (in module vtkmod-

ules.generate_pyi), 164
trace (in module vtkmod-

ules.numpy_interface.algorithms), 137
trace() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

turquoise (in module vtkmodules.util.colors), 72
turquoise_blue (in module vtkmodules.util.colors), 73
turquoise_dark (in module vtkmodules.util.colors), 72
turquoise_medium (in module vtkmodules.util.colors),

72
turquoise_pale (in module vtkmodules.util.colors), 72
typename() (in module vtkmodules.generate_pyi), 163
typename_forward() (in module vtkmod-

ules.generate_pyi), 163
types (in module vtkmodules.generate_pyi), 163

U
ultramarine (in module vtkmodules.util.colors), 73
ultramarine_violet (in module vtkmod-

ules.util.colors), 74

482 Index

VTK

UNKNOWN (vtkmodules.util.execution_model.Pipeline at-
tribute), 85

unserialize_VTK_data_object() (in module vtk-
modules.util.pickle_support), 75

unstructured_from_composite_arrays() (in mod-
ule vtkmodules.numpy_interface.algorithms),
134

UnstructuredGrid (class in vtkmod-
ules.numpy_interface.dataset_adapter), 126

update() (vtkmodules.util.execution_model.Pipeline
method), 85

update() (vtkmodules.util.execution_model.select_ports
method), 84

Update() (vtkmodules.util.vtkImageImportFromArray.vtkImageImportFromArray
method), 79

UpdateQueryInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

UpdateRenderer() (vtkmod-
ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow
method), 143

UpdateRenderer() (vtkmod-
ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 140

UpdateRenderer() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

UpdateRenderer() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 109

UpdateWindowLevelInteraction() (vtkmod-
ules.tk.vtkTkImageViewerWidget.vtkTkImageViewerWidget
method), 161

usage() (in module vtkmodules.test.Testing), 152
USE_STEREO (vtkmodules.wx.wxVTKRenderWindowInteractor.wxVTKRenderWindowInteractor

attribute), 111

V
values() (vtkmodules.numpy_interface.dataset_adapter.DataSetAttributes

method), 122
values() (vtkmodules.util.data_model.FieldDataBase

method), 86
van_dyke_brown (in module vtkmodules.util.colors), 69
var() (in module vtkmod-

ules.numpy_interface.algorithms), 133
var() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

variable
CMAKE_BINARY_DIR, 215

venetian_red (in module vtkmodules.util.colors), 67
vertex_normal (in module vtkmod-

ules.numpy_interface.algorithms), 137

vertex_normal() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

VertexData (vtkmodules.numpy_interface.dataset_adapter.Graph
attribute), 127

violet (in module vtkmodules.util.colors), 74
violet_dark (in module vtkmodules.util.colors), 74
violet_red (in module vtkmodules.util.colors), 74
violet_red_medium (in module vtkmodules.util.colors),

74
violet_red_pale (in module vtkmodules.util.colors),

74
viridian_light (in module vtkmodules.util.colors), 71
volume (in module vtkmod-

ules.numpy_interface.algorithms), 137
volume() (in module vtkmod-

ules.numpy_interface.internal_algorithms),
116

vorticity (in module vtkmod-
ules.numpy_interface.algorithms), 137

vorticity() (in module vtkmod-
ules.numpy_interface.internal_algorithms),
116

vtk_add_test_cxx
command, 208, 364

vtk_add_test_mangling
command, 210

vtk_add_test_module_javascript_node
command, 209

vtk_add_test_mpi
command, 208, 364

vtk_add_test_python
command, 209, 364

vtk_add_test_python_mpi
command, 209

VTK_ARIAL (in module vtkmodules.util.vtkConstants), 98
VTK_BASELINE_PATHS (in module vtkmod-

ules.test.Testing), 150
VTK_BASELINE_ROOT (in module vtkmod-

ules.test.Testing), 150
VTK_BIQUADRATIC_QUAD (in module vtkmod-

ules.util.vtkConstants), 100
VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON (in mod-

ule vtkmodules.util.vtkConstants), 101
VTK_BIQUADRATIC_QUADRATIC_WEDGE (in module vtk-

modules.util.vtkConstants), 101
VTK_BIT (in module vtkmodules.util.vtkConstants), 95
VTK_BIT_MAX (in module vtkmodules.util.vtkConstants),

96
VTK_BIT_MIN (in module vtkmodules.util.vtkConstants),

96
VTK_CHAR (in module vtkmodules.util.vtkConstants), 95
VTK_CHAR_MAX (in module vtkmodules.util.vtkConstants),

96

Index 483

VTK

VTK_CHAR_MIN (in module vtkmodules.util.vtkConstants),
96

VTK_COLOR_MODE_DEFAULT (in module vtkmod-
ules.util.vtkConstants), 99

VTK_COLOR_MODE_MAP_SCALARS (in module vtkmod-
ules.util.vtkConstants), 99

VTK_COMPOSITE_DATA_SET (in module vtkmod-
ules.util.vtkConstants), 97

VTK_CONVEX_POINT_SET (in module vtkmod-
ules.util.vtkConstants), 101

VTK_COURIER (in module vtkmodules.util.vtkConstants),
98

VTK_DATA_OBJECT (in module vtkmod-
ules.util.vtkConstants), 97

VTK_DATA_PATHS (in module vtkmodules.test.Testing),
150

VTK_DATA_ROOT (in module vtkmodules.test.Testing), 150
VTK_DATA_SET (in module vtkmodules.util.vtkConstants),

97
VTK_DOUBLE (in module vtkmodules.util.vtkConstants),

96
VTK_DOUBLE_MAX (in module vtkmod-

ules.util.vtkConstants), 97
VTK_DOUBLE_MIN (in module vtkmod-

ules.util.vtkConstants), 97
VTK_EMPTY_CELL (in module vtkmod-

ules.util.vtkConstants), 99
VTK_ERROR (in module vtkmodules.util.vtkConstants), 98
VTK_FLOAT (in module vtkmodules.util.vtkConstants), 96
VTK_FLOAT_MAX (in module vtkmod-

ules.util.vtkConstants), 97
VTK_FLOAT_MIN (in module vtkmod-

ules.util.vtkConstants), 97
VTK_GENERIC_DATA_SET (in module vtkmod-

ules.util.vtkConstants), 98
VTK_GRAPH (in module vtkmodules.util.vtkConstants), 98
VTK_HEXAGONAL_PRISM (in module vtkmod-

ules.util.vtkConstants), 100
VTK_HEXAHEDRON (in module vtkmod-

ules.util.vtkConstants), 100
VTK_HIERARCHICAL_BOX_DATA_SET (in module vtk-

modules.util.vtkConstants), 98
VTK_HIERARCHICAL_DATA_SET (in module vtkmod-

ules.util.vtkConstants), 98
VTK_HIGHER_ORDER_EDGE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_HIGHER_ORDER_HEXAHEDRON (in module vtkmod-

ules.util.vtkConstants), 101
VTK_HIGHER_ORDER_POLYGON (in module vtkmod-

ules.util.vtkConstants), 101
VTK_HIGHER_ORDER_PYRAMID (in module vtkmod-

ules.util.vtkConstants), 101
VTK_HIGHER_ORDER_QUAD (in module vtkmod-

ules.util.vtkConstants), 101

VTK_HIGHER_ORDER_TETRAHEDRON (in module vtkmod-
ules.util.vtkConstants), 101

VTK_HIGHER_ORDER_TRIANGLE (in module vtkmod-
ules.util.vtkConstants), 101

VTK_HIGHER_ORDER_WEDGE (in module vtkmod-
ules.util.vtkConstants), 101

VTK_HYPER_OCTREE (in module vtkmod-
ules.util.vtkConstants), 98

VTK_ID_TYPE (in module vtkmodules.util.vtkConstants),
96

VTK_ID_TYPE_SIZE (in module vtkmod-
ules.util.numpy_support), 90

VTK_IMAGE_DATA (in module vtkmod-
ules.util.vtkConstants), 97

VTK_INT (in module vtkmodules.util.vtkConstants), 95
VTK_INT_MAX (in module vtkmodules.util.vtkConstants),

97
VTK_INT_MIN (in module vtkmodules.util.vtkConstants),

97
VTK_LINE (in module vtkmodules.util.vtkConstants), 99
VTK_LINEAR_INTERPOLATION (in module vtkmod-

ules.util.vtkConstants), 99
VTK_LONG (in module vtkmodules.util.vtkConstants), 95
VTK_LONG_LONG (in module vtkmod-

ules.util.vtkConstants), 96
VTK_LONG_MAX (in module vtkmodules.util.vtkConstants),

97
VTK_LONG_MIN (in module vtkmodules.util.vtkConstants),

97
VTK_LONG_TYPE_SIZE (in module vtkmod-

ules.util.numpy_support), 90
VTK_LUMINANCE (in module vtkmod-

ules.util.vtkConstants), 99
VTK_LUMINANCE_ALPHA (in module vtkmod-

ules.util.vtkConstants), 99
VTK_MAX_VRCOMP (in module vtkmod-

ules.util.vtkConstants), 99
vtk_module_add_executable

command, 173, 174, 201
vtk_module_add_module

command, 173, 174, 198, 199, 201, 213
vtk_module_add_python_module

command, 213
vtk_module_add_python_package

command, 212, 213
vtk_module_autoinit

command, 10, 177, 198, 198
vtk_module_build

command, 168, 171–176, 179, 181, 194, 199, 201,
202, 261

vtk_module_build call
command, 197, 201

vtk_module_compile_features
command, 175, 189, 191

484 Index

VTK

vtk_module_compile_options
command, 175, 189, 191

vtk_module_definitions
command, 175, 189, 190

vtk_module_depend
command, 175, 189, 190

vtk_module_export_find_packages
command, 176, 203

vtk_module_find_kits
command, 177, 183, 261

vtk_module_find_modules
command, 168, 183, 261

vtk_module_find_package
command, 176, 179, 202, 202, 204

vtk_module_get_property
command, 175, 189, 190, 193

vtk_module_graphviz
command, 216

vtk_module_include
command, 175, 189, 190

vtk_module_install_headers
command, 174

vtk_module_json
command, 215

vtk_module_link
command, 175, 189, 191

vtk_module_link_options
command, 175, 189, 191

vtk_module_python_default_destination
command, 178, 210

vtk_module_scan
command, 168, 170, 171, 177, 186, 186, 261

vtk_module_set_properties
command, 175, 189, 189

vtk_module_set_property
command, 175, 189, 189

vtk_module_sources
command, 190

vtk_module_test_data
command, 206

vtk_module_test_executable
command, 206

vtk_module_third_party
command, 179, 203, 203

vtk_module_third_party_external
command, 179, 203, 204

vtk_module_third_party_internal
command, 179, 203, 204

vtk_module_wrap_java
command, 178, 214, 214

vtk_module_wrap_python
command, 178, 211

vtk_module_wrap_python function
command, 211

VTK_MULTIBLOCK_DATA_SET (in module vtkmod-
ules.util.vtkConstants), 98

VTK_MULTIGROUP_DATA_SET (in module vtkmod-
ules.util.vtkConstants), 98

VTK_NEAREST_INTERPOLATION (in module vtkmod-
ules.util.vtkConstants), 99

VTK_OBJECT (in module vtkmodules.util.vtkConstants),
96

VTK_OK (in module vtkmodules.util.vtkConstants), 98
VTK_OPAQUE (in module vtkmodules.util.vtkConstants),

96
VTK_PARAMETRIC_CURVE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PARAMETRIC_HEX_REGION (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PARAMETRIC_QUAD_SURFACE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PARAMETRIC_SURFACE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PARAMETRIC_TETRA_REGION (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PARAMETRIC_TRI_SURFACE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_PENTAGONAL_PRISM (in module vtkmod-

ules.util.vtkConstants), 100
VTK_PIECEWISE_FUNCTION (in module vtkmod-

ules.util.vtkConstants), 97
VTK_PIXEL (in module vtkmodules.util.vtkConstants),

100
VTK_POINT_SET (in module vtkmod-

ules.util.vtkConstants), 97
VTK_POLY_DATA (in module vtkmod-

ules.util.vtkConstants), 97
VTK_POLY_LINE (in module vtkmod-

ules.util.vtkConstants), 99
VTK_POLY_VERTEX (in module vtkmod-

ules.util.vtkConstants), 99
VTK_POLYGON (in module vtkmodules.util.vtkConstants),

100
VTK_PYRAMID (in module vtkmodules.util.vtkConstants),

100
VTK_QUAD (in module vtkmodules.util.vtkConstants), 100
VTK_QUADRATIC_EDGE (in module vtkmod-

ules.util.vtkConstants), 100
VTK_QUADRATIC_HEXAHEDRON (in module vtkmod-

ules.util.vtkConstants), 100
VTK_QUADRATIC_LINEAR_QUAD (in module vtkmod-

ules.util.vtkConstants), 101
VTK_QUADRATIC_LINEAR_WEDGE (in module vtkmod-

ules.util.vtkConstants), 101
VTK_QUADRATIC_PYRAMID (in module vtkmod-

ules.util.vtkConstants), 100
VTK_QUADRATIC_QUAD (in module vtkmod-

ules.util.vtkConstants), 100

Index 485

VTK

VTK_QUADRATIC_TETRA (in module vtkmod-
ules.util.vtkConstants), 100

VTK_QUADRATIC_TRIANGLE (in module vtkmod-
ules.util.vtkConstants), 100

VTK_QUADRATIC_WEDGE (in module vtkmod-
ules.util.vtkConstants), 100

VTK_RECTILINEAR_GRID (in module vtkmod-
ules.util.vtkConstants), 97

VTK_RGB (in module vtkmodules.util.vtkConstants), 99
VTK_RGBA (in module vtkmodules.util.vtkConstants), 99
VTK_SELECTION (in module vtkmod-

ules.util.vtkConstants), 98
VTK_SHORT (in module vtkmodules.util.vtkConstants), 95
VTK_SHORT_MAX (in module vtkmod-

ules.util.vtkConstants), 96
VTK_SHORT_MIN (in module vtkmod-

ules.util.vtkConstants), 96
VTK_SIGNED_CHAR (in module vtkmod-

ules.util.vtkConstants), 95
VTK_STRING (in module vtkmodules.util.vtkConstants),

96
VTK_STRUCTURED_GRID (in module vtkmod-

ules.util.vtkConstants), 97
VTK_STRUCTURED_POINTS (in module vtkmod-

ules.util.vtkConstants), 97
VTK_TABLE (in module vtkmodules.util.vtkConstants), 98
VTK_TEMP_DIR (in module vtkmodules.test.Testing), 150
VTK_TEMPORAL_DATA_SET (in module vtkmod-

ules.util.vtkConstants), 98
vtk_test_cxx_executable

command, 209
vtk_test_mpi_executable

command, 209
VTK_TETRA (in module vtkmodules.util.vtkConstants),

100
VTK_TEXT_BOTTOM (in module vtkmod-

ules.util.vtkConstants), 99
VTK_TEXT_CENTERED (in module vtkmod-

ules.util.vtkConstants), 98
VTK_TEXT_GLOBAL_ANTIALIASING_ALL (in module vtk-

modules.util.vtkConstants), 99
VTK_TEXT_GLOBAL_ANTIALIASING_NONE (in module

vtkmodules.util.vtkConstants), 99
VTK_TEXT_GLOBAL_ANTIALIASING_SOME (in module

vtkmodules.util.vtkConstants), 99
VTK_TEXT_LEFT (in module vtkmod-

ules.util.vtkConstants), 98
VTK_TEXT_RIGHT (in module vtkmod-

ules.util.vtkConstants), 98
VTK_TEXT_TOP (in module vtkmodules.util.vtkConstants),

99
VTK_TIMES (in module vtkmodules.util.vtkConstants), 98
vtk_to_numpy() (in module vtkmod-

ules.util.numpy_support), 91

VTK_TREE (in module vtkmodules.util.vtkConstants), 98
VTK_TRIANGLE (in module vtkmodules.util.vtkConstants),

99
VTK_TRIANGLE_STRIP (in module vtkmod-

ules.util.vtkConstants), 100
VTK_TRIQUADRATIC_HEXAHEDRON (in module vtkmod-

ules.util.vtkConstants), 100
VTK_UNIFORM_GRID (in module vtkmod-

ules.util.vtkConstants), 97
VTK_UNKNOWN_FONT (in module vtkmod-

ules.util.vtkConstants), 98
VTK_UNSIGNED_CHAR (in module vtkmod-

ules.util.vtkConstants), 95
VTK_UNSIGNED_CHAR_MAX (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSIGNED_CHAR_MIN (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSIGNED_INT (in module vtkmod-

ules.util.vtkConstants), 95
VTK_UNSIGNED_LONG (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSIGNED_LONG_LONG (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSIGNED_SHORT (in module vtkmod-

ules.util.vtkConstants), 95
VTK_UNSIGNED_SHORT_MAX (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSIGNED_SHORT_MIN (in module vtkmod-

ules.util.vtkConstants), 96
VTK_UNSTRUCTURED_GRID (in module vtkmod-

ules.util.vtkConstants), 97
VTK_VARIANT (in module vtkmodules.util.vtkConstants),

96
VTK_VERTEX (in module vtkmodules.util.vtkConstants),

99
VTK_VOID (in module vtkmodules.util.vtkConstants), 95
VTK_VOXEL (in module vtkmodules.util.vtkConstants),

100
VTK_WEDGE (in module vtkmodules.util.vtkConstants),

100
VTKAlgorithm (class in vtkmodules.util.vtkAlgorithm),

80
VTKArray (class in vtkmod-

ules.numpy_interface.dataset_adapter), 119
VTKArrayMetaClass (class in vtkmod-

ules.numpy_interface.dataset_adapter), 119
VTKCompositeDataArray (class in vtkmod-

ules.numpy_interface.dataset_adapter), 120
VTKCompositeDataArrayMetaClass (class in vtkmod-

ules.numpy_interface.dataset_adapter), 120
vtkDataArrayToVTKArray() (in module vtkmod-

ules.numpy_interface.dataset_adapter), 119
VtkDirMethodParser (class in vtkmod-

ules.util.vtkMethodParser), 77

486 Index

VTK

vtkErrorObserver (class in vtkmod-
ules.test.ErrorObserver), 153

vtkFieldData (class in vtkmodules.util.data_model), 86
vtkGetDataRoot() (in module vtkmodules.util.misc), 92
vtkGetTempDir() (in module vtkmodules.util.misc), 92
vtkImageData (class in vtkmodules.util.data_model), 88
vtkImageExportToArray (class in vtkmod-

ules.util.vtkImageExportToArray), 60
vtkImageImportFromArray (class in vtkmod-

ules.util.vtkImageImportFromArray), 79
vtkImageScalarTypeNameMacro() (in module vtk-

modules.util.vtkConstants), 102
vtkLoadPythonTkWidgets() (in module vtkmod-

ules.tk.vtkLoadPythonTkWidgets), 159
vtkmethod (in module vtkmodules.generate_pyi), 163
vtkmodules

module, 59
vtkmodules.generate_pyi

module, 161
vtkmodules.gtk

module, 138
vtkmodules.gtk.GtkGLExtVTKRenderWindow

module, 141
vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor

module, 144
vtkmodules.gtk.GtkVTKRenderWindow

module, 138
vtkmodules.gtk.GtkVTKRenderWindowInteractor

module, 145
vtkmodules.numpy_interface

module, 113
vtkmodules.numpy_interface.algorithms

module, 127
vtkmodules.numpy_interface.dataset_adapter

module, 117
vtkmodules.numpy_interface.internal_algorithms

module, 113
vtkmodules.qt

module, 102
vtkmodules.qt.QVTKRenderWindowInteractor

module, 102
vtkmodules.test

module, 147
vtkmodules.test.BlackBox

module, 148
vtkmodules.test.ErrorObserver

module, 153
vtkmodules.test.rtImageTest

module, 153
vtkmodules.test.Testing

module, 148
vtkmodules.tk

module, 154
vtkmodules.tk.vtkLoadPythonTkWidgets

module, 159
vtkmodules.tk.vtkTkImageViewerWidget

module, 160
vtkmodules.tk.vtkTkPhotoImage

module, 158
vtkmodules.tk.vtkTkRenderWidget

module, 154
vtkmodules.tk.vtkTkRenderWindowInteractor

module, 157
vtkmodules.util

module, 59
vtkmodules.util.colors

module, 60
vtkmodules.util.data_model

module, 85
vtkmodules.util.execution_model

module, 83
vtkmodules.util.keys

module, 80
vtkmodules.util.misc

module, 91
vtkmodules.util.numpy_support

module, 89
vtkmodules.util.pickle_support

module, 74
vtkmodules.util.vtkAlgorithm

module, 80
vtkmodules.util.vtkConstants

module, 92
vtkmodules.util.vtkImageExportToArray

module, 59
vtkmodules.util.vtkImageImportFromArray

module, 78
vtkmodules.util.vtkMethodParser

module, 77
vtkmodules.util.vtkVariant

module, 75
vtkmodules.wx

module, 106
vtkmodules.wx.wxVTKRenderWindow

module, 107
vtkmodules.wx.wxVTKRenderWindowInteractor

module, 110
VTKNoneArray (class in vtkmod-

ules.numpy_interface.dataset_adapter), 120
VTKNoneArrayMetaClass (class in vtkmod-

ules.numpy_interface.dataset_adapter), 120
VTKObjectWrapper (class in vtkmod-

ules.numpy_interface.dataset_adapter), 119
vtkPartitionedDataSet (class in vtkmod-

ules.util.data_model), 89
vtkPolyData (class in vtkmodules.util.data_model), 88
VtkPrintMethodParser (class in vtkmod-

ules.util.vtkMethodParser), 78

Index 487

VTK

VTKPythonAlgorithmBase (class in vtkmod-
ules.util.vtkAlgorithm), 81

VTKPythonAlgorithmBase.InternalAlgorithm
(class in vtkmodules.util.vtkAlgorithm), 82

vtkRegressionTestImage() (in module vtkmod-
ules.util.misc), 92

vtkRenderWidgetConeExample() (in module vtkmod-
ules.tk.vtkTkRenderWidget), 156

vtkRenderWindowInteractorConeExample()
(in module vtkmod-
ules.tk.vtkTkRenderWindowInteractor), 158

vtkTest (class in vtkmodules.test.Testing), 150
vtkTkImageViewerWidget (class in vtkmod-

ules.tk.vtkTkImageViewerWidget), 160
vtkTkPhotoImage (class in vtkmod-

ules.tk.vtkTkPhotoImage), 159
vtkTkRenderWidget (class in vtkmod-

ules.tk.vtkTkRenderWidget), 155
vtkTkRenderWindowInteractor (class in vtkmod-

ules.tk.vtkTkRenderWindowInteractor), 157
vtkUnstructuredGrid (class in vtkmod-

ules.util.data_model), 88
vtkVariantCast() (in module vtkmod-

ules.util.vtkVariant), 76
vtkVariantCreate() (in module vtkmod-

ules.util.vtkVariant), 76
vtkVariantEqual() (in module vtkmod-

ules.util.vtkVariant), 77
vtkVariantExtract() (in module vtkmod-

ules.util.vtkVariant), 76
vtkVariantLessThan() (in module vtkmod-

ules.util.vtkVariant), 77
vtkVariantStrictEquality() (in module vtkmod-

ules.util.vtkVariant), 77
vtkVariantStrictWeakOrder() (in module vtkmod-

ules.util.vtkVariant), 76
vtkVariantStrictWeakOrderKey (class in vtkmod-

ules.util.vtkVariant), 76

W
warm_grey (in module vtkmodules.util.colors), 66
warning_message (vtkmod-

ules.test.ErrorObserver.vtkErrorObserver
property), 153

wheat (in module vtkmodules.util.colors), 66
wheelEvent() (vtkmod-

ules.qt.QVTKRenderWindowInteractor.QVTKRenderWindowInteractor
method), 106

where (in module vtkmod-
ules.numpy_interface.algorithms), 135

white (in module vtkmodules.util.colors), 66
white_smoke (in module vtkmodules.util.colors), 66
Wireframe() (vtkmod-

ules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow

method), 143
Wireframe() (vtkmod-

ules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow
method), 141

Wireframe() (vtkmod-
ules.tk.vtkTkRenderWidget.vtkTkRenderWidget
method), 156

Wireframe() (vtkmod-
ules.wx.wxVTKRenderWindow.wxVTKRenderWindow
method), 110

WrapDataObject() (in module vtkmod-
ules.numpy_interface.dataset_adapter), 127

wxVTKRenderWindow (class in vtkmod-
ules.wx.wxVTKRenderWindow), 107

wxVTKRenderWindowConeExample() (in module vtk-
modules.wx.wxVTKRenderWindow), 110

wxVTKRenderWindowInteractor (class in vtkmod-
ules.wx.wxVTKRenderWindowInteractor),
111

wxVTKRenderWindowInteractorConeExample()
(in module vtkmod-
ules.wx.wxVTKRenderWindowInteractor),
113

Y
yellow (in module vtkmodules.util.colors), 70
yellow_green (in module vtkmodules.util.colors), 72
yellow_light (in module vtkmodules.util.colors), 70
yellow_ochre (in module vtkmodules.util.colors), 69

Z
zinc_white (in module vtkmodules.util.colors), 66
Zoom() (vtkmodules.gtk.GtkGLExtVTKRenderWindow.GtkGLExtVTKRenderWindow

method), 143
Zoom() (vtkmodules.gtk.GtkVTKRenderWindow.GtkVTKRenderWindow

method), 141
Zoom() (vtkmodules.tk.vtkTkRenderWidget.vtkTkRenderWidget

method), 156
Zoom() (vtkmodules.wx.wxVTKRenderWindow.wxVTKRenderWindow

method), 109

488 Index

	About
	Overview
	Features
	License
	Citing
	History
	Acknowledgments
	Commercial Use
	Contact Us

	Getting Started
	Introduction
	System requirements
	Using Python
	Using Jupyter
	Using C++ and CMake
	Using Javascript
	Using WebAssembly
	Using existing frameworks and applications

	Learning
	Supported Data Formats
	Supported Hardware
	Modules
	VTK::DomainsMicroscopy
	vtkOpenSlideReader
	Known issues

	VTK::FiltersOpenTURNS
	VTK::GUISupportQt
	VTK::IOADIOS2
	Goal
	Core: VTK ADIOS2 CORE READERS
	VTX: VTK ADIOS2 READERS

	VTK::IOCesium3DTiles
	vtk3DTilesWriter - Convert a multiblock dataset to the 3D Tiles format.
	Install conversion and validation scripts
	Convert data to GLB or B3DM - Optional
	View in Cesium
	Test the tilesets using 3d-tiles-validator

	VTK::IOFLUENTCFF
	vtkFLUENTCFFReader
	Acknowledgments

	VTK::IOOCCT
	VTK::IOXDMF2
	VTK::RenderingOpenVR
	Supported Devices
	Supported Controllers
	Testing

	VTK::RenderingOpenXR
	Supported Devices
	Adding New Devices
	Building
	Testing
	Additional Notes

	VTK::RenderingOpenXRRemoting
	VTK - OpenXR Holographic Remoting
	Player application
	Remote application
	Troubleshooting:

	Additional Notes

	VTK::RenderingVR
	vtkRenderingVR - Virtual reality support for VTK
	Introduction
	Supported Devices
	Coordinate Systems

	VTK::RenderingWebGPU
	vtkRenderingWebGPU - WebGPU backend for rendering
	Description
	Available features
	Future work
	References
	How to build VTK with Dawn (Highly experimental)
	Build Dawn with gn and Ninja
	Configure and build VTK
	Run the WebGPU tests
	Run the Rendering Core tests

	VTK::WrappingPythonCore
	Python Wrapper Core Classes
	The Python Classes
	PyVTKObject
	PyVTKSpecialObject
	PyVTKTemplate
	PyVTKEnum
	PyVTKNamespace
	PyVTKReference
	PyVTKMethodDescriptor
	PyVTKExtras

	The C++ Classes
	vtkPythonUtil
	vtkPythonCommand
	vtkPythonArgs
	vtkPythonOverload
	vtkPythonCompatibility
	vtkSmartPyObject

	Enabling or Disabling Modules
	Available Modules

	Building
	Obtaining the sources
	Prerequisites
	Optional Additions

	Creating the Build Environment
	Configure
	Building
	Build Settings

	API
	C++
	Python
	Native Python documentation
	vtkmodules
	Subpackages
	vtkmodules.util
	Submodules
	vtkmodules.util.vtkImageExportToArray
	Module Contents
	Classes
	API
	vtkmodules.util.colors
	Module Contents
	Data
	API
	vtkmodules.util.pickle_support
	Module Contents
	Functions
	API
	vtkmodules.util.vtkVariant
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.util.vtkMethodParser
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.util.vtkImageImportFromArray
	Module Contents
	Classes
	API
	vtkmodules.util.keys
	Module Contents
	Functions
	API
	vtkmodules.util.vtkAlgorithm
	Module Contents
	Classes
	API
	vtkmodules.util.execution_model
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.util.data_model
	Module Contents
	Classes
	API
	vtkmodules.util.numpy_support
	Caveats:
	Module Contents
	Functions
	Data
	API
	vtkmodules.util.misc
	Module Contents
	Functions
	API
	vtkmodules.util.vtkConstants
	Module Contents
	Functions
	Data
	API
	Package Contents
	Data
	API
	vtkmodules.qt
	Submodules
	vtkmodules.qt.QVTKRenderWindowInteractor
	Module Contents
	Classes
	Functions
	Data
	API
	Package Contents
	Data
	API
	vtkmodules.wx
	Submodules
	vtkmodules.wx.wxVTKRenderWindow
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.wx.wxVTKRenderWindowInteractor
	Module Contents
	Classes
	Functions
	Data
	API
	Package Contents
	Data
	API
	vtkmodules.numpy_interface
	Submodules
	vtkmodules.numpy_interface.internal_algorithms
	Module Contents
	Functions
	API
	vtkmodules.numpy_interface.dataset_adapter
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.numpy_interface.algorithms
	Module Contents
	Functions
	Data
	API
	Package Contents
	Data
	API
	vtkmodules.gtk
	Submodules
	vtkmodules.gtk.GtkVTKRenderWindow
	Module Contents
	Classes
	Functions
	API
	vtkmodules.gtk.GtkGLExtVTKRenderWindow
	Module Contents
	Classes
	Functions
	API
	vtkmodules.gtk.GtkGLExtVTKRenderWindowInteractor
	Module Contents
	Classes
	Functions
	API
	vtkmodules.gtk.GtkVTKRenderWindowInteractor
	Module Contents
	Classes
	Functions
	API
	Package Contents
	Data
	API
	vtkmodules.test
	Submodules
	vtkmodules.test.BlackBox
	Module Contents
	Classes
	API
	vtkmodules.test.Testing
	Module Contents
	Classes
	Functions
	Data
	API
	vtkmodules.test.ErrorObserver
	Module Contents
	Classes
	API
	vtkmodules.test.rtImageTest
	Module Contents
	Functions
	API
	Package Contents
	Data
	API
	vtkmodules.tk
	Submodules
	vtkmodules.tk.vtkTkRenderWidget
	Module Contents
	Classes
	Functions
	API
	vtkmodules.tk.vtkTkRenderWindowInteractor
	Module Contents
	Classes
	Functions
	API
	vtkmodules.tk.vtkTkPhotoImage
	Module Contents
	Classes
	API
	vtkmodules.tk.vtkLoadPythonTkWidgets
	Module Contents
	Functions
	API
	vtkmodules.tk.vtkTkImageViewerWidget
	Module Contents
	Classes
	API
	Package Contents
	Data
	API

	Submodules
	vtkmodules.generate_pyi
	Module Contents
	Classes
	Functions
	Data
	API

	Package Contents
	Functions
	Data
	API

	Doxygen-style documentation

	CMake
	Module System
	Terminology
	Principles
	Build process
	Modules
	Module metadata
	Enabling modules for build
	Dependencies
	Testing

	Building modules
	Build-time parameters
	Library parameters
	Installation support
	Test data information

	Building a module
	Libraries
	Source listing

	Executables
	Module APIs

	Packaging support
	Assumptions
	Creating a full package
	External dependencies
	Setting the _FOUND variable

	Advanced topics
	Kits
	Requirements

	Autoinit
	Wrapping
	Python
	Java
	Hierarchy files

	Third party
	External third party modules
	Internal third party modules
	Properly shipping internal third party code

	Debugging
	Control variables
	SPDX files generation
	SPDX arguments in vtk_module_build
	SPDX arguments in vtk.module
	SPDX arguments in vtk_module_add_module
	Custom license support
	SPDX Tags in the sources files
	Limitations

	vtkModule
	vtk.module file contents
	vtk.kit file contents
	Enable status values
	Scanning multiple groups of modules
	Module-as-target functions
	Module target internals
	Module properties
	Naming properties
	VTK module system properties

	Autoinit
	Leveraging the autoinit subsystem

	Third party support

	vtkModuleTesting
	Loading data
	Creating test executables
	Test name parsing
	Test function arguments
	C++ tests
	MPI tests

	C++ test executable
	Python tests
	JavaScript tests
	MPI tests
	ABI Mangling tests

	vtkModuleWrapPython
	Limitations

	vtkModuleWrapJava
	vtkModuleJSON
	vtkModuleGraphviz

	Advanced Topics
	Additional Python Wheels
	SPDX & SBOM
	Overview
	Frequently Asked Questions
	How to update your module to generate a valid SPDX file ?
	How to update a third party to generate a valid SPDX file ?
	How to correctly specify custom license for a module ?

	Examples
	VTK Module
	VTK ThirdParty Module
	VTK Remote Module
	VTK Module with custom license

	Resources

	Building Python Wheels
	Modifying Version and/or Distribution Name

	Building using emscripten for WebAssembly
	Introduction
	Prerequisites
	Build project
	Install emscripten ports (IMPORTANT!)
	Build VTK

	Verify installation

	Cross-compiling for Mobile devices
	Building documentation
	User and developer guides
	C++ API documentation
	Targets

	Marshalling Hints
	Classes
	Properties
	Excluding properties

	Custom get/set functions

	Object manager
	Serialization
	Deserialization
	Blobs
	Dependencies

	Auto serialization
	Automated code generation
	Marshal hint macro
	Convenient script to annotate headers and module

	Python Wrappers
	Introduction
	Background
	Installation
	Importing
	Factories and Implementation Modules
	Classic VTK Import

	VTK Classes and Objects
	Classes Derived from vtkObjectBase
	Other Classes (Special Types)
	Class Templates

	Method Calls
	Wrappable and Unwrappable Methods
	Conversion Constructors
	Overloaded Methods
	Static Methods
	Unbound Methods
	Operator Methods
	Strings and Bytes
	STL Containers
	Smart pointers
	Pass by Reference
	Preconditions

	Observer Callbacks
	Call Data

	Other Wrapped Entities
	Constants
	Enum Types
	Namespaces

	Docstrings
	Method Docstrings
	Class Docstrings
	Template Docstrings

	Internals and Advanced Topics
	Special Attributes
	Wrapper Hints
	Deprecation Warnings
	Template Keys
	Exception Handling
	Deleting a vtkObject
	Ghosts
	Subclassing a VTK Class
	Wrapping External VTK Modules

	Experimental Features
	Python Class Overrides
	Stub Files for Type Hinting

	Wrapping Tools
	The C++ Parser
	vtkParse
	vtkParsePreprocess
	vtkParseString
	vtkParseSystem
	vtkParseType
	vtkParseAttributes
	vtkParseData

	Parser Utilities
	vtkParseExtras
	vtkParseMerge
	vtkParseMangle
	vtkParseHierarchy
	vtkParseMain

	Wrapper Utilities
	vtkWrap
	vtkWrapText

	Python-Specific Utilities
	Python Wrapper Executables
	vtkWrapPython
	vtkWrapPythonInit

	Java Wrapper Executables
	Other Executables
	vtkWrapHierarchy
	vtkWrapSerDes

	Rebuilding the Parser
	vtkParse.l
	vtkParse.y
	Debugging the Parser

	Migration Guides
	Module Migration from VTK 8.2 to 9+
	Using modules
	Module declaration
	Declaring sources
	Object Factories
	Building a group of modules

	Design Documents
	VTK File Formats
	Simple Legacy Formats
	Binary Files
	Dataset Format
	Dataset Attribute Format
	Legacy File Examples

	XML File Formats
	Serial XML File Formats
	ImageData
	RectilinearGrid
	StructuredGrid
	PolyData
	UnstructuredGrid

	Parallel File Formats
	PImageData
	PRectilinearGrid
	PStructuredGrid
	PPolyData
	PUnstructuredGrid

	XML File Example

	VTKHDF File Format
	Changelog
	VTKHDF - 2.2
	VTKHDF - 2.1
	VTKHDF - 2.0
	VTKHDF - 1.0

	Extension
	General Specification
	Image data
	Unstructured grid
	Poly data
	Overlapping AMR
	PartitionedDataSetCollection and MultiBlockDataSet
	Temporal Data
	Particularity regarding ImageData
	Particularity regarding OverlappingAMR

	Limitations
	Examples
	ImageData
	UnstructuredGrid
	PolyData
	Overlapping AMR
	PartitionedDataSetCollection
	Temporal Poly Data

	Parallel Processing with VTK’s SMP Framework
	Contributors
	Introduction
	Concepts
	The Age of Abundant Computing Cores
	Fine- and Coarse-Grained Parallelism
	Backends
	Thread Safety in VTK
	Results Invariance
	Show Me the Code

	Implementation Overview
	Functional Building Blocks
	Thread Local Storage
	Atomics

	Implementation Examples
	Functors and Parallel For
	Thread Local Storage
	Atomic Integers

	Tips
	Think about Thread Safety
	Analysis Tools Are Your Friend
	Debugging Tricks
	Avoid Locks
	Use Atomics Sparingly
	Grain Can Be Important
	Minimize Data Movement
	Choose Computation over Memory
	Multi-Pass Implementations
	Use Parallel Design Patterns

	Parallel Is Not Always Faster

	vtkArrayDispatch and Related Tools
	Background
	Terminology
	vtkDataArray
	The Costs of Flexibility
	The Old Solution: vtkTemplateMacro
	vtkTemplateMacro with Multiple Arrays
	Data Array Changes in VTK 7.1

	Best Practices for vtkDataArray Post-7.1
	vtkGenericDataArray
	vtkTypeList
	vtkArrayDownCast
	vtkDataArrayAccessor
	VTK_ASSUME
	vtkArrayDispatch
	Components Of A Dispatch
	The Arrays
	The Worker
	The Dispatcher

	Restrictions: Why They Matter
	Types of Dispatchers
	vtkArrayDispatch::Dispatch
	vtkArrayDispatch::DispatchByArray
	vtkArrayDispatch::DispatchByValueType
	vtkArrayDispatch::DispatchByArrayWithSameValueType
	vtkArrayDispatch::DispatchBySameValueType

	Advanced Usage
	Accessing Memory Buffers

	Putting It All Together

	Data Assembly
	Data Model
	Partitioned Dataset
	Partitioned Dataset Collection
	Data Assembly

	Design Implications

	VTK Legacy Reader/Writer Information Format
	Overview
	Array Metadata Blocks
	COMPONENT_NAMES
	INFORMATION
	vtkInformationDoubleKey
	vtkInformationDoubleVectorKey
	vtkInformationIdTypeKey
	vtkInformationStringKey
	vtkInformationIntegerKey
	vtkInformationIntegerVectorKey
	vtkInformationStringVectorKey
	vtkInformationUnsignedLongKey

	VTK XML Reader/Writer Information Format
	Overview
	Array Information
	vtkInformationDoubleKey
	vtkInformationDoubleVectorKey
	vtkInformationIdTypeKey
	vtkInformationStringKey
	vtkInformationIntegerKey
	vtkInformationIntegerVectorKey
	vtkInformationStringVectorKey
	vtkInformationUnsignedLongKey

	Field Data as Time Meta-Data in VTK XML File Formats
	MomentInvariants Architecture
	Rotation-invariant Pattern Detection
	Extensions

	Developer’s Guide
	Develop
	Workflow
	Update
	Create a Topic
	Guidelines for Commit logs
	Share a Topic
	Create a Merge Request
	Guidelines for Merge Requests
	Review a Merge Request
	Human Reviews
	Comments Formatting
	Leading Line
	Middle Lines
	Trailing Lines
	Fetching Changes

	Robot Reviews
	Continuous Integration
	Reading CI Results

	Revise a Topic
	Merge a Topic
	Merge Success
	Merge Failure

	Delete a Topic

	Regression Testing
	Testing and dashboard submitter setup
	Run-time environment of tests using ctest

	Adding Tests
	Setup
	Workflow
	Writing new tests
	Add Test
	Build and Run the Test
	Add Data
	Run CMake
	Commit
	Push

	Building
	Download
	Local Store

	Discussion
	ExternalData
	Recover Data File

	pre-commit
	git gitlab-push
	Publishing Data for an External Branch

	Dashboard Scripts
	Using the Dashboard Scripts
	Changing the Dashboard Scripts

	Updating Third Party Projects
	Updating a Project Upstream
	Updating the Import
	Updating a Project into VTK
	Porting a Project
	Process

	Imported Third Party Projects
	Using the update.sh framework
	Using git submodule
	Using copy

	Deprecation Process
	Deprecating classes and methods
	Lifetime of deprecated APIs
	Avoiding warnings within VTK

	Using VTK_DEPRECATION_LEVEL

	Release Process
	Overview
	Branching Scheme
	Steps
	GitLab and Releases
	Merge Requests
	Wrangling Branches

	Coding Conventions
	General
	Specific C++ Language Guidelines
	C++ Standard Library
	C++ Language Features Required when using VTK
	C++11 Features allowed throughout VTK
	C++11 Features acceptable in VTK implementation files, private headers, and template implementations
	C++11 Features allowed under certain conditions
	C++11 Features that are not allowed
	VTK’s commit hook enforced style checks

	About this documentation
	Quick Start Guide
	Initial Setup
	Development
	Upload
	Data
	Create a Merge Request
	Robot Checks
	Reviews
	Continuous Integration
	Merging

	Resources
	Links
	Python
	Docker

	Release Details
	9.3
	9.3.0 Release Notes
	Changes
	Build
	Charts
	Copyright
	Core
	Data
	Filters
	Geovis
	Interaction
	I/O
	Python
	Rendering
	System
	Third Party

	New Features
	ABI Namespace
	Build
	Charts
	Core
	Data
	Documentation
	Filters
	I/O
	Interaction
	Math
	Module System
	Python
	Qt
	Rendering
	Third Party
	VTK-m

	Deprecated and Removed Features
	Legacy
	Charts
	Core
	Data
	Filters
	I/O
	Python
	Rendering

	Other Changes

	9.2
	9.2.0 Release Notes
	Changes
	Build
	Core
	Data
	Filters
	Interaction
	I/O
	Rendering
	Python
	Web
	Third Party
	Infrastructure

	New Features
	Animation
	Build
	Core
	Charts
	Filters
	Interaction
	I/O
	Qt
	Rendering
	Widgets
	Testing
	Wrapping
	Module System

	Deprecated and Removed Features
	Legacy
	Core
	Filters
	Interaction
	Rendering

	Other Changes

	9.1
	9.1.0 Release Notes
	Changes
	Charts
	Data
	Filters
	I/O
	Rendering
	Java
	Python
	Rendering
	Infrastructure

	New Features
	Algorithms
	Core
	Charts
	Data
	Documentation
	Geometry
	Filters
	Imaging
	I/O
	Interaction
	Java
	Python
	Qt
	Rendering
	Web
	SMP
	Wrapping
	Module System
	Infrastructure
	Third Party

	Deprecated and Removed Features
	Legacy
	Core
	Filters
	Python
	Soft deprecations

	Other Changes

	9.0
	9.0.0
	9.0.2
	New classes
	New support
	Fixes
	macOS
	Third Party

	9.0.3
	Wheels

	8.2
	8.1
	8.0
	7.1
	7.0
	6.3
	6.2
	6.1
	6.0
	5.10
	5.8
	5.6
	5.4
	5.2
	5.0

	Python Module Index
	Index

